Nested Objects in a Byzantine Quorum-Replicated System
(Extended Abstract)

Charles P. Fry*

Abstract

Modern distributed, object-based systems support nested
method invocations, whereby one object can invoke meth-
ods on another. In this paper we present a framework
that supports nested method invocations among Byzantine
Jault-tolerant, replicated objects that are accessed via quo-
rum systems. A challenge in this context is that client ob-
Ject replicas can induce unwanted method invocations on
server object replicas, due either to redundant invocations
by client replicas or Byzantine failures within the client
replicas. At the core of our framework are a new quorum-
based authorization technique and a novel method invo-
cation protocol that ensure the linearizability and failure
atomicity of nested method invocations despite Byzantine
client and server replica failures. We detail the implemen-
tation of these techniques in a system called Fleet, and give
preliminary performance results for them.

Keywords: Distributed systems, Quorum systems,
Byzantine failures, Replication, Fault tolerance

1. Introduction

In this paper we present the design and implementation
of a framework to support Byzantine fault-tolerance [14] in
a distributed, object-based system. In modern object-based
systems, it is commonplace that objects are passed as argu-
ments to and can invoke methods on other objects. A goal
of our framework is to support these natural models of ob-
ject interaction seamlessly from the programmer’s perspec-
tive, while utilizing object replication and Byzantine fault-
tolerant method invocation protocols to mask the Byzantine
(arbitrary) failure of a limited number of replicas of each
object.

* Department of Electrical & Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA; cfry@ece.cmu.edu

t Department of Electrical & Computer Engineering, Department of
Computer Science, and CyLab, Carnegie Mellon University, Pitts-
burgh, PA, USA; reiter@cmu. edu

Michael K. Reiter!

The model of object interaction that our framework sup-
ports is motivated by that of Java remote objects. A Java
remote object is one that can be invoked from outside the
Java Virtual Machine (JVM) in which it resides, via a pro-
tocol called Remote Method Invocation (RMI). The client
JVM of a remote object holds a proxy for the remote ob-
ject, called a stub, that implements the same interface as the
remote object. The client program can invoke methods on
the remote object by invoking them on the stub, and can
pass the stub as a parameter to other, possibly remote, ob-
jects. Those objects that then hold the stub can invoke meth-
ods on the remote object, as well. This mechanism thus pro-
vides location transparency for calls to the remote object.

In this work, we consider a system we are implement-
ing whereby a serializable Java object can be dynamically
exported outside the JVM in which it was created, and repli-
cated to a number of other server JVMs, yielding a dis-
tributed object. After this operation, the client JVM is left
with a handle (conceptually similar to a stub, but function-
ally different), again that implements the same interface as
the original object; see Figure 1(a). Method invocations on
the handle are translated to method invocations on a set
(quorum [15]) of replicas for the distributed object. Like
RMI stubs, handles can be passed as parameters to method
invocations, potentially on other objects that have been dis-
tributed in this way, resulting in object nesting; see Fig-
ure 1(b). Those JVMs that hold a handle for the distributed
object are called clients; however, clients of one distributed
object can be servers for other distributed objects, so when
we refer to a client or a server, it indicates the role in which
it is participating at that time.

With nested objects, it is no longer desirable to allow un-
fettered access to a distributed object by any client that pos-
sesses a handle for that object. In particular, we cannot al-
low a single client replica to perform arbitrary operations on
another distributed object: doing so could result in duplicate
method invocations when other client replicas perform the
same method invocation, and Byzantine-faulty client repli-
cas could corrupt the embedded object, from the applica-
tion perspective, by invoking incorrect methods on it. In-
stead, the central goals of our framework are to ensure that
(1) only those method invocations endorsed by correct repli-

YF]',F.

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
SOCIETY

1060-9857/04 $ 20.00 IEEE

client

O handles
[replicas

7N

servers

(a) Distributed object components

client

O handles
[replicas

FZAINN

(o] Oy |
-] l el

servers

(b) Nested distributed objects

Figure 1. Distributed objects

cas of the calling object are performed, and that (ii) the
method invocation protocol itself is robust to a limited num-
ber of Byzantine faulty client replicas and server replicas.

For (i), we propose an authorization framework
for nested method invocations. This framework autho-
rizes method invocations on distributed objects from sin-
gle trusted clients as well as from quorums of individually
untrusted clients. When object o; is passed to oz, autho-
rization for quorums of 02’s replicas to invoke o0 is trans-
parently delegated with the use of delegation keys and cer-
tificates. For (ii), we develop a new quorum based method
invocation protocol that ensures linearizable [10] object in-
vocations and failure atomicity of method invocations at
arbitrary depths, again despite Byzantine failures of a lim-
ited number of replicas of each distributed object. This
protocol makes no assumptions on message transmis-
sion times, i.e. it is designed to function correctly in an
asynchronous environment.

We have implemented our framework within a signifi-
cant restructuring of the Fleet system [16]. The initial Fleet
system from which we began this implementation did not
support nested objects seamlessly, provided no tolerance for
Byzantine client invocations, and did not implement an au-
thorization scheme. As such, our framework is a significant
advance in this context.

2. Related Work

To our knowledge, the only prior system to support lin-
earizable access to nested objects in the face of Byzantine
faults is Immune [21]. Immune takes a different approach in
that it implements every distributed object using state ma-
chine replication [23], in which every method invocation
is executed by every object replica. Nested method invoca-
tions are performed with relative simplicity in the Immune

system, as its use of Byzantine fault-tolerant atomic broad-
cast (specifically [11]) ensures that all client and server
replicas receive every communication in the same order.
In contrast, our approach implements quorum-based access:
each method invocation involves accessing only a randomly
selected quorum of replicas, which can be relatively small,
e.g., O(v/bn) replicas for a distributed object with n repli-
cas and tolerating b Byzantine replica failures [17]. While
offering improved scalability and load dispersion, the quo-
rum approach introduces challenges not present in the state
machine approach, notably the absence of atomic multicast
among all client and server replicas to coordinate invoca-
tions. Finally, our authorization framework has no analog in
Immune, which permits any replicated object to invoke ar-
bitrary methods on another replicated object.

