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Abstract. In this paper we explore restricted delegation of searches on
encrypted audit logs. We show how to limit the exposure of private infor-
mation stored in the log during such a search and provide a technique to
delegate searches on the log to an investigator. These delegated searches
are limited to authorized keywords that pertain to specific time periods,
and provide guarantees of completeness to the investigator. Moreover,
we show that investigators can efficiently find all relevant records, and
can authenticate retrieved records without interacting with the owner of
the log. In addition, we provide an empirical evaluation of our techniques
using encrypted logs consisting of approximately 27, 000 records of IDS
alerts collected over a span of a few months.

1 Introduction

In this paper we present a protocol by which Alice can delegate to an investigator
the ability to search an audit log on her server for specific keywords generated
in specific time periods. Following this delegation, the investigator can perform
that search so that the server, even if corrupted by an attacker after the time
periods being searched (but before the search itself), cannot undetectably mis-
lead the investigator. The investigator, however, is limited to precisely the time
periods and keywords for which Alice delegated searching authority, and gains
no information for other time periods and other keywords.

In our model, Alice is trusted to always protect her secrets and follow the
protocols of the system. To help justify this trust assumption, Alice remains
somewhat isolated and communication with her is infrequent. Specifically, Alice
interacts with the server to establish the log and to periodically update keys
at the server, and with the investigator to delegate rights to search the log;
otherwise Alice is not involved in the logging or investigative protocols. Unlike
Alice, the server is not fully trusted and may be compromised at any point in
time. Until then, it diligently maintains an audit log of events that have occurred
on the server. Similarly, the investigator is not trusted: Alice and the server take
measures to ensure that the investigator gleans no further information about the
log beyond that permitted by Alice.
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While there are existing proposals that separately implement audit logs on
untrusted servers, searches on encrypted data by keywords, and time-based cryp-
tographic primitives, we believe our scheme is the first that integrates all of these
constructions in an efficient manner. Moreover, we propose several new ideas
which allow for a practical implementation of our goals. We detail a real imple-
mentation of our scheme and evaluate its performance using logs from a Snort
intrusion detection system [6] comprised of roughly 27,000 alerts and includes
attacks from nearly 1700 distinct IP address during a span of a few months.

The rest of this paper is organized as follows. In Section 2 we introduce some
preliminaries and formally outline our requirements. Section 3 examines related
work. Section 4 introduces our logging, authorization and searching protocols.
We provide a security evaluation in Section 5. Implementation details and em-
pirical results are presented in Section 6.

2 Preliminaries

For the purposes of this paper, a log is simply a sequence of records, each of
which encodes a message m. Time is broken into non-overlapping intervals, or
time periods, each with an index typically denoted by p (i.e., Tp is an interval of
time, followed by interval Tp+1). If R is a record then time(R) denotes the index
of the time period when R was written, and words(R) = {w1, . . . , wn} denotes a
set of keywords that characterize its message m, and on which searching will be
possible. Different records can have different numbers of keywords.

Our solution to the secure logging problem consists of three protocols:

– LogIt(m, W ): This protocol runs locally on the server. It takes as input a
message m and a collection W of words. (|W | = n need not be fixed, but
can vary per invocation.) It creates a log record R that encodes m.

– Auth(T, W ): This protocol runs between Alice and the investigator. The
investigator initiates this protocol with past time periods T = [p1, pk] (i.e.,
a contiguous sequence of k periods indexed p1, . . . , pk) and words W , and
interacts with Alice to obtain authority (i.e., trapdoors) to search for log
records R such that time(R) ∈ T and W ∩ words(R) �= ∅. Upon completion,
this protocol indicates either granted or denied to the investigator.

– Access(T, W ): This protocol runs between the investigator and the server.
The investigator begins this protocol with past time periods T = [p1, pk] and
words W . Using this protocol, the investigator retrieves from the server each
message m of each record R such that time(R) ∈ T and W ∩ words(R) �= ∅.
This protocol returns to the investigator either a set of messages {m} or an
error code tampered.

