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Abstract

We present an algorithm by which nodes arranged in
a tree, with each node initially knowing only its parent
and children, can construct a fault-tolerant communication
structure (an expander graph) among themselves in a dis-
tributed and scalable way. The tree overlayed with this log-
ical expander is a useful structure for distributed applica-
tions that require the intrinsic “treeness” from the topology
but cannot afford any obstruction in communication due to
failures. At the core of our construction is a novel distrib-
uted mechanism that samples nodes uniformly at random
from the tree. In the event of node joins, node departures
or node failures, the expander maintains its own fault tol-
erance and permits the reformation of the tree. We present
simulation results to quantify the convergence of our algo-
rithm to a fault tolerant network having both good vertex
connectivity and expansion properties.

1 Introduction

Trees are an important class of data structures that are
suitable to many distributed applications. Their acyclic
structure allows the use of simple protocols for data shar-
ing and coordination, e.g., key management [19, 29], hi-
erarchical peer-to-peer systems [15] and distributed mutual
exclusion protocols [37, 9, 20, 44, 34]. Moreover the hi-
erarchical nature of trees maps directly to many real world
applications, e.g., the Domain Name System [33], distrib-
uted certification authorities [25] and distributed directory
protocols [11]. Even with these features, trees are not per-
vasive in many networked applications due mainly to their
poor fault tolerance. Node and link failures are considered
common-case in distributed systems and a single such fail-
ure can partition the tree, crippling the protocol that uses
this structure.
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Apart from applications that are inherently tied to the hi-
erarchical and acyclic properties, trees also arise naturally
in applications where a node “joins” the system by con-
tacting some node already present in the system: the join-
ing node then becomes a child of the node it contacts for
entry, resulting in a tree. Examples include many service
discovery protocols where a new server joins the system
by contacting an existing server [43, 10, 24], multicast ac-
knowledgement tree construction protocols [39] and several
other systems that use the expanding ring technique [6] to
locate and join an existing system. Ideally, these applica-
tions should be able to use the simple joining procedure and
still achieve unimpeded communication among the mem-
bers when faults occur.

In this paper we address the challenges posed by these
two classes of distributed applications by presenting an al-
gorithm that efficiently builds a logical fault-tolerant com-
munication network overlayed on a distributed tree struc-
ture. Applications that do not require the “treeness” prop-
erty can allow new nodes to join simply by attaching to
one existing node and run all communication on the fault-
tolerant overlay constructed from the tree. For applications
that require the acyclic and hierarchical nature of trees, we
present distributed algorithms that use the overlay to keep
the underlying tree connected in the presence of faults.

The overlay network constructed by our distributed algo-
rithm is an expander. Expanders are an important class of
graphs that have found applications in the construction of
error correcting codes [41], de-randomization [1], and in the
design of fault-tolerant switching networks [36]. The fault
tolerance of expanders [17, 4] is precisely what motivated
their use in this research. Our algorithm starts with nodes
connected in a tree and proceeds to add edges to achieve
an expander. Since explicit constructions of expanders are
generally very complex, we present a construction that “ap-
proximates” a d-regular random graph, i.e., a random graph
in which every node has almost d neighbors. A d-regular
random graph is, with an overwhelming probability, a good
expander [13].

The contributions of this work rest primarily in three
features. First, our algorithm is completely distributed.
Though expander graphs have been studied extensively, dis-
tributed construction of expander networks remains a chal-
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lenging problem. Our algorithms use only local infor-
mation at each node that consists of the identities of the
node’s neighbors in the tree. A direct consequence of this
is scalability—our algorithm is capable of generating ex-
panders efficiently even with a large node population. We
bootstrap this algorithm using a novel technique that sam-
ples nodes uniformly at random from the tree with low mes-
sage complexity.

Second, our algorithm adapts to node joins, leaves and
failures. Previous attempts at distributed construction of
random expanders [26, 16] try to construct d-regular ran-
dom graphs where every node has exactly d neighbors.
Such graphs are difficult to construct and maintain in a dy-
namic distributed setting; e.g., most of these constructions
require nodes to propagate their state to other nodes before
leaving the network. We follow a more pragmatic approach,
in that we only require that nodes have “close” to d neigh-
bors. In doing so we define a new class of random graphs
which we call (d, ε)-regular random graphs. These graphs
give us more flexibility in dealing with the dynamic na-
ture of our network, while still achieving fault tolerance.
One consequence of using this approach is that we do not
require nodes to notify others when leaving the network,
thereby accommodating failures. To the best of our knowl-
edge, distributed construction of expanders that adapt and
regain fault tolerance even when a large fraction of nodes
fail, has not been addressed previously.

Finally, we present a novel distributed algorithm that
uses the overlay expander to keep the underlying tree con-
nected in the presence of faults. This algorithm works on a
“best-effort” basis—in most cases the algorithm is able to
successfully patch the tree when nodes fail, however, in the
unlikely event of a large fraction of nodes failing simulta-
neously or in some corner cases like the failure of the root
node, the algorithm might not succeed. In these cases we re-
quire some of the nodes to re-join the tree using the default
application-specific mechanism.