Benign fault-tolerant nesting of transactions has previ-
ously been a topic of study in the context of database sys-
tems [18]. Nested transactions achieve concurrency atom-
icity in the form of serializability [19]. While necessary
for transactional systems that must apply multiple oper-
ations on potentially many objects, serializability is both
non-local and blocking, thus requiring global coordination
and locking to enforce it. Serializability was recently stud-
ied in the context of JavaSpace transactions [20]; however,
while there can be nested transactions in JavaSpaces, there
is no analog to our nested method invocations as JavaS-
paces contain passive objects that can only be read and writ-
ten, rather than remote objects on which methods can be in-
voked.

Linearizability, the form of concurrency atomicity that
we pursue in this work, provides concurrency atomicity of
single operations performed on a single object only [10].
Though weaker than serializability, we have opted for lin-
earizability for two reasons. First, returning to the object
sharing model that motivates our work, linearizability is

H'l'l"

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
SOCIETY

1060-9857/04 $ 20.00 IEEE

the concurrency atomicity property that is achieved by Java
RMI (though not in a fault-tolerant way), provided that the
remote object processes requests sequentially. As such, our
system will be suited to applications already utilizing that
model. Second, linearizability can be enforced locally, and
avoids locking, which is problematic when a node respon-
sible for unlocking an object fails. Nevertheless, we intend
to explore serializability in future work.

Failure atomicity is a second property that is often con-
sidered in conjunction with concurrency atomicity, espe-
cially in transactional systems such as databases, although
it is normally limited to benign failures. Our approach
achieves failure atomicity in the face of Byzantine failures,
as detailed in Section 4.

3. Authorization Framework

As discussed in Section 1, object nesting in combina-
tion with Byzantine failures requires that we depart from
a model in which simply possessing a handle for a dis-
tributed object is sufficient to invoke methods on it. Oth-
erwise, a faulty object replica which was given a handle for
another object through servicing a method invocation would
then be able to invoke arbitrary methods on that object. Our
goal is to allow the creator of a distributed object to invoke
methods on that object, and to delegate that authority to an-
other client object, which itself may be replicated in order
to withstand the Byzantine failure of some of its replicas.
We anticipate that this delegation will most commonly oc-
cur automatically when a handle to one distributed object
is passed as a parameter to a method invocation on a sec-
ond distributed object.

3.1. Assumptions

As discussed previously, the environment that we con-
sider executes methods on a distributed object at a quorum
of its replicas, and the set of allowable quorums constitutes
a quorum system for the distributed object. For the purposes
of the present section, we are not concerned with the struc-
ture of the quorum system, except for one assumption: the
quorum system is formed based on an assumed maximum
number b of its replicas that will suffer Byzantine failures.
For example, it is necessary that each quorum be larger than
b, lest operations be performed at a quorum of only faulty
servers, and it is also necessary that any b failures leaves
a quorum available, so that operations can be completed.
Such quorum constructions can be found in, e.g., [15, 17].
We assume that communications to and from servers are
protected using standard cryptographic techniques.

At a high level, our strategy will be to permit only a num-
ber of replicas of size b; + 1 or greater of a distributed ob-
ject o; to invoke methods on another distributed object os.

Here, b; denotes the number of replica failures that the quo-
rum system for o; was designed to survive. In this way, any
invocation by any replica of 0; that the correct replicas of 02
accept is corroborated by a correct replica of 0, . For the pur-
poses of this section, we treat trusted individual clients that
are permitted to invoke methods on a distributed object, e.g.,
the creator of the object or another client to which it explic-
itly passes the handle through an out-of-band mechanism, as
a special case of a distributed object 0; with n; = 1 repli-
cas and b; = 0 faults.

3.2. Delegation

The starting point for method invocation authorization
is the principal that originally creates a distributed object,
i.e., the client that exports the object from its JVM to
make a new distributed object. When the distributed ob-
ject is created, its creator generates a new private digital
signing key .S and corresponding public verification key V'
(e.g., [22, 12, 1]) and deploys V' with each replica, as the
“root” key for the distributed object. The creator can option-
ally deploy additional root public keys with each replica,
though here we restrict our attention to a single root key.

The correct replicas of this distributed object will hence-
forth only permit method invocations bearing digital sig-
natures that can be verified with V', or for which the root
key has delegated authority (perhaps transitively). This del-
egation can occur in two ways. The most straightforward
is explicit delegation by the application, in which the ob-
Ject creator certifies a public key provided by another po-
tential client as being authorized to access the distributed
object. This form of delegation closely follows that of, e.g.,
Gasser and McDermott [9], and will not be detailed here.

The second and more complex form of delegation occurs
implicitly, when objects are nested. To support this form
of delegation, each handle contains a private signature key
called the handle key—the handle key for the initial han-
dle is the private root key of the handle—plus a set of state-
ments (certificates) regarding the keys for which that han-
dle key bears authority. To fully describe how delegation
works, we need to consider two cases: one in which a han-
dle for one distributed object is passed as a parameter into a
method call on another distributed object, and one in which
a method call on one distributed object returns a handle of
another distributed object.