First consider an attacker who compromises the server only, and let pcomp

denote the time period in which the server is compromised. If T = [p1, pk],
we abuse notation by using T < p as shorthand for pk < p. We require a
number of properties of a secure logging scheme, which we detail below. Let
match(T, W ) = {m : LogIt(m, W ′) occurred in some p ∈ T ∧ W ′ ∩W �= ∅)}.
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Requirement 1 (Liveness) If Access(T, W ) is executed in time period p and
returns tampered, then p ≥ pcomp.

Requirement 2 (Soundness) If T < pcomp, then either Access(T, W ) =
tampered or Access(T, W ) ⊆ match(T, W ).

Requirement 3 (Completeness) If T < pcomp, then either Access(T, W ) =
tampered or match(T, W ) ⊆ Access(T, W ).

Informally, Liveness simply requires that Access not return tampered until
after a compromise occurs. Soundness and Completeness require that an adver-
sary who compromises the server be unable to undetectably insert or delete log
records, respectively. We now add an additional property to protect against an
investigator who attempts to overstep his authority granted by Alice.

Requirement 4 (Privacy) Let Auth(T1, W1), . . . , Auth(Tk, Wk) denote all
Auth protocols that have resulted in granted and such that Ti < pcomp. Then,
the investigator can learn only what it can infer from match(∪iTi,∪iWi).

In addition to these properties, we include efficiency in our goals and mea-
sure quality of each of the LogIt, Auth and Access protocols according to their
computation and message complexities.

3 Related Work

Several works [16, 9, 3, 7] consider techniques for searching encrypted documents
stored on a server for any word in the document. Typically, symmetric cryp-
tosystems are used to encrypt documents that are then transferred to a server
where searches are subsequently performed. These work differs from our set-
ting in that the server itself performs the search, and returns relevant results to
the document’s owner. In the context of an audit log, since the server creates
and encrypts log entries that must be eventually searched and decrypted by in-
vestigators, symmetric cryptosystems are not suitable for this purpose – once
the server is compromised an adversary would obtain all of the keying mate-
rial. Boneh et al. [4] provide a formal definition for a more relevant searchable
public key-encryption scheme, but their constructions only allow for matching
documents to be identified by the searcher.

In [15] Schneier et al. propose a scheme for securing audit logs on a remote
server. The authentication of log entries is accomplished using a hash chain and a
linearly evolving MAC. To facilitate searching, records contain type information,
and the the owner of the log allows a searcher to read selected records based
on type information of those records. However, the approach is inefficient as it
requires one key to be sent from the owner to the searcher for each record to be
searched, and the searcher must retrieve all records from the server to verify the
hash chain. The scheme is improved upon in [12] by using a tree based scheme
for deriving keys in which a non-leaf key can be used to derive all of the keys in
its subtree. Unfortunately, to remain secure and efficient, only a limited set of
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record types are allowed. This limitation is problematic for an audit log, where
the extracted keywords may include, for example, an IP address.

Waters et al. [17] subsequently proposed a searchable audit log scheme similar
to the tamper resistant audit log schemes of [15]. There, in order to add a message
mi with a set of keywords to the log, a random key Ki is chosen to encrypt mi.
Ki is identity-based encrypted [5] using each keyword as a public key. Similar to
[15] each record also contains part of a hash chain and a corresponding MAC. To
perform a search for keyword w, an investigator requests the trapdoor for that
keyword (dw) from the owner. Next, she retrieves each record and attempts to
decrypt each word using dw. To avoid retrieving all records and attempting one
IBE operation per keyword [17] suggests an improvement that groups a small
number of consecutive log records into a “block”. Once all of the records in the
block are stored, a special index record is written; for each keyword w associated
with any record in the block, the index record contains an IBE with public key
w of a list of records that contain w and the corresponding encryption keys.
Unfortunately, as we show in Section 6, this enhancement still has significant
performance limitations.