While our algorithm has application in any scenario in
which building a fault-tolerant network from an initially
minimally connected system is warranted, we arrived at this
problem in an effort to enhance the fault tolerance of a par-
ticular mechanism. This mechanism, called capture protec-
tion [31], protects a cryptographic key from being misused
even if an adversary captures and reverse engineers the de-
vice (e.g., laptop) on which the key resides. Capture pro-
tection achieves this property by requiring the consent of
a remote capture protection server in order for the crypto-
graphic key to be used, which the server will give only if it
can authenticate the current user of the device as the proper
owner. This server, however, does not need to be fixed;
rather, one server can delegate the authority to perform this
role to a new server [30], giving rise to a tree structure in
which the new server is a child of the server that delegated

to it [38]. The need for a more fault-tolerant structure arises
from the need to disable the device globally when its cap-
ture is discovered, to eliminate any risk that the adversary
finds a way to impersonate the authorized user to a server.
As we would like this disable operation to succeed globally
in the tree of authorized servers despite server failures (pos-
sibly attacker-induced), we approached the problem that we
address in the present paper.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 introduces
some background material. Section 4 describes our sys-
tem model and briefly outlines the goals of this work. Sec-
tion 5 presents the expander construction along with related
proofs. Tree maintenance using the expander is discussed
in Section 6. Section 7 presents simulation results. We con-
clude in Section 8.

2 Related work

Fault-tolerant tree structures were first introduced in
the context of multiprocessor computer architectures as X-
Trees [12] and Hypertrees [18]. Fault tolerance was not the
primary goal of this research. As a result, these structures
impose other constraints that may not be reasonable in our
target applications, e.g., X-tree [12] assumes a complete bi-
nary tree and tolerates only a single node failure. Further-
more, distributed constructions of X-tree and Hypertree are
not known.

Expander graphs are a well studied design for fault-
tolerant networks. Both randomized [42, 22] and explicit
[32, 14] constructions of expanders have been known for
some time. However, little has been done to construct ex-
pander networks in a distributed setting.

Law and Siu [26] presented a distributed construction of
expander graphs based on 2d-regular graphs composed of
d Hamiltonian cycles. However, to sustain expansion of
the graph in the event of nodes leaving the system, they re-
quire that a leaving node send its state to some other node
in the expander. Therefore, this approach cannot tolerate
node failures. Furthermore, their algorithm requires ob-
taining global locks on the Hamiltonian cycles when new
nodes join, which can be impractical in a large distributed
system. Finally, they revert to employing either a central-
ized approach or using broadcast when the number of nodes
is small since their mechanism can only sample uniformly
from a sufficiently large number of nodes.

Gkantsidis, Mihail and Saberi [16] extend the mecha-
nisms presented by Law and Siu [26] to construct expanders
more efficiently. However, their approach uses d processes
in a 2d-regular graph, called “daemons”. These daemons
move around in the topology. Every joining node must be
able to find and query a daemon. Thus, as noted in [16], this
system is only “weakly decentralized”. In addition, node
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departures are handled as in [26], requiring special mes-
sages to be sent by nodes leaving the system.

Pandurangan, Raghavan and Upfal [35] present a distrib-
uted solution to constructing constant-degree low-diameter
peer-to-peer networks that share many properties with the
graphs we construct here. However, their proposal employs
a centralized server, known to all nodes in the system, that
helps nodes pick random neighbors.

Loguinov et al. [27] present a distributed construction
of fault resilient networks based on de Bruijn graphs that
achieve good expansion. However, they also require nodes
leaving the system to contact and transfer state to existing
nodes and thus cannot tolerate failures.

3 Background material

In this section we present some known results from the
theory of random regular graphs and random walks. These
concepts are used in the subsequent sections.

3.1 Random regular graphs

Let S(n, d) denote the set of all d-regular graphs on n
nodes and Gn,d be a graph sampled from S(n, d) uniformly
at random. Then Gn,d is a random regular graph. It is
known that random regular graphs have asymptotically op-
timal expansion (we formally define expansion in Section 4)
with high probability [13].

Configuration model [7] is the standard method for gen-
erating random d-regular graphs on n nodes v1, v2, ..., vn,
though not in a distributed setting. In this model each vertex
is represented as a set containing d elements, called points,
resulting in n such sets γ(v1), γ(v2), ..., γ(vn). A perfect
matching of these nd points is a set of nd

2 pairs of points
such that every point appears in exactly one pair. Assuming
nd is even, many perfect matchings exist for these points.
A uniform random perfect matching is a perfect matching
chosen uniformly at random from the set of all possible per-
fect matchings. To construct a random d-regular graph on
n vertices, a uniform random perfect matching on these nd
points is computed and an edge is inserted in the graph be-
tween vertices vi and vj if and only if the perfect matching
pairs a point in γ(vi) to a point in γ(vj). This model allows
self loops (pairing points from the same set) and parallel
edges (more than one pair from the same two sets) and is
very inefficient if the goal is to construct a simple graph,
i.e., one without self loops and parallel edges. A refine-
ment [42] of this model constructs random d-regular simple
graphs by pairing points, one pair at a time, from the uni-
form distribution over all available pairs, i.e., those that do
not result in self loops and parallel edges. Graphs gener-
ated using this approach are asymptotically uniform for any
d ≤ n1/3−ε, for any positive constant ε [22]. In Section 5,

we extend this model to the distributed setting for building
expander graphs.