Consider an object op with ng replicas, each replica rf
of which holds handles h} and k% for distributed objects
o1 and oz, respectively. Figure 2(a) shows an instance in
which ng = 1, as would be the case if oy were a non-
replicated client. Let S% denote the private handle key for
hy. If r§ passes hb in a method call parameter to h?, then
h makes a copy hy of itself for replica r{ (i.e., the j-th
replica of 0;), except hy is equipped with a newly gener-

YF]',F.

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
SOCIETY

1060-9857/04 $ 20.00 IEEE

ated public/private key pair (V,’, S') before being sent to
7—7 . The results of this delegation in the case of Figure 2(a)
are shown in Figure 2(b).

After generating a new public/private key pair for each
replica of 01, a new statement must be constructed autho-
rizing a non-faulty set of o;’s replicas to invoke methods on
02. Let V3 denote the set {Vj1,... V;™} of public keys
created for o;’s replicas, where n; is the number of replicas
of 01, and let b; be the number of faults the quorum con-
struction of o; is designed to mask. Then for each replica
7} of 01, the statement set of kY is augmented with a state-
ment of the form

Vy says (by 4+ 1 of Vi) = Vi, 1

i.e., a certificate signed by S} stating that any subset of
b1 + 1 keys in Vi is authorized with the same privileges as
Vzi. (“Says” and “speaks for” (=) are common formalisms
for expressing credentials, e.g., [13, 8, 2, 4, 3].) Verify-
ing a “signature” o on a message m with (b; + 1 of Vi)
means verifying that at least b; + 1 of the public keys in

{V#,...,V3™} can be used to verify signatures in o (a
set) for m. . . _
Finally, once at least by + 1 of handles hy’, h3’, ..., h}%?

have been deployed at r{ r{ can coalesce these handles into
a single handle h} by generating a new public/private key
pair (V3 , S3) and the certificate!

(/\ V;j) says (Vj = /\V2”> 2

In this way, requests issued by hJ to o2 replicas will need
only sign with S}, versus each of Sy, ..., S5°7. Of course,
the statement set of hJ contams both (2) and the union of
the statement sets of h, ..., h3°7, which includes (1).

Safety Consider a method invocation m executed by only
faulty handles {h}}, i.e., by at most b; replicas {r}. Each
such invocation is signed by S7 . and so each replica 7% that
sees this invocation can determine that VZJ says m and thus

that
< /\ V;j) says m
i

by (2). However, since there are at most b; j’s for
which this holds true, it is not possible to infer that
(b1 + 1 of Vi) says m, or thus that V§ says m for any cor-
rect j. Consequently, if any invocation m’ to 02 by og
requires by + 1 replicas of oy to submit m’, then any in-
vocation m to o2 by o; will not succeed if only b;

1 The handles héj , hgj ey h;"j need not all be deployed to r{ , and
some may not be due to failures. Thus, at any point in time this cer-
tificate will concern only the keys S3’ that rJ has received so far, and
can be updated when another handle is received.

replicas of o; submit m, and safety follows by induc-
tion.

Cost The latency of the above delegation is dominated
by the costs of (i) generating the ny private key pairs
(S8, V1), ..., (S5™, V3™) at r; (if) generating the pri-
vate key pair (Sg, v) at 7J; and (iii) generating the digital
signatures for (1) and (2) at 7§ and 77, respectively. For digi-
tal signature schemes for which key generation is costly, no-
tably RSA [22], it would be necessary to pre-generate these
keys in the background and store them for use when needed.
For this reason, it would be preferable to use a digital sig-
nature scheme, such as DSA [12] or ECDSA [1], for which
key generation is very efficient [24].2

A method invocation following this delegation, i.e., in
which object o; invokes a method on object o0z, requires
each invoking replica rJ to digitally sign its request with
5’% Replica 7"’2“ , upon receiving such a request, must verify
not only its signature but also the signatures of the state-
ment sets forwarded with the request. This cost is partic-
ularly important since as nesting depth increases, the size
of generated statement sets grows. While 75 will incur this
cost on the first method invocation, caching the verification
status of statements (certificates) should significantly de-
crease the cost of subsequent method invocations. Nonethe-
less, nested method invocations performed after one object
has been nested in another will be dominated by the cost of
signature verification, and would thus benefit from a digi-
tal signature scheme, such as RSA, where verification was
very efficient [24]. As keys can be pre-generated, but not
pre-verified, the cost of signature verification is the deter-
mining factor in selecting a signature algorithm for use in a
practical system.

Returning Handles Our framework accommodates return-
ing a handle from a method invocation on a distributed ob-
ject in a very similar way. For this, we continue from the
above example, and consider that after the above has tran-
spired, replicas of oy invoke a method on their correspond-
ing handles for o0;, and in doing so should obtain handles
for o, that should permit the oy replicas to invoke meth-
ods on o7 in the future. (op need not be the same object as
in the preceding example, though to simplify notation we
consider it to be.) Note that for 7] to perform the invoca-
tion, it must be invoked by by + 1 replicas of og, and it will
return a copy h2 of its handle h] to the handle A% in 7§,
Again, however, 7 will replace SJ in A with a newly gen-
erated handle key 52 , and add

Vi says (bo + 1 of VJ) = Vi 3)

2 Key generation in DSA is efficient once certain global parameters are
fixed, i.e., primes typically denoted by p and g, and a generator g of
a subgroup of order g in the integers modulo p. Similarly, ECDSA is
typically defined over a fixed curve, which then allows efficient key
generation.