More distantly related work is that of time-based signatures (e.g, [11, 13]).
For the most part, these work present schemes for timestamping digital docu-
ments using trusted servers. In some cases, e.g [13], identity-based constructions
are used to reveal signatures on documents (or the documents themselves) at a
specified point of time in the future; documents are encrypted with a public key
for the date on which they are to be revealed, and each day, the server reveals
the IBE decryption key corresponding to that date.

Discussion. The approach of [17] does not meet the soundness requirement
as searches cannot be time-restricted – hence Access would return all entries
that match irrespective of when these records were written. For similar reasons,
their approaches for searching encrypted audit logs do not meet the Privacy
requirement. Note that using the tree-based approach of [12] to encrypt log or
index records, one can adapt [17] to achieve time limited searches. However,
such an approach would be inefficient. To see why, consider how time-scoped
searching could be trivially achieved in [17]. To do so, the time time(Ri) during
which a record Ri occurs is stored in that record and identity-based encrypted
using time(Ri)|wij instead of wij . Searches are performed as before, with the only
change being that the investigator asks Alice for the trapdoors corresponding to
each keyword she wants to search for during an interval of time. Unfortunately,
this simplistic scheme results in a significant performance penalty for Alice; to
search for a single keyword in t distinct time zones, Alice must provide the
investigator with O(t) IBE keys.

4 Protocols

In this section we detail the logging algorithm executed on Alice’s computer, as
well as the authorization and access protocols that are executed by the investi-
gator. Our algorithms utilize a number of cryptographic tools:
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Symmetric Encryption. A symmetric encryption system is a tuple (Ksym,Msym,
Csym, E sym,Dsym) where Ksym, Msym and Csym are sets of keys, plaintexts, and
ciphertexts, respectively. E sym is a randomized algorithm that on input K ∈
Ksym and M ∈ Msym outputs a C ∈ Csym; we write this C ← E sym

K (M). Dsym

is a deterministic algorithm that on input K ∈ Ksym and C ∈ Csym outputs
M ∈Msym, i.e., M ← Dsym

K (C), or else outputs ⊥ (if C is not a valid ciphertext
for key K). Naturally we require that if C ← E sym

K (M) then M ← Dsym
K (C). In

addition, we require that (Ksym,Msym, Csym, E sym,Dsym) be secure under chosen
ciphertext attacks, i.e., property ROR-CCA from [1].

Identity-based Encryption. An identity-based encryption system is a tuple (Mibe,
C ibe, I ibe, X ibe, E ibe, Dibe) where Mibe and C ibe are sets of plaintexts and ci-
phertexts, respectively. I ibe is an initialization routine that generates a “master
key” K ibe (and other public parameters). X ibe is an algorithm that, on input
w ∈ {0, 1}∗ and K ibe, outputs a “private key” d, i.e., d ← X ibe

K ibe(w). E ibe is
a randomized algorithm that on input w ∈ {0, 1}∗ and M ∈ Mibe outputs a
C ∈ C ibe; we write this C ← E ibe

K (M). Dibe is an algorithm that with input a
private key d and ciphertext C ∈ C ibe, outputs an M ∈Mibe, i.e., M ← Dibe

d (C),
or else outputs ⊥. We require that if d ← X ibe

K ibe(w) and C ← E ibe
w (M) then

M ← Dibe
d (C). We require that (Mibe, C ibe, I ibe,X ibe, E ibe,Dibe) is secure under

chosen ciphertext attacks, i.e., property IND-ID-CCA from [5].

Hash functions. We use a deterministic hash function h : {0, 1}∗ → Range(h),
which we model as a random oracle [2]. Since our protocol utilizes outputs of h
as cryptographic keys for symmetric encryption, we require Range(h) = Ksym.