3.2 Uniform sampling using random walks

A random walk on a graph can be modeled as a Markov
chain. For a graph containing n nodes, the probability
transition matrix M of the random walk is an n × n ma-
trix where each element Mij specifies the probability with
which the random walk moves from node i to node j in one
step. Let πt be a vector such that πt[i] is the probability
with which the random walk visits vertex i at step t. Then
πt+1 = πtM = π0M

t+1. A vector π is called the station-
ary distribution of the random walk if π = πM , i.e., the
stationary distribution remains the same after the random
walk takes a step, or any number of steps for that matter.
It is known that a random walk on a connected undirected
graph with an odd cycle has a unique stationary distribu-
tion [28]. Mixing time is the time required for the random
walk to reach its stationary distribution and it depends on
the expansion of the graph: the walk reaches the stationary
distribution quickly if the graph is a good expander. A ran-
dom walk on a graph can be used to sample nodes from the
walk’s stationary distribution if the walk is run long enough
to mix properly.

Let ΓG(x) denote the set of neighbors of node x in graph
G. Then a simple random walk is a walk which, at each step,
moves from a node x in G to one of its neighbors in ΓG(x)
with probability 1/|ΓG(x)|. The stationary distribution of
a simple random walk on a regular graph is uniform, i.e,
π = 1

n [1, 1, ..., 1]. In case the graph is not regular, the sta-
tionary distribution of a simple random walk is a function of
the nodes’ degrees. One of the known ways (recently also
discussed in [3, 8]) to sample uniformly at random from an
irregular graph G with maximum degree dmax is to run a
random walk on G that takes a step from node x to node y
with probability:

Pxy =




1
dmax

if y �= x and y ∈ ΓG(x)
1 − |ΓG(x)|

dmax
if y = x

0 otherwise

(1)

We call such a random walk a maximum degree random
walk and denote it as MDwalk. An MDwalk has a uniform
stationary distribution even on irregular graphs but it suffers
from two main issues: First in a dynamic distributed system
it is often difficult to estimate the maximum degree of the
graph. Second, low degree nodes imply higher self tran-
sition probabilities (see Equation 1) which result in longer
mixing times for MDwalks. If MDwalks are not run long
enough to achieve sufficient mixing, they are biased towards
low-degree nodes.
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4 System model and goals

Our system consists of a set of nodes distributed over a
network that is structured as a rooted undirected tree and
denoted as T = (V,ET ). The vertex set of the tree and the
overlay expander is the same but their edge sets differ, hence
the subscript. For any subset S ⊂ V we define the set of
neighbors of S in T as ΓT (S) = {y ∈ V | ∃x ∈ S, (x, y) ∈
ET }. Nodes are initialized only with the identities of their
neighbors and do not have access to any central database
containing information about T .

Nodes are allowed to join and leave the tree. We fur-
ther allow nodes to experience fail stop [40] failures, thus
failure of a node can be detected by other nodes in the sys-
tem. Our algorithms are designed independent of a partic-
ular fault distribution, however, our experiments use a ran-
dom distribution of faults. See [4] for a detailed analysis of
how expanders behave under different fault distributions.

We present some notation used to define expander
graphs.

Definition 1. Given a graph G = (V,EG), the vertex
boundary ∂G(S) of a set S ⊂ V is ∂G(S) = {y ∈ V \ S |
∃x ∈ S, (x, y) ∈ EG}.

Definition 2. A graph G = (V,EG) is an α-expander if for
every subset S ⊂ V of size |S| ≤ |V |/2, |∂G(S)| ≥ α|S|,
for some constant α > 0.

Our goals can be summarized as follows: Construct an
expander graph with the vertex set V using a distributed
algorithm that scales well. New nodes should be able to
join the expander with a low messaging cost even when the
expander is very large. In the event of node failures, the
expander should “self heal” to regain its fault tolerance and
the partitioned underlying tree should be patched to a single
connected component.

5 Distributed expander construction

Our approach is to construct a random graph among ver-
tices in V (nodes in the tree) such that nodes in the graph
have degrees close to some constant d. Such a graph is
much easier to construct and maintain in a distributed sys-
tem with dynamic membership than a d-regular random
graph, while still achieving comparable expansion.

5.1 Random almost-regular graphs

We say a graph is (d, ε)-regular if the degrees of all
nodes in the graph are in the range [d − ε, d]. Then a (d, ε)-
regular random graph, denoted Gn,d,ε, is a (d, ε)-regular
graph that contains a subgraph chosen uniformly at random
from the set S(n, d−ε)—the set of all (d−ε)-regular graphs

on n nodes. Therefore, the expansion of Gn,d,ε is bounded
from below by the expansion of Gn,d−ε, since adding edges
to a graph does not decrease its expansion.

Our distributed construction builds (d, ε)-regular random
graphs by approximating the refinement [42] of the configu-
ration model (see Section 3.1) as shown in Figure 1. ΓG(x)
is the set containing x’s neighbors in the overlay expander.
Nodes are sampled from the tree (line 4)—using mecha-
nisms discussed later—and added to this set, maintaining a
maximum of d neighbors (line 3 and lines 9–12). We avoid
self-loops and parallel edges (lines 6 and 7). Upon detect-
ing the failure of an expander neighbor, x removes this node
from ΓG(x) (line 16).