H'l'l"

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
SOCIETY

1060-9857/04 $ 20.00 IEEE

i
To

O handles

O handles C
[replicas [replicas
Vi Vi i vi Vi Vi ! Vi

(a) Before nesting

(b) After nesting and delegation

Figure 2. Nested objects

to the statement set of A%/, where fig = {Vzlj a3 172"” }
and by is the number of failures the quorum system for oy is
designed to mask. Just as r{ did in the previous case, when
handle h} (in replica) receives at least by + 1 handles A%,
it coalesces these handles to build a handle h3 with a new
handle key S} and a statement set including

G
J

R} then returns h} from the method invocation, to 7. As
before, if only by replicas of oy now attempt to perform a
method invocation m on oz, then no correct replica of o
will infer (bo 4 1 of V) says m, and so method m will not
be invoked. The cost analysis of this case is similar to that
above.

says | V3 = A\ Vy’ 4

J

Revocation Distributed objects are typically intended to be
long-lasting, and in particular, to outlive the clients that cre-
ate them. As a result, it is not practical for the certificates
created during delegation (i.e., (1)—(4)) to expire; doing so
would leave distributed objects stranded with no clients able
to access them. As a result, we opt for a different form of
revocation, conceptually similar to the approach in Gasser
and McDermott [9]: when a JVM no longer requires a ref-
erence to a handle and so the handle is garbage collected,
its private handle key is deleted. This implies that once the
correct replicas of a distributed object 0, have deleted their
handles for another distributed object 02, the delegation that
permits o; to invoke methods on o5 can no longer be exer-
cised.

4. Failure Atomicity

Because they span multiple operations, nested method
invocations introduce the possibility that one operation suc-
ceeds while the operations it induces fail. Failure atomicity

in this context involves ensuring that all nested method in-
vocations are successfully performed. To ensure that each
nested operation is consistently performed by a full quorum
of correct server replicas, it is necessary that each server
replica in such a quorum receives a copy of the method in-
vocation request from at least b. + 1 client replicas, where
b. denotes the number of faults that the client object is con-
figured to tolerate. A first step toward attaining this goal is
for every client replica to send its method invocation request
to the same quorum of server replicas. This is done by us-
ing a unique method identifier® as input to a public uniform
hash function that maps method identifiers to quorums.

Unfortunately, selection of the same quorum by every
client replica is not sufficient to guarantee failure atomic-
ity, as malicious server replicas could respond selectively
to requesting client replicas, allowing some of them to suc-
ceed with their selected quorum, while forcing others to se-
lect a new quorum. This could prevent any quorum of cor-
rect server replicas from receiving the same request from
bc + 1 client replicas.

In addition to selecting the same initial quorum to con-
tact, each calling client replica also needs to ensure that
even after any failures that may occur on any of the ini-
tial server replicas contacted, including failure to respond
to requests, a full quorum of correct server replicas will re-
ceive at least b, + 1 requests. We accomplish this using non-
blocking Byzantine quorum systems [5], which guarantee
that even when b, server replicas fail, a response will still
be received from a set of server replicas constituting a stan-
dard Byzantine quorum [15]. Because of this strong avail-
ability guarantee, none of the calling client replicas will ever
need to select another quorum to contact due to failures in

3 This method identifier is constructed not only by encoding the method
name and argument values, but also by appending a counter value to
the method identifier of the method call that “contains” it. This identi-
fier will be detailed in the full paper.

YF]',F.

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
SOCIETY

1060-9857/04 $ 20.00 IEEE

the first selected quorum. This in turn ensures that a stan-
dard quorum of server replicas will all receive requests from
and send replies to at least b, + 1 client replicas.

Byzantine quorum systems and non-blocking Byzantine
quorum systems are similar in that both require a response
from a standard Byzantine quorum. They differ in that the
former seeks this response by accessing a standard Byzan-
tine quorum, and will thus be prone to the failure of any
selected server, while the latter accesses a non-blocking
Byzantine quorum, ensuring that even after the failure of
some of those servers, the required response will still be re-
ceived. We distinguish between the two types of quorums
involved in non-blocking Byzantine quorum systems as ac-
cess quorums, to whom requests are sent, and underlying
quorums, from which responses are received.

Previous uses of non-blocking quorum systems allow ac-
cess quorum members to be contacted incrementally [5].
Once a response is received from an underlying quorum,
the client need not contact any remaining members of the
access quorum. However, when non-blocking quorum sys-
tems are used for nested operations, a client replica can-
not stop contacting server replicas merely because it has re-
ceived a response from an underlying quorum. This is be-
cause all client replicas need to work together, ensuring that
each client replica receives a response from an underlying
quorum. When any given client replica receives such a re-
sponse, it is possible that some of the responses come from
malicious server replicas who only respond to a subset of
the client replicas. Thus each client replica must continue to
contact a full access quorum even after it has received a re-
sponse from an underlying quorum in order to ensure that
the other client replicas will also be able to receive the nec-
essary response.

5. Operation Ordering

As discussed in Section 1, the model of object interac-
tion that we attempt to mimic in our approach is that offered
by Java RMI. The concurrency semantics that most nat-
urally characterize Java RMI, presuming that remote Java
objects process each method invocation in isolation, is lin-
earizability [10]. For the distributed objects we consider,
owing to their replication and quorum based access, we
require a method invocation protocol that implements this
property. Prior protocols to achieve this property in systems
supporting quorum-based access, notably [7], assume a cor-
rect client. This assumption is violated in nested object sys-
tems, where clients can be replicas of other distributed ob-
jects, some of which may be Byzantine faulty.