Digital signatures. A digital signature algorithm is a tuple (Msig, Pubsig, Privsig,
Σsig, Isig,Ssig,V sig) whereMsig, Pubsig, Privsig and Σsig are sets of messages, pub-
lic verification keys, private signature keys, and signatures, respectively. Isig is a
randomized algorithm that produces a signature key S ∈ Privsig and correspond-
ing verification key V ∈ Pubsig, i.e,. (S, V ) ← Isig. Ssig is an algorithm that on
input S ∈ Privsig and message M ∈ Msig, returns a signature σ ∈ Σsig, i.e.,
σ ← Ssig

S (M). V sig is an algorithm that on input V ∈ Pubsig, message M ∈Msig,
and signature σ ∈ Σsig, returns a bit. We require that if (S, V ) ← Isig and
σ ← Ssig

S (M), then V sig
V (M, σ) = 1. We require that the signature scheme is

existentially unforgeable against chosen message attacks [10].

Tuples. We treat protocol messages as typed tuples, denoted 〈. . .〉 for tuples of
multiple elements; we will typically drop the brackets for a tuple of one element.
All tuples are “typed” in the sense that the set from which the element is drawn
is explicitly named in the tuple representation, i.e., a tuple 〈i, C〉 where i ∈ N

and C ∈ C ibe would be represented as (i : N, C : C ibe). We presume that all
algorithms confirm the types of their arguments and each tuple they process,
particularly those formed as the result of decryption. For readability, however,
we do explicitly include these checks in our protocol descriptions.
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Below we detail the LogIt, Auth and Access protocols. Alice initializes these
protocols by generating a master key for the identity based encryption scheme,
i.e., K ibe ← I ibe(), which she keeps secret. She provides to the server the pub-
lic parameters of the identity-based encryption scheme and any other public
parameters needed by the cryptographic algorithms.

4.1 Logging

The logging function LogIt that is executed on the server is shown in Figure 1.
This figure contains three groups of lines: global variables (lines 1–7), the LogIt
function itself (lines 8–13), and another function AnchorIt (lines 14–24) that will
be explained subsequently.

The LogIt function is given the message m to be logged and words w1, . . . , wn

that characterize this message (line 8), and is required to insert this message as
the next record in the log. The log itself is the global variable record (line 1)
that maps natural numbers to log records (which themselves are elements of
Range(h)×Csym), and the index of the position in which this new record should
be placed is rIndex (line 2).

The LogIt function begins by assembling the plaintext record R consisting
of rIndex, m, and one “backpointer” bp(wj) for each j ∈ [1, n] (line 9). Each
backpointer is an element of C ibe generated by encrypting with the word wj . The
plaintext of the backpointer bp(wj) indicates the record created by the most
recent previous LogIt invocation in which wj was among the words provided as
an argument.

The actual plaintext of bp(wj) becomes apparent when considering how the
current invocation of LogIt updates each bp(wj) to point, in effect, to the record
this invocation is presently creating: it simply encrypts h(R) under wj (line 12).
As a mechanism to speed up other protocols that will be described later, the
plaintext also includes the index j. Once h(R) and j are encrypted under wj ,
they are saved for use in the next invocation of LogIt (or AnchorIt, see below).

R itself is stored in record(rIndex) after encrypting it with h(R) and prepend-
ing h(h(R)) (line 13). This counter-intuitive construction is justified by the fol-
lowing observation: r = h(R) can serve as a search key for requesting this record
(i.e., by asking the server for the record with first component h(r)); the decryp-
tion key for decrypting its second component E sym

r (R); and a means to authen-
ticate the result R by checking that h(R) = r. The utility of this construction
will become clearer below. We note that this construction requires h to behave
like a random oracle, as it must return a random encryption key from Ksym.

Periodically, the server invokes the AnchorIt routine (line 15) to create an
anchor record. Anchor records, each of which is an element of Range(h)×Csym×
Σsig, are stored in anchor (line 3), and the next anchor record will be written to
anchor(aIndex). Intuitively, the duration of time that transpires between writing
anchor records defines the minimum duration of time in which an investigator
can be granted authority to search.