Every node x ∈ V executes the following:
Initialization:
1. ΓG(x) ← ∅

Main:
2. repeat forever
3. if |ΓG(x)| < d
4. uniformly sample node y from V
5. send (Add : y) to x

Upon receiving (Add : y):
6. if y = x or y ∈ ΓG(x)
7. do nothing
8. else
9. if |ΓG(x)| = d
10. pick z from ΓG(x) at random
11. remove z from ΓG(x)
12. send (Remove : x) to z
13. add y to ΓG(x)
14. send (Add : x) to y

Upon receiving (Remove : y):
15. remove y from ΓG(x)

Upon receiving (Failed : y)
16. remove y from ΓG(x)

Figure 1: Algorithm to generate (d, ε)-regular random graph

Using (d, ε)-regular random graphs allows us to avoid
complicated mechanisms that synchronize the state of de-
parting nodes with nodes in the network in an attempt to
maintain exactly d neighbors. Instead, we allow nodes to
leave without announcing their departure and ignore periods
where some nodes may have less than d neighbors. A large
number of simultaneous failures can result in some nodes
having degrees even less than d − ε, but the fault tolerance
of the expander will ensure that most nodes remain con-
nected in a component that has high expansion. This allows
nodes with low degrees to recover “quickly”. We present re-
sults related to the convergence rate of the expander under
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different conditions in Section 7.
These mechanisms reduce the problem of constructing

Gn,d,ε to that of a node x ∈ V choosing another node uni-
formly at random from the tree (line 4), i.e., with probability
1/|V |. Such a sampling procedure could be used by nodes
to construct and maintain Gn,d,ε as described above.

5.2 Biased irreversible random walks

For a node, choosing another node uniformly at random
from the tree is challenging because the structure is a tree
(and not a random graph for example) and because each
node only knows about its neighbors.

We approach this problem by assuming that every node
x knows about the number of nodes in the tree in the direc-
tion of each of its neighbors (we relax this assumption in
Section 5.3): x knows the size of the subtree rooted at each
of its children and x knows the number of nodes in the tree
that are not in the subtree rooted at x—this is the number
of nodes in the direction of x’s parent. Then, to choose a
node uniformly at random from the tree, x starts a biased
irreversible random walk, BIwalk. At each step, the BIwalk
either (i) moves from a node to one of its neighbors in the
tree, except the neighbor where it came from or (ii) picks
the current node. In case (i), the probability of choosing
a neighbor is directly proportional to the number of nodes
in the tree in the direction of that neighbor (we make this
formal below). In case (ii), we say the BIwalk terminates.
The node where the BIwalk terminates adds x to its neigh-
bor set and notifies x. Upon receiving this notification, x
also adds the sampled node to its neighbor set, thus forming
an undirected edge. We prove that a BIwalk samples nodes
uniformly at random from the tree when the tree is static.

Let (x, y) be an edge in ET (ET is the edge set of T ) and
F (V,ET \ {(x, y)}) be the forest containing two compo-
nents formed by removing (x, y) from T . Then, we define
C(x � y) to be the component of F that contains node y.
The ‘�’ notation captures the intuition that this is x’s view
of the tree in the direction of its neighbor y. Let V ′ denote
the vertex set of C(x�y), then W (x�y) = |V ′|. Intuitively,
W (x � y) represents x’s view of the “weight” of the tree in
the direction of its neighbor y, i.e., the number of nodes in
the tree in the direction of y. For convenience, we define
W (x�y) = |V | if x �∈ V and y ∈ V (the view from outside
the tree), and W (x � y) = 1 if x = y (the view when x
looks down at itself).

We denote a BIwalk as a sequence of random variables
X1, X2, ..., Y , where each Xi represents the node that ini-
tiates the ith step of the BIwalk (X1 starts the BIwalk) be-
fore the BIwalk terminates at node Y . Note that by defin-
ition a BIwalk terminates if and only if it picks the same
node twice, i.e., Xj = Xj+1 and in this case we de-
note Y = Xj+1. For notational convenience we define

X0 = x0 �∈ V , so for any x ∈ V,W (x0 � x) = |V |. Note
that there is a unique BIwalk between every pair of nodes in
V , since there is a unique path between every pair of nodes
in the tree and the BIwalk only travels over edges in the tree.

Say the BIwalk moves from node z to node x at the (i −
1)st step, i.e., Xi−1 = z and Xi = x. Then the probability
that the BIwalk moves to a node y ∈ V at the ith step is
given as:

Pr[Xi+1 = y | Xi = x,Xi−1 = z]

=

{
W (x � y)
W (z � x) if y ∈ (ΓT (x) ∪ {x}) \ {z}
0 otherwise

(2)

If y = x, i.e., x chooses itself, then by definition the BIwalk
terminates at x and Y = x. It is easy to see from Equa-
tion 2 that the BIwalk takes a maximum of tmax steps to
terminate, where tmax is the diameter of T . We now prove
that the BIwalk samples nodes from V (nodes in the tree T )
uniformly at random.

Theorem 1. For every BIwalk, Pr[Y = xlast] = 1/|V | for
all xlast ∈ V .

Proof: We prove this claim by induction on the size of the
tree, |V |. For the base case |V | = 1, the claim holds trivially
since xlast is the only node in the tree (by assumption) and
so Pr[Y = xlast] = 1.