The approach we take to method invocations here retains
the basic structure of prior quorum-based protocols in per-
mitting a single client to drive the ordering protocol, but
does so without trusting that client to make any protocol

decisions. Rather, this client is used only as a point of cen-
tralization to distribute a set of server messages from which
the servers work to make protocol decisions. Forms of mis-
behavior, notably sending different messages to different
SErvers, cannot cause correct servers to take permanent and
conflicting actions. In addition, a faulty client cannot pre-
vent progress by falling silent as another client can unilater-
ally “take over” driving the protocol.

In order to ensure linearizability, all correct servers must
apply operations in the same order. They do this by in-
directly communicating state with other server replicas in
a quorum, and then making deterministic decisions based
upon the view they have of the quorum. When a non-faulty
client drives the protocol, it echos the state of each server
replica in a quorum to the other server replicas in some quo-
rum. Server state consists of the set of pending operations
on that replica, and the last distributed object state commit-
ted (o), proposed (o7¢), and suggested (o°) on that replica.

5.1. Client Protocol

The client side of the method invocation protocol is
shown in Figure 3. This protocol consists of two main parts,
shown in lines 2—-10 and 11-23 of Figure 3, run concurrently
as indicated by the “||” in lines 2 and 11. In the first part, the
client request (“op”) is forwarded to a quorum Q) drawn de-
terministically (“p”, line 4) from a nonblocking quorum
system O, as described in Section 4. The client signs its re-
quest (“S(op)”, line 6) using its private key (the handle key
of Section 3) and sends the request to each member of Q. It
collects responses p into a set R until it has at least bg + 1
replicas (line 8), where b, is the number of replica failures
that the quorum system Q7 is designed to withstand.

In parallel, the client drives the ordering protocol as
shown in lines 11-23 of Figure 3. The client runs this or-
dering protocol with a particular rank r, which is an inte-
ger value assigned anew by the chooseRank method each
time the client begins the ordering protocol (line 13). In or-
der to make progress, the same rank must be kept during
each iteration, so the standard behavior of chooseRank is to
leave the current rank unchanged. However, at any point in
time each server will only interact with the highest ranked
client that has contacted it so far. As such, when a client re-
ceives a RankException from a server (not shown in Fig-
ure 3), chooseRank selects a new, larger rank for use in
the next round of the ordering protocol. A backoff strat-
egy could be used to avoid clients repeatedly interrupting
each other; as this does not effect the underlying protocol,
we discuss it in Section 5.4.

The core of this part of the client protocol is that it simply
queries each server u in a non-blocking quorum Q, € QF
(lines 15-16) by querying u.process(R2, r) (line 17) where
R is the set of valid responses gathered from servers in the

YF]',F.

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
SOCIETY

1060-9857/04 $ 20.00 IEEE

1. submit(op)

2. || waiting — true

3; Ry —0

4 Q1 —p Q*

5 “uEQ1

6. pu — u.submit(S(op))

8 Ry — pyURy

8 until (3p : [{pu € R1: p= pu}| > bs +1)
9 waiting — false

1 returnp: [{py € Ry : p=pu}| > bs+1

=R

11. | Ra—0

12. repeat

13. T+ chooseRank()

14. R3 — 0

15. Q2 —p QF

16. llueq,

17. state,, «— wu.process(Ra,r)
18. if (valid(stateu, R2, 7, V4))
19. Qs —{u}uQs

20. R3 « state,, U R3

21. until (3Q € Q: Q C Q3)
22, Ry — R3

23. until (waiting = false)

Figure 3. Client side of ordering protocol

previous iteration, until it receives valid responses from an
underlying quorum @ € Q (line 21) where Q is the under-
lying quorum system induced by O (see Section 4). Here,
aresponse state is valid if the state is consistent with the cor-
rect execution of u.process(Rz,), which includes bearing
the current rank r, being properly signed by S,,, and bear-
ing values reflecting correct protocol logic when applied to
Rs. Validity is tested in line 18, though this is not shown
in the figure to avoid duplicating the server-side logic. Al-
though validity testing by the client can not be relied on to
ensure correctness (as the client could be faulty), it is im-
portant in allowing correct clients to determine when valid
responses have been received from a full quorum, without
which the next round may be futile.

A malicious client could fail to send messages to some or
all of the server replicas, or at the very worst could send dif-
ferent messages to different sets of server replicas. As we
will demonstrate shortly, the only possible effect of such
misbehavior is that it might temporarily slow progress, but
this cannot result in an incorrect linearization of method in-
vocations.

5.2. Server Protocol

The server side of the protocol, as outlined in Figure 4, is
necessarily more complicated as it handles all of the proto-
col’s logic. The process method (on the left of Figure 4) is
invoked by client replicas’ ordering threads, while the re-
maining methods (on the right of Figure 4) are intended
strictly for internal use by a server replica. For simplicity
we do not show the submit method invoked by clients’ sub-
mit threads; this simply adds the submitted operation to the
pending set once it has been requested by b.+ 1 client repli-
cas, and returns a response to the waiting client replicas
when the submitted operation has been ordered and exe-
cuted.

The bulk of the server-side logic is contained in the
process method. This method first confirms that the rank

of the client is at least as large as any rank seen so far, and
throws a RankException and terminates this run of process
if not (lines 2-6). After checking the rank and verifying the
signatures of the supplied server replica states (line 9), each
server replica takes steps to determine which new object
state should be suggested, proposed or committed next. It
does this on the basis of the following values, which it de-
rives from the server replica states {state, },cq. (Note that
the server-side logic is only concerned with underlying quo-
rums, thus all references to quorums in this section refer to
underlying quorums; non-blocking access quorums are only
required by the client for use when contacting servers.)

e o, (line 13) is the state last suggested by some quorum
of servers, if any;

e ag" (line 17) is the state with the highest version num-
ber proposed to some correct server or, if there are
multiple such states, the one proposed by the highest-
ranked proposer;

@ a; (line 21) is the state with the highest version num-
ber committed to some correct server; and

e completed is the highest version number for which
some quorum has committed a state with that version
number (line 24), or for which some correct server has
suggested (line 14) or proposed (line 19) a state with a
strictly higher version number. We say that a state has
completed if its version number is less than or equal to
completed at some correct server.