The AnchorIt function is called with a time key TK ∈ Ksym, and an authenti-
cation key AK ∈ Privsig. The AnchorIt function creates a record A (line 17) that
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1. record : N→ Range(h) × Csym - the log records
2. rIndex : N - last record written
3. anchor : N→ Range(h) × Csym ×Σsig - anchor records; written periodically
4. aIndex : N - last anchor written
5. prevAncHash : Range(h) - hash of plaintext of previous anchor;

initialized by prevAncHash
R← Range(h)

6. current : {0, 1}∗ → {true, false} - true iff w used since last anchor;
initialized current(w) = false

7. bp : {0, 1}∗ → Cibe - plaintext of bp(w) contains hash of last
record pertaining to w;

initialized with r
R←Mibe; bp(w)← E ibe

w (r)

LogIt function, invoked locally to generate new log record

8. LogIt(m, w1, . . . , wn : {0, 1}∗) - m is message to be logged; w1, . . . , wn is
9. R← 〈rIndex, m, bp(w1), . . . , bp(wn)〉 vector of words describing m
10. foreach j ∈ [1, n]
11. current(wj)← true - mark wj involved in a record
12. bp(wj)← E ibe

wj
(〈h(R), j〉) - next record with wj will include bp(wj);

anyone able to decrypt bp(wj) can
authenticate R using h(R) (c.f., line 13)

13. record(rIndex)← 〈h(h(R)), Esym
h(R)

(R)〉 - h(R) permits record to be retrieved,

14. rIndex← rIndex + 1 decrypted and authenticated

AnchorIt function, invoked locally to write an anchor record

15. AnchorIt(TK : Ksym,AK : Privsig)
16. w1, . . . , wn ← 〈w : current(w) = true〉 - words in log records since last anchor
17. A← 〈aIndex, prevAncHash, bp(w1), . . . , bp(wn)〉
18. prevAncHash← h(A)
19. foreach j ∈ [1, n]
20. current(wj)← false - reset current(w)
21. C ← Esym

TK (〈aIndex, j, h(A)〉) - without TK , its infeasible to determine
previous anchor containing bp(wj)

22. bp(wj)← E ibe
wj

(C) - the next record containing wj

23. C ← Esym
TK (A) will be pointed to by bp(wj)

24. anchor(aIndex)← 〈h(TK ), C,Ssig
AK (C)〉

25. aIndex← aIndex + 1

Fig. 1. The LogIt and AnchorIt algorithms

contains aIndex, backpointers for all words w provided to some LogIt function
call since the last AnchorIt call (as indicated by current(w), see line 11), and a
hash of the value A constructed in the last call to AnchorIt; this hash value is
denoted prevAncHash(lines 17–18).

Like LogIt, AnchorIt also updates the backpointers for those words for which
backpointers were included in A (lines 21–22). The primary difference in how
AnchorIt creates the new backpointer for word w is that the contents are en-
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crypted under both the time key TK (line 21) and w (line 22). As such, the
contents are useful only to those who can decrypt both. As in LogIt, these new
backpointers are saved for use in the next invocation of LogIt (or AnchorIt). Fi-
nally, A is encrypted under TK , and is stored signed by AK and with h(TK )
as its search key. Intuitively, an investigator given TK and the public key cor-
responding to AK can request this anchor record (by requesting h(TK ), verify
the digital signature in the third component, and decrypt the contents (second
component) to obtain A.

4.2 Authorization

Suppose an investigator requests to search for records that occurred during time
intervals T = [p1, pk] that are related to any keywords in W , i.e., by invoking
Auth(T, W ). The investigator sends the values T and W to Alice. If Alice does
not approve authorization of the requested search, denied is returned. Otherwise,
she provides several values to the investigator to facilitate the search (i.e., so the
investigator can perform Access(T, W )) and returns granted.

1. For each keyword w ∈ W , Alice computes dw ← X ibe
K ibe(w) and sends dw to

the investigator.
2. Alice computes the value AK ∈ Privsig provided to the first call to AnchorIt at

the end of period pk. In addition, Alice computes every TK ∈ Ksym provided
to any AnchorIt call at the end of time intervals [p1, pk]. Alice then sends
these time keys and the single public verification key corresponding to AK
to the investigator.