Assume the claim holds for all trees of size up to k, i.e.,
for all trees T = (V,ET ) such that |V | ≤ k. We prove that
it holds for |V | = k +1. Say the BIwalk starts at some node
x1 ∈ V , i.e., X1 = x1. Then there are two possible cases:

1. x1 = xlast. From Equation 2 the probability that the
BIwalk terminates at x1 given that it starts at x1 is
Pr[Y = x1 | X1 = x1, X0 = x0 �∈ V ] = 1/|V |, since
by definition W (x1 � x1) = 1 and W (x0 � x1) = |V |.

2. x1 �= xlast. Let y be the neighbor of x1 such that xlast

is in the component C(x1 � y). Then from Equation 2
and the definition W (x0 � x1) = |V |, the probability
that the BIwalk enters the component C(x1 � y), i.e.,
steps from x1 to y is given by:

Pr[X2 = y | X1 = x1, X0 = x0 �∈ V ] =
W (x1 � y)

|V |
(3)

Note that C(x1 � y) is a tree of size at most k, since
|V | = k + 1, x1 ∈ V and x1 is not contained in
C(x1 � y). So by assumption once the BIwalk enters
the component C(x1 � y), it terminates at xlast with
probability

Pr[Y = xlast | BIwalk reaches y] =
1

W (x1 � y)
(4)
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Node y is in the path from x1 to xlast and there is a
unique BIwalk between every pair of nodes. Therefore,
the probability that the BIwalk terminates at xlast when
x1 �= xlast and xlast is in the component C(x1 � y) for
some y ∈ ΓT (x1), is given by:

Pr[Y = xlast] = Pr[Y = xlast | BIwalk reaches y]×
Pr[BIwalk reaches y]

=
1

W (x1 � y)
× W (x1 � y)

|V | =
1
|V |

5.3 Reducing message complexity

The mechanism described in Section 5.2 assumes that
each node x in the tree T knows the weight W (x � y) for
each neighbor y ∈ ΓT (x). At the start of the execution, this
can be achieved by an initial messaging round. However,
once all the weights are known, the addition or removal of
a node would require multicasting this information to keep
the weights updated at all nodes. This is not acceptable due
to the large message complexity of multicast. Furthermore,
if multicast is being employed then a trivial solution to uni-
form sampling from the tree exists: the joining node multi-
casts its arrival and all existing nodes reply with their iden-
tities allowing the new node to choose neighbors uniformly
at random.

Our goal is to sample nodes uniformly from the tree us-
ing an algorithm that requires a much lower messaging cost
than multicast. To achieve this we modify the mechanism
described in Section 5.2 as follows: To choose a node uni-
formly at random from the tree, a node x first sends a re-
quest called BIrequest to the root of the tree. The root node
then starts a BIwalk on behalf of x. As before, if this BIwalk
terminates on a node y, then y adds x to ΓG(y) and x adds
y to ΓG(x). Theorem 1 proves that irrespective of where
this BIwalk originates (from x or from root), it chooses y
uniformly at random.

To understand the effects of this minor change, we first
note that Equation 2 can also be expressed as:

Pr[Xi+1 = y | Xi = x,Xi−1 = z]

=

{
W (x � y)

1+
�

u∈ΓT (x),u �=z W (x � u) if y ∈ (ΓT (x) ∪ {x}) \ {z}
0 otherwise

Thus to compute the transition probabilities, a node x
that is currently hosting a BIwalk needs to know the weights
of all of its neighbors u ∈ ΓT (x) except the neighbor z
where the BIwalk came from. In the context of the new
mechanism this implies that each node only needs to know
the weights of its children and not the parent, since the
BIwalk always comes from the parent—the BIwalk origi-
nates at the root and is irreversible. Therefore, a join or

leave operation at node x, i.e., a node joins as a child of
x or some child of x leaves the tree, now requires updat-
ing the weights only at nodes that are in the path from x
to the root. This takes only O(log n) messages assuming
a balanced tree, a substantial improvement to the multicast
required earlier.

5.4 Load balancing

The optimization described in Section 5.3 reduces mes-
sage complexity considerably for each update but increases
the load on the root, as every BIwalk originates at the root.
We reduce this load by interleaving BIwalks with MDwalks
(see Section 3.2) that run on the expander. Our algorithm
constructs the expander incrementally, initially consisting
of a small set of nodes and growing in size as new nodes join
the expander by sampling enough neighbors from the tree.
We say a node x is an expander node if |ΓG(x)| ≥ d − ε.
Once an expander is constructed, MDwalks can be used to
sample from the set of expander nodes.

MDwalks are a good match to our setting because they
have a uniform stationary distribution even on irregular
graphs (our expander is an irregular graph), the maximum
degree of the expander graph is known and the mixing
time is small due to high expansion. For our application,
MDwalks mix sufficiently in 5 log(m) steps, where m is the
number of expander nodes; a detailed analysis of mixing
times on different graphs appears in [3]. Nodes can estimate
the logarithm of expander size using only local information
through mechanisms described in [21]. The main assump-
tion in [21] is that a new node joining the network has a ran-
domly chosen existing node as its first contact point. This
fits well with our construction as the expander neighbors are
chosen uniformly at random.