In summary, the server takes the following actions, in

order. It commits o‘; if it cannot determine that it has

been committed at a full quorum (lines 25-26). Otherwise,
it looks at o if it exists and is not already completed
(line 27): if o} has been proposed to a full quorum by this
client (lines 18, 28), it commits ag‘: (line 29). If agc has not
been proposed to a full quorum by this client, the server sug-
gests o} if it has not already been suggested at a full quo-
rum (line 33) and proposes agc if it has (line 31). If agc does

YF]',F.

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
SOCIETY

1060-9857/04 $ 20.00 IEEE

1. process({statey }cq,T) 1. addOps(c”’, pending)
2. repeat
2. if (r > maxRank) 3. op «p pending
3. maxRank «— r 4. pending «— pending \ {op}
4. o — 1 5. if (o’.reflects(op) = false)
5 else if (r < maxRank) 6. o’.addOp(op)
6. throw RankException(maxRank) 7 until (pending = 0)
8. o’ .version «— o’.version + 1
7. foreachu € Q 9. return o’
8. (contenty,, T,,) «— state,
9. if (ru =7 A V4 says state,,)
10. (0%, 0h°, 03, pending,,) «— content,,
11. elseQ — Q\u 1. suggest(o)
2. if (0% = 1)
12 f(3Q €Q:Q' CQ) 3. 0° —o
13. og—0:3Q'€Q:Q C{u:0=05} 4. else
14. completed «— max{v : |[{u : o .version > v}| > bs + 1} 5t throw RankException (maxRank)
15. ¢ —{o:{u:0=05} >bs +1}
16. ¢ —{o€ EIEC : o.version = max, e ype {o’.version}} . propose(a,r)
17. o} — o € £I° : o.proposer = max , _<pe' {0 .proposer} 2. o.proposer «— r
s 3. oP¢ — o
18. Qpe — {u: oL = o5 A oL’ proposer = r}
19. completed — max{completed,
max{v : [{u : o},.version > v}| > b, + 1}}
. o 1. commit(o)
g(l) Eé‘cl e I{cu o= a{j}| 2 by +1} 5 ; 2. if (o.version > o“.version)
: og < 0 € L] : o.version = max,sexe {o’.version} 3 o.applyOps
22, Qc — {u:oy =05} 4. 0¢ — 0o
23. if(3Q' € 2: Q' C Q) 5. pending «— pending \
24, completed +— max{completed, ag.version} {op : o.reflects(op) = true}
6. response «— response|o.response
25. if (og # L A og.version > completed)
26. commit(og)
27. else if (o0 # L A o} .version > completed)
28. if (3Q" € Q: Q' C Qpe)
29. commit(o})°)
30. else if (o = ag)
31. propose(cb®,)
32; else
33. suggest(a}°)
34. else if (o) # L A o}.version > completed)
35: propose(ag,)
36. else
37. pending,, «— {op : |{u : op € pending, }| > bs + 1}
38. if (pending, # 0)
39. o — addOps(U;,pendingg)
40. suggest(o)

41. return S((c°,oP¢, 0%, pending),)

Figure 4. Server side of ordering protocol

not exist or is already completed, then the server similarly
examines oy, proposing it if it exists and is not already com-
pleted (lines 34-35). If o does not need to be acted upon,
the server deterministically orders method invocations that
are pending on bs + 1 servers—appending them to the cur-
rent state, but not yet executing them; see below—through
the addOps operation, and suggests this state (lines 37—40).
We note that in addOps, the predicate o.reflects(op) indi-
cates whether or not the operation op is incorporated into
the state o; as such, it prevents duplicate invocations. Fi-

nally, the server signs its current local states that it sees as
committed, proposed, and suggested, as well as all pend-
ing invocations and the rank r, and returns this (line 41).

It is important to note that the addOps operation (line 39)
does not actually invoke method invocations on the ob-
ject og; rather, they are just appended for later application
by applyOps (line 3 of commit). With the introduction of
nested operations, the scope of impact of a method invoca-
tion on an object is no longer limited to that object. Each
invocation can result in a nested method invocation on an-

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)

1060-9857/04 $ 20.00 IEEE

YF]',F.

COMPUTER

SOCIETY

other object. As such, it is important to withhold performing
operations until they are actually committed, as a suggested
or even a proposed state may never ultimately be commit-
ted.

5.3. Correctness

Space limitations preclude a full proof of linearizability
for this protocol. However, we note several important lem-
mas for the proof. As all of the protocol logic is performed
on the server side, all of the following lemmas refer to Fig-
ure 4, and all quorum references are to underlying quorums.

The first important lemma is that there is only one ob-
ject state o that can be proposed at a rank 7; i.e., the pro-
posed state for rank r is unique. Informally, this is true since
any proposal at rank 7 must first be suggested at a full quo-
rum by a client with rank r, and since correct servers sug-
gest only one state per rank (note line 4 of process and line 2
of suggest).

Lemma 5.1. Suppose that (c1,r1) is proposed at a correct
server replica, and (02,713 is proposed at a correct server
replica. If o = rq, then oy = 0.

A second important lemma is that once an object state
o is proposed to a full quorum, any higher-ranked proposal
for the same version number will also propose that object
state. In other words, not only is the object state per rank
uniquely defined, but so is the object state proposed at a full
quorum per version number.