4.3 Access

For ease of exposition, we discuss the investigator’s access protocol in terms
of a single keyword w; this protocol can be run in parallel for multiple words.
Recall from Section 4.2 that the investigator is in possession of (i) all time keys
TK ∈ Ksym that were provided to any AnchorIt invocation at the end of a period
in T = [p1, pk] – we denote these timekeys by TK 1, . . . ,TK k – and (ii) the
public verification key VK ∈ Pubsig corresponding to the private signature key
AK ∈ Privsig provided to the AnchorIt call at the end of period pk. Though Access
is described in Section 2 as taking T and the set W (which in this case is {w})
as arguments, here we abuse notation and specify it taking VK ∈ Pubsig and
TK 1, . . . ,TK k ∈ Ksym.

Pseudocode for the Access operation is shown in Figure 2. In this pseudocode,
we presume that the server provides interfaces by which the investigator can
specify a value r ∈ Range(h) and request from the server the element of record
of the form 〈r, C〉, if one exists, or the element of anchor of the form 〈r, C, σ〉, if
one exists. We denote these operations by C ← record.retrieve(r) and 〈C, σ〉 ←
anchor.retrieve(r), respectively (lines 8, 18, 27). In addition, it is intended in
Figure 2 that variables i, j, n are elements of N; v and annotations thereof (e.g.,
v′) are elements of Range(h); b and annotations thereof (e.g., bj) are elements
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Finds which of b1, . . . , bn, if any, successfully decrypts using dw and TKp

1. scanAnchor(p, v, b1, . . . , bn)
2. �← arg min�′ : �′ > n ∨ 〈v′, j′〉 ← Dsym

TKp
(Dibe

dw
(b�′ )) - b� properly decrypts or � > n

3. if (� ≤ n)
4. getRecord(p, v′, j′)
5. else if (p > 1)
6. getAnchor(p− 1, v,⊥)

Retrieves an anchor, authenticates it using v, and decrypts the backpointer

7. getAnchor(p, v, j)
8. 〈C, σ〉 ← anchor.retrieve(h(TK p))
9. A← Dsym

TKp
(C)

10. assert(h(A) = v ∧ 〈i, v′, b1, . . . , bn〉 ← A) - authenticate record
11. if (j 
= ⊥)
12. assert(〈v, j〉 ← Dsym

TKp
(Dibe

dw
(bj)))

13. getRecord(p, v, j)
14. else
15. scanAnchor(p, v′, b1, . . . , bn)

Retrieves a record, authenticates it using v, and decrypts the backpointer

16. getRecord(p, v, j)
17. repeat
18. C ← record.retrieve(h(v)) - v should be h(R) of Fig.1:ln 13
19. R← Dsym

v (C) - decrypt record
20. assert(h(R) = v ∧ 〈i, m, b1, . . . , bn〉 ← R) - hash authenticates record
21. results← results ∪ {m} - accumulate results
22. X ← Dibe

dw
(bj)

23. while (〈v, j〉 ← X)
24. p← arg maxp′ : p′ < p ∧ (p′ = 0 ∨ 〈i, j, v〉 ← Dsym

TKp′ (X))

25. if (p > 0)
26. getAnchor(p, v, j)

27. 〈C, σ〉 ← anchor.retrieve(h(TK k)) - Access operation starts here
28. A← Dsym

TKk
(C)

29. assert(V sig
VK (C, σ) = 1 ∧ 〈i, v, b1, . . . , bn〉 ← A)- v should be prevAncHash from

30. scanAnchor(k, v, b1, . . . , bn) Fig.1:ln 17

Fig. 2. The Access(VK : Pubsig,TK 1, . . . ,TK k : Ksym) algorithm

of C ibe; C is a member of Csym; σ is a members of Σsig, and m is an element
of {0, 1}∗. We use this typing information, in particular, in attributing a truth
value to an assignment: e.g., 〈v, j〉 ← X (line 23) is true if X is a strongly typed
representation of a tuple in Range(h)×N, in which case these values are assigned
to v and j, and is false otherwise (and the assignment has no effect). The truth
value of assignments is tested in both branching statements (e.g., line 23) and
in assert statements (line 10). An assert(E) statement for some expression E
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aborts the Access operation immediately with a return value of tampered if E
evaluates to false, and otherwise simply evaluates the expression E.