Using MDwalks in our system, however, raises two is-
sues: First, MDwalks sample from a uniform distribution
only if the expander is sufficiently large. Second, if the
tree contains many nodes that are not expander nodes—
e.g., if they just joined the tree or if several of their neigh-
bors failed resulting in less than d − ε neighbors—then the
MDwalks will only be sampling from a subset of nodes,
since MDwalks only sample from the expander nodes. To
address these issues, we develop a “throttling mechanism”
shown in Figure 2 that results in more MDwalks as the tree
becomes large and stable—a large, stable tree implies a
large expander covering most nodes in the tree. Nodes send
BIrequests along the path towards the root so the root can
start a BIwalk on their behalf, as described in Section 5.3.
However, upon receiving a BIrequest from its child, an ex-
pander node forwards this request towards the root only
with probability p (lines 7 and 8). With probability 1 − p,
the expander node starts an MDwalk (lines 9 and 10) on be-
half of the node that initiated the BIrequest. An MDwalk
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stepping on a node that is not an expander node implies that
there might be a non-negligible fraction of such nodes in the
tree. Hence, in this case the MDwalk is interrupted (lines 11
and 12) and a special request BIrequest′ is deterministically
sent to the root that results in a BIwalk (lines 19–22). When
the tree is large, there are more nodes in the path to the
root and thus a higher probability of starting an MDwalk
(lines 7–10). When the tree is stable most nodes are ex-
pander nodes and so MDwalks are not interrupted (lines 11
and 12).

Every node x ∈ V executes the following:
Initialization (addendum to Figure 1):
1. set parent to x’s parent in T

Upon receiving (BIrequest : u):
2. if x is root
3. send (BIwalk : u) to y chosen using Eq. 2
4. else if |ΓG(x)| < d − ε
5. send (BIrequest : u) to parent
6. else
7. with probability p
8. send (BIrequest : u) to parent
9. with probability 1 − p
10. send (MDwalk : u) to y chosen using Eq. 1

Upon receiving (MDwalk : u):
11. if |ΓG(x)| < d − ε
12. send (BIrequest′ : u) to parent
13. else
14. choose y using Eq. 1
15. if y = x
16. send (Add : u) to x
17. else
18. send (MDwalk : u) to y

Upon receiving (BIrequest′ : u):
19. if x is root
20. send (BIwalk : u) to y chosen using Eq. 2
21. else
22. send (BIrequest′ : u) to parent

Figure 2: Using MDwalks with BIwalks to reduce root load

We note that our algorithm cannot add or remove undi-
rected edges to the expander graph instantaneously due to
the distributed setting. This could be done using some
global locking mechanism but at a considerable perfor-
mance cost, and is therefore avoided. As a result the ex-
pander has some directed edges, e.g., node x has added
y to ΓG(x) but y has not yet added x to ΓG(y). The re-
sults concerning uniform sampling by MDwalks discussed
in Section 3.2 relate to undirected graphs only. Therefore,
when an MDwalk reaches a node y from a node x such that
x �∈ ΓG(y), y sends the MDwalk back to x and x chooses

another neighbor from the set ΓG(x) \ {y} according to
the transition probabilities in Equation 1. This ensures that
MDwalks effectively only step from a node to another node
if there is an undirected edge between them.

5.5 Summary

Our construction of an expander from a tree can be sum-
marized as follows:

• We construct (d, ε)-regular random graphs from a tree.
Each node uniformly samples nodes from the tree and
adds them to its neighbor set, maintaining a maximum
of d neighbors.

• We use BIwalks to sample nodes uniformly at random
from the tree. All BIwalks are started from the root as
this requires low message complexity for each update.

• As the expander grows, we can reduce load on the root
by using MDwalks. MDwalks step across edges of the
expander. Our algorithm results in more MDwalks as
the tree grows in size and becomes relatively stable.

Once constructed, the expander can be used by applica-
tions for fault-tolerant communication even when their sim-
ple joining procedure results in a tree. The other class of dis-
tributed applications that employ tree structures to exploit
the intrinsic hierarchical and acyclic properties, require the
tree itself to be fault-tolerant. We address this in the next
section.

6 Tree reconstruction after failures

Keeping the tree connected is essential for applications
that need to communicate across tree edges. It is also de-
sirable in the construction of the expander, especially in
dynamic scenarios when we need to use BIwalks that run
across tree edges. Here we present a distributed algorithm
that uses the fault-tolerant expander to “patch” the tree in
the event of node failures.

When a node z fails, the parent z′ of z simply removes
its failed child from ΓT (z′) and sends the updated weight
to its own parent (except when z′ is root), similar to the
case of a node joining. It would seem that a child x of z
also only needs to remove z from ΓT (x) and connect itself
as a child of some randomly chosen expander neighbor in
ΓG(x). However, if this randomly chosen neighbor is in the
subtree rooted at the failed node z, i.e., in the component
C(z′�z) (shown by the small triangle in Figure 3), then con-
necting x (and any other children of z) to this node would
still leave the tree partitioned. Therefore, x must find an
expander neighbor y ∈ ΓG(x) (x’s expander neighbors are
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Figure 3: Tree maintenance using the expander. Triangle de-
notes the tree. Small triangle denotes the subtree rooted at the
failed node z. Curved arrows show tokens sent by z’s child x
to x’s expander neighbors denoted by dashed circles.

shown as dashed circles in Figure 3) such that y ∈ C(z�z′),
i.e., y is in the component that contains the root of the tree.