Lemma 5.2. Suppose that (o1, 1) is proposed at a full quo-
rum, and (o4, r2) is proposed at a correct server replica. If
op.version = gj.version andry > T1, then oy = 0.

Third, any state committed at a correct server must be
proposed to a full quorum. Combined with the above lem-
mas, the following lemma thus implies that there is a well-
defined sequence of object versions that are committed.

Lemma 5.3. If o is committed at some correct server
replica by a client with rank ry, then (o,71) for 11 < ro
was proposed at a full quorum.

Now, linearizability easily follows from the following
lemma, which argues that one object state is built from the
previous by applying pending operations.

Lemma 5.4. If oo is suggested at some correct server
replica, then it extends the state o1 that is committed at a
Jull quorum with oy.version = oy .version + 1, by apply-
ing operations in {op : o .reflects(op) A —o .reflects(op)}
to o1 in some sequential order.

5.4. Liveness

Our discussion so far has focused on safety. Liveness is
also an important consideration, especially as a Byzantine

client could end up driving the protocol. It is thus desirable
to tolerate faulty clients while still achieving high through-
put with many concurrent clients. A first step towards this is
to require clients to sign their ordering requests with the pri-
vate key of the associated handle. In conjunction with the
delegation statements defined in Section 3, this would en-
sure that the ordering protocol for a given distributed ob-
ject could only be driven by handles which were authorized
to invoke methods on that object.

In addition to ensuring that only authorized handles can
drive the ordering protocol, it is also necessary to prevent
Byzantine clients from doing all the driving and thus pre-
venting forward progress. We do this with a form of back-
off similar to [7], though enforced by server replicas to pre-
vent faulty clients from repeatedly interrupting the protocol
for correct clients. While a faulty client can delay the order-
ing protocol during a single round, enforced backoff ensures
that correct clients (who are the majority due to quorum
overlap requirements) will regularly be allowed to drive the
protocol. Because operations are applied en masse, high av-
erage throughput is maintained by the system despite small
delays during rounds which are driven by Byzantine clients.
We present a complete analysis in the full paper.

5.5. Performance

We have implemented the protocol discussed in Sections
5.1 and 5.2 within the context of a substantial revision of the
Fleet system. Fleet is a distributed object store built in Java
that implements distributed objects such as those shown in
Figure 1(a). However, Fleet previously did not provide sup-
port for transparent nesting; in fact, nesting could result in
duplicate nested method invocations, even in the absence of
failures [16]. As such, our framework provides a useful ex-
tension to the Fleet system.

In our experiments, each server and client was equipped
with dual Pentium-III 1GHz processors, running Linux
2.4.24 SMP and Java HotSpot™ Server VM 1.4.2. The
servers and client were connected by 100Mbps Ether-
net and utilized TCP for all communication; multicast
was not used. Key generation, signing, and signature ver-
ification were all performed natively using the Crypto++
Library. All tests were performed with three signature al-
gorithms: RSA [22] with 1024-bit keys, DSA [12] with
1024-bit keys and ECDSA [1] with 160-bit keys. By
way of comparison, we also adapted our protocol to use
HMAG:s [6], using Diffie-Hellman key agreement to estab-
lish a shared secret key between each pair of servers.

The non-blocking quorum system in use was the ex-
tension of the Paths system [17] proposed by Bazzi [5],
and all method invocations were performed by unreplicated
clients.* In order to measure the overhead introduced by the

YF]',F.

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
SOCIETY

1060-9857/04 $ 20.00 IEEE

2500 T T T T T T T

oxx+
D
14
>

1500 -

xb

1000 |

Mean response time (ms)

500

0 5 10 15 20 25 30 35 40
Object replicas (n)

Figure 5. Mean response time

ordering protocol, all method invocations performed inex-
pensive tasks, such as get and set. Due to the limited set of
homogeneous computers at our disposal, we only tested dis-
tributed objects having between n = 1 and n = 36 repli-
cas and with b = 0, yielding quorums of sizes from ¢ = 1
to g = 20.

Preliminary response times as seen by a client for a
relatively unoptimized implementation of this protocol are
shown in Figure 5. Among the three digital signature algo-
rithms tested here, the use of RSA signatures, whose veri-
fication times are notably faster than the other signature al-
gorithms [24], yielded the lowest mean response time. This
result reflects the fact that each server replica in a quo-
rum must sign its own state, but verify signatures on states
from every server in a quorum. Note that the response time
growth rate is sublinear while b stays constant, due to the
fact that quorums in the chosen quorum system are asymp-
totically of size O(v/bn).

Prior to analyzing the performance of HMAGCs, it is nec-
essary to understand how their implementation differs from
that of signatures. As part of the ordering protocol, each
server replica signs its local state and sends it to the driv-
ing client replica (Figure 4, line 41), who then distributes it
to a quorum of server replicas (Figure 3, lines 16—17). When
using HMAG:s instead of signatures, it is necessary for each
server replica to include an HMAC for every other server
replica, and for the driving client replica to include the ap-
propriate set of HMACs for each server replica that it con-
tacts. HMACs thus consume more network bandwidth be-
tween server replicas and the driving client replica, as the
number of server replicas grows. Considering this, it is un-
surprising that the response time using HMACs does not
scale as well as signatures as n increases.

4 While replicated clients are an important component of our work, the
ordering protocol is driven by a single client replica at any given time.

Another difference resulting from HMACs is that the
client is unable to verify them (unlike signatures). As such,
a faulty server that returns invalid HMACs will not be read-
ily detectable to a client, and may impinge on the client’s
ability to complete the protocol. In such circumstances, the
client can “fall back” to a signature-based protocol to bet-
ter enforce progress.