The Access operation starts by retrieving the anchor record associated with
h(TK k) (line 27). After decrypting it and authenticating its contents using VK
(line 29), scanAnchor, is called to find if any backpointer in the anchor record
properly decrypts using dw and then TK p (where p = k in this case). Line 2 in
scanAnchor deserves explanation: this assigns to � the smallest value �′ such that
either backpointer b�′ properly decrypts to an element of Range(h)×N, in which
case these values are assigned to 〈v′, j′〉, or �′ > n. If no backpointer properly
decrypts (and so �′ > n), then the preceding anchor record is retrieved (line 6);
otherwise the record to which the backpointer “points” to is retrieved.

The getAnchor and getRecord functions are shown in lines 7–15 and 16–26,
respectively; both are straightforward in light of the log construction in Figure 1.
Briefly, getAnchor is provided an authenticator v for the anchor to be retrieved,
the index p for the key TK p under which it should decrypt, and optionally an
index j for the backpointer bj it contains that is encrypted under w (and TK p).
So, getRecord retrieves the anchor record using h(TK p) (line 8), decrypts it
using TK p (line 9) and authenticates it using v (line 10), and then either calls
scanAnchor to scan the record or, if an index j is provided, then bj is decrypted
and getRecord invoked.

Similarly, getRecord accepts an authenticator and decryption key v for a log
record to be retrieved, and an index j for the backpointer it contains that is
encrypted under w. This function loops to repeatedly retrieve (line 18), decrypt
(line 19), and authenticate (line 20) a record. The contents m are added to a
results set (line 21) and then bj is decrypted. If this decryption is an element
of Range(h) × N, then this backpointer points to another log record, and in
that case, the loop is re-entered. Otherwise, the backpointer points to an anchor
record and the backpointer is decrypted with TK p′ (line 24) and the getAnchor
is called to retrieve the corresponding record.

The recursive calls that comprise the Access function cease when the value
p reaches p = 1; see lines 5 and 25. At this point, all calls return and results is
returned from Access.

5 Security

In this section we informally justify the claim that these protocols implement
Requirements 1–4. Proofs will be provided in the full version of this paper.

Liveness. Recall that Access returns tampered only when the expression E in
an assert(E) evaluates to false. Liveness can be confirmed through inspection
of Figures 1 and 2 to determine that if Access(T, W ) is executed by an honest
investigator before the machine is compromised, then it will not return tampered.

Soundness. Soundness requires, intuitively, that an attacker who compromises
the server is unable to undetectably insert new records into the log, or alter
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records in the log, for any time period in T = [p1, pk] (i.e., the searched interval),
where time period pk is completed by the time the compromise occurs. Recall
that pk is terminated with a call to AnchorIt, where an authentication key AK
for time period pk is used to digitally sign the anchor record (Figure 1, line 24).
At that point, AK should be deleted from the server (not shown in Figure 1),
and so will not be available to the attacker after compromising the server. Since
the investigator is provided the public key VK corresponding to AK with which
to authenticate the first record she retrieves (see Figure 2, line 29), the attacker
is unable to forge this record. Moreover, every log or anchor record retrieved
provides a value v ∈ Range(h) with which the next record retrieved is authen-
ticated; see Figure 2, lines 10, 20. Via this chaining, the attacker is precluded
from inserting log records undetectably (with overwhelming probability).

Completeness. Completeness requires that an attacker who compromises the
server is unable to undetectably delete records from the log for any time period
in T = [p1, pk], where time period pk is already completed by the time the
compromise occurs. This reasoning proceeds similarly to that for soundness,
noting that each record retrieved is authenticated using information from the
previous record. This chaining ensures that any gaps in the chain will be detected
(with overwhelming probability).

Privacy. Privacy is the most subtle of the properties. Informally, we are required
to show that the only records an investigator is able to retrieve from a non-
compromised server are match(∪iTi,∪iWi). We assume here that the only means
the investigator has for retrieving records is the anchor.retrieve and record.retrieve
interfaces utilized in Figure 2.

Informally, in order to retrieve an anchor record, it is necessary for the in-
vestigator to know h(TK ) for the corresponding time key TK . This can be
obtained only by obtaining TK directly from Alice; time keys or hashes thereof
appear nowhere in the contents of log records (except as encryption keys, but
since IND-CCA security implies security against key recovery attacks, the time
key or its hash is not leaked by the ciphertexts). As such, if the investigator
can retrieve h(TK ) from the server, then TK ∈ ∪iTi. Similarly, to retrieve a log
record, the investigator must know h(h(R)) for the log record R. In this case, the
value h(R) does appear in log records, specifically in backpointers, but always
appears encrypted by a word w that characterizes it (Figure 1, line 12). These
backpointers, in turn, are included in log records or anchor records (Figure 1,
lines 9, 17), and by a simple inductive argument, it is possible to argue (infor-
mally) that any log record that can be retrieved requires knowledge of both dw

for a word w that characterizes it, and the time key TK for the time period in
which it was written.

A formal proof of this property requires substantially greater care and rigor,
of course. In particular, it requires us to model h as a random oracle [2], since its
outputs are used as encryption keys for records (Figure 1, line 13). In addition,
since h returns a unique value per input, it is essential that no two records R
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be the same, though this is assured since each record R includes backpointers,
themselves ciphertexts generated by a randomized encryption algorithm.

We note that our requirements in Section 2 impose no limits on the in-
formation leaked to the adversary who compromises the server, except where
this information might permit the attacker to compromise Soundness or Com-
pleteness. That said, certain steps in our protocols (e.g., encrypting the records
containing message m) are taken for privacy versus this adversary, and indeed
our protocol successfully hides information about log records written in time
period before that in which the compromise occurs. Records written before the
compromise, but within the same time period in which the compromise occurs,
are not afforded the same protection.

6 Experimental Evaluation

In this section we evaluate the performance of our proposed technique for search-
ing encrypted audit logs. All experiments were performed on a dual 1.3 GHz G4
server with 1 GB of memory. 128-bit AES was used for symmetric operations,
160-bit SHA-1 as our hash function, and DSA [8] with a 1024 bit modulus and
160 bit secrets for the digital signature operations. A 512-bit prime and a sub-
group of size 160 bits was used for IBE operations [14].

Performance was evaluated by replaying Snort [6] IDS events recorded on
a server over a period spanning several months. The events in the log occur
in bursts, with half occurring in a 10 day span. During the observed period,
approximately 27,000 alerts were recorded and includes attacks from nearly 1700
distinct IP addresses, with roughly 500 of these IPs involved in more than 10
alerts. On average, records were described by 6 keywords and the encrypted log
required 62.5 MB of storage.

Unfortunately, due to its bursty nature, the Snort log is not as diverse as
one would expect, and not well suited for testing the average case performance.
To address this, we evaluated the performance characteristics on a synthetic log
with characteristics similar to that of the Snort log. The synthetic log contains
30,000 entries timed with an exponential distribution. The expected elapsed time
between records was set to 15 minutes, resulting in a log that spans roughly 11
months. To closely approximate the Snort log, records are described with an
average of 5 keywords that include one of 10 random attack types, one of 500
randomly chosen IP addresses, keyword ALL, and keywords that appear with
known probabilities.

To evaluate the efficiency of our approach we experimented