Our approach to find such a node is to send “tokens”
from x to its expander neighbors. Upon receiving such a
token, a node forwards the token to its parent in an attempt
to reach the root. If such a token does in fact reach the root,
it implies that the corresponding neighbor in ΓG(x) (y in
Figure 3) is in the component containing the root. The root
sends the token back to x and x attaches itself as a child of
y.

Figure 4 shows the distributed algorithm run by node x
in case it detects that its parent has failed. The mechanism
described above provides only a probabilistic guarantee to
find a node in the component containing the root. There-
fore, x starts a timer (line 2) before sending the tokens. If
a suitable candidate for the new parent is not found within
the specified timeout period, e.g., because a large fraction
of nodes failed or the root itself failed, then x re-joins the
tree using the application-specific mechanism (line 5). We
presume that the application-specific joining mechanism is
more costly, e.g., because it involves manual intervention.

The token (Tok : x, y) sent by x to its expander neighbor
y (line 4) is forwarded along the path from y to the root
(line 13), which finally returns the token back to x (lines 6
and 7). x sets y as its parent, unless the parent has already
been set to another node, e.g., because the timer expired or
because a different token was received from the root earlier
(lines 8–11). To avoid complex scenarios that could result
in the formation of cycles, a node x must discard tokens of
the form (Tok : x, y), if the token is forwarded to x by a
child. In addition, “nonces” should be used to distinguish
between tokens sent across different runs of the protocol.
We omit these details from the pseudo-code for brevity.

7 Simulation results

We present simulation results measuring graph expan-
sion and connectivity under different conditions. These re-
sults validate our expander construction and prove that the
resulting graph is tolerant to node failures. We also show

Every node x ∈ V executes the following:
Upon receiving (Failed : parent):
1. parent ← ⊥
2. start timer
3. for each y ∈ ΓG(x)
4. send (Tok : x, y) to y

Upon receiving (TimerExpired : ):
5. re-join the tree, set parent to new parent

Upon receiving (Tok : x′, y′):
6. if x is root
7. send (Tok : x′, y′) to x′

8. else if x = x′ and (Tok : x′, y′) is sent by root
9. if parent = ⊥
10. parent ← y′, update weight at y′

11. stop timer
12. else
13. send (Tok : x′, y′) to parent

Figure 4: Tree maintenance in the presence of node failures

that using the mechanisms described in Section 5.4, the
load is better distributed among nodes in the tree during
stable periods, since most BIrequests result in MDwalks.
When the tree is more dynamic thus causing more BIwalks,
the load on the root is higher than the load on other nodes
roughly by a constant amount, even as the number of nodes
increases. These two results provide evidence that our sys-
tem scales well.

Verifying if a graph is an expander is co-NP-complete [5]
since it requires verifying the expansion of an exponentially
large number of subsets of vertices. However, we can esti-
mate a graph’s expansion by computing the second smallest
eigenvalue λ of the graph’s Laplacian matrix: a graph is
a 2λ

2λ+∆ -expander, where ∆ is the maximum degree of the
graph [2], in our case ∆ = d. We use Kleitman’s algorithm
[23] to find the vertex connectivity of the expander. We note
that the theory behind these well known results deals only
with undirected graphs. Thus, we ignore any directed edges
in the expander network when computing its expansion and
connectivity. Therefore, the results reported in this section
are pessimistic in the sense that our graphs actually have
more edges which are not represented here.

We developed a round-based simulator in Java. The sim-
ulator sets up an initial topology by constructing a random
tree containing d + 1 nodes. Nodes construct (d, ε)-regular
random graph with ε = d/2 overlayed on this random tree
using mechanisms described in earlier sections. In what fol-
lows, n denotes the upper bound on the number of nodes
used in the experiment; i.e., if node joins are being simu-
lated then nodes are added until the total number of nodes
is n, whereas if node failures are being simulated then nodes
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are removed starting with an initial set of n nodes. To sim-
ulate nodes joining the tree, nadd nodes are added to the
random tree after every Tadd rounds until the total number
of nodes in the tree becomes n. Each of the nadd nodes is
added as a child to an existing node chosen from a distri-
bution that picks more recently added nodes with a higher
probability. This is done so that the experiments measuring
the load on different nodes are not affected due to a node
having many more children than other nodes. To simulate
node failures, we remove nremove nodes, chosen uniformly at
random from the tree, after every Tremove rounds. Nodes in
the tree send BIrequests to their parents every Twalk rounds
if they have less than d neighbors. Twalk simulates latency
and other factors in real networks. We vary this parame-
ter in some experiments to see the effect of these delays
on the convergence rate of our algorithms. BIrequests are
forwarded by expander nodes to their parents with proba-
bility p = 0.5 (the choice is arbitrary, smaller p will ob-
viously reduce load on the root). Expander nodes initiate
MDwalks with probability 1 − p. We specify values for
n, nadd, nremove, d, Tadd, Tremove and Twalk for different exper-
iments as these are all tunable parameters.

Figure 5 plots the graph expansion and connectivity for
different values of Twalk

Tadd
. In this experiment we use n = 200,

d = 20, nadd = 20, Tadd = 200 and values 10, 20, 30 and
50 for Twalk. We compute the expansion and connectivity
of the graph every single round. The plot shows expansion
and connectivity after the first 100 nodes have already been
added (only to make the figure more visible). Each point
in the plot is a mean of 30 tests, each starting from a new
random tree. Expansion and connectivity are computed for
all nodes in the tree, not just the expander nodes so that we
can see the time it takes for the new nodes to be added to the
expander. When new nodes are added to the tree, expansion
and connectivity go down to 0 since the new nodes do not
have any neighbors in the expander yet. A larger Twalk

Tadd
ratio

implies that nodes look for expander neighbors slowly while
the graph is changing fast. This results in the graph taking a
longer time to achieve better expansion and connectivity as
shown in the figure.
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Figure 5: Expansion and Connectivity for various values of
Twalk
Tadd

. 20 nodes are added every 200 rounds. Shows how
quickly new nodes join the expander.

Figure 6 shows network behavior in the presence of node

failures. Nodes run the algorithm from Section 6 to re-
connect the tree after their neighbors fail so they can still
run BIwalks. For this experiment we use n = 150, d =
20, nremove = 10, Twalk = 10 and Tremove = 300. All 150
nodes are first added to the tree and we wait 1000 rounds
for the expander to be constructed (this period is not shown
in the plot). We then start measuring the expansion and
connectivity every single round and remove 10 nodes af-
ter every 300 rounds until we are left with 100 nodes. Each
point in the plot is a mean of 15 tests, each test starting from
a different random tree. The figure shows that node failures
affect the graph expansion and connectivity slightly and the
expander attempts to regain any lost fault tolerance during
stable periods.
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Figure 6: Expansion and Connectivity as nodes fail. 10 nodes
fail every 300 rounds. Failures have a minor effect and any lost
expansion and connectivity is regained in stable periods.

Figure 7 plots graph expansion and connectivity against
different values of d. We use n = 200, nadd = 20, Tadd =
100, Twalk = 10 and varied d = 6, 10, 15, 20, 25, 29, 33
and 38. For each value of d, we waited 1500 rounds af-
ter adding all nodes to the graph to give enough time to
construct the expander and then measured expansion and
connectivity. For each d, we repeated this process 30 times
on different random trees and plot the average expansion
and connectivity of these 30 results. As shown in the fig-
ure, expansion and connectivity increase with d. Our graphs
achieve reasonable fault tolerance even for small values of
d like d = 10.
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Figure 7: Expansion and Connectivity for various values of d.

Figure 8-(a) compares the load (number of messages
handled) on the root node with the mean load on other nodes
(and the standard deviation) in the tree. For this experiment
we used n = 2500, d = 20, nadd = 10, Tadd = 100 and
Twalk = 10. We start measuring the load from the first round
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by counting the number of messages received by each node
every 1000 rounds. We stop the experiment when all nodes
are added to the system, i.e., after 25000 rounds. Each point
in the plot is a mean of 30 tests with each test starting from a
different random tree. The dashed curve plots the mean load
seen by all nodes except the root along with the standard de-
viation. This standard deviation is high since nodes closer
to the root have a higher load than nodes closer to the leaves.
The plot shows a slight increase in the load on all nodes as
the number of nodes in the graph increases. This is because
the MDwalks run longer as the number of nodes increases—
we use MDwalks of length 5 log(m), where m is the num-
ber of nodes in the expander (see Section 5.4). However,
this effect becomes less visible when the number of nodes
is large. Also note that the load on the root is higher than
the load on other nodes only by a constant amount, even
as the number of nodes increases. This constant can also
be controlled using the parameter p (see lines 7–10 in Fig-
ure 2). We use p = 0.5 in all experiments, a smaller value
would reduce the constant difference between the load on
root and other nodes. For lack of space we do not present
these results here.

Figure 8-(b) plots the mean load per node against the
level in the tree, with root at level 0. We use the same values
for all the parameters as in Figure 8-(a), except nadd which
is varied nadd = 10, 15, 20, 25. Higher nadd implies a more
dynamic tree and thus results in more BIwalks causing a
higher load on nodes close to the root. Smaller nadd implies
a less dynamic tree resulting in more MDwalks and a better
distribution of load across all nodes in the tree.
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Figure 8: (a) Load on root vs mean load on other nodes. Root
load is higher only by a constant amount. (b) Load at different
levels is better distributed when tree is less dynamic.

8 Conclusions

We present a distributed algorithm that allows applica-
tions to exploit the acyclic and hierarchical properties of a
tree without compromising the fault tolerance of the sys-
tem. This is achieved by constructing an expander graph
from the tree. Following a pragmatic approach, we con-
struct an almost-regular random graph that is much easier to
construct and maintain than a strictly-regular random graph

but achieves comparable connectivity and expansion. Our
construction tolerates node failures using a self-healing ap-
proach. We also present an algorithm to patch the under-
lying tree using the fault-tolerant overlay network in case
of node failures. The simulation results show that the ex-
pander graph generated has high expansion and connectiv-
ity, converges quickly after addition or removal of nodes
and distributes load almost uniformly when the tree is not
too dynamic.
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