6. Conclusions and future work

The delegation architecture which we have presented can
be used to arbitrarily nest distributed objects, while ensur-
ing correct system behavior despite a limited number of
Byzantine failures in the object replicas. This is accom-
plished through the creation of delegation keys and dele-
gation certificates that work together to authorize the invo-
cation of methods on nested objects. Method invocation ca-
pabilities on a specific distributed object can be delegated to
other clients explicitly, and are implicitly delegated to per-
mit nested method invocations by sufficiently large groups
of replicas to succeed transparently.

Through the use of non-blocking Byzantine quorum sys-
tems, failure atomicity can be ensured for nested object
interactions. Specifically, at every level within a chain of
nested method invocations, enough server replicas will be
activated to succeed at performing the next invocation in the
chain. Further, as long as non-blocking quorums are used at
each level in such a chain, the success of a method invoca-
tion at one level will not be followed by the failure of the
parent operation.

Finally, we presented a novel protocol to achieve lin-
earizability of nested method invocations. Our protocol tol-
erates Byzantine faulty clients, as is necessary when meth-
ods are invoked from other distributed objects that them-
selves must withstand Byzantine faults. We detailed this
protocol, argued its correctness, and described its imple-
mentation and performance in a distributed object system.

An extension that we are presently studying is the nested
creation of distributed objects, i.e., where one distributed
object creates another. Our framework provides a basis for
supporting distributed object creation, but requires us to ad-
dress additional issues. We will report on this progress in
future work.

References

[1] ANSI X9.62, Public Key Cryptography For The Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
American National Standards Institute, 1999.

[2] A. W. Appel and E. W. Felten. Proof-Carrying Authentication. In
Proceedings of the 6th ACM Conference on Computer and Commu-
nications Security, November 1999.

[3] D. Balfanz, D. Dean, and M. Spreitzer. A security infrastructure for
distributed Java applications. In Proceedings of 2000 IEEE Sympo-
sium on Security and Privacy, May 2000.

YF]',F.

COMPUTER

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
i ’ SOCIETY

1060-9857/04 $ 20.00 IEEE

[4]

(51

(6]

(71

(8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

[23]

[24]

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)

L. Bauer, M. A. Schneider, and E. W. Felten. A General and Flexi-
ble Access-Control System for the Web. In Proceedings of the 11th
USENIX Security Symposium, August 2002.

R. A. Bazzi. Access cost for asynchronous Byzantine quorum sys-
tems. Distributed Computing 14(1):41-48, 2001.

M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. In Proceedings of the 16th Annual Inter-
national Cryptology Conference on Advances in Cryptology, pages
1-15, 1996.

G. Chockler, D. Malkhi, and M. K. Reiter. Backoff protocols for dis-
tributed mutual exclusion and ordering. In Proceedings of the 21st
International Conference on Distributed Computing Systems, pages
11-20, April 2001.

C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and
T. Ylonen. SPKI Certificate Theory, September 1999. RFC2693.

M. Gasser and E. McDermott. An architecture for practical delega-
tion in a distributed system. In Proceedings of the 1990 IEEE Sympo-
sium on Research in Security and Privacy, pages 20-30, May 1990.
M. P. Herlihy and J. M. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Transactions on Programming
Languages and Systems 12(3):463-492, 1990.

K. P. Kihlstrom, L. E. Moser and P. M. Melliar-Smith. The Se-
cureRing group communication system. ACM Transactions on In-
Sformation and System Security 4(4), November 2001.

D. W. Kravitz. Digital signature algorithm. U.S. Patent 5,231,668,
27 July 1993.

B. Lampson, M. Abadi, M. Burrows and E. Wobber. Authentication
in distributed systems: Theory and practice. ACM Transactions on
Computer Systems 10(4):265-310, November 1992.

L. Lamport, R. E. Shostak and M. C. Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Sys-
tems 4(3):382—401, July 1982.

D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed
Computing 11(4):203-213, 1998.

D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Persistent ob-
jects in the Fleet system. In Proceedings of the 2nd DARPA Infor-
mation Survivability Conference and Exposition, Vol. 11, pages 126—
136, June 2001.

D. Malkhi, M. K. Reiter, and A. Wool. The load and availabil-
ity of Byzantine quorum systems. SIAM Journal of Computing
29(6):1889-1906, 2000.

J. E. B. Moss. Nested transactions: An approach to reliable dis-
tributed computing. Ph.D. Thesis, Massachusetts Institute of Tech-
nology, May 1981.

J. E. B. Moss. An Introduction to Nested Transactions. COINS TR
86-41, University of Massachusetts, Department of Computer Sci-
ence, September 1986.

N. Busi and G. Zavattaro. On the Serializability of Transactions in
JavaSpaces. In Proc. of International Workshop on Concurrency and
Coordination, Electronic Notes in Theoretical Computer Science,
Vol. 54, July 2001.

P. Narasimhan, K. P. Kihlstrom, L. E. Moser and P. M. Melliar-
Smith. Providing support for survivable CORBA applications with
the Immune system. In Proceedings of the 1999 IEEE Interna-
tional Conference on Distributed Computing Systems, pages 507—
516, May 1999.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM 21(2):120-126, Feb. 1978.

F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys 22(4):299-
319, December 1990.

M. J. Wiener. Performance Comparison of Public-Key Cryptosys-
tems. CryptoBytes 4(1):1-5, 1998.

1060-9857/04 $ 20.00 IEEE

YF]',F.

COMPUTER

SOCIETY

	footer1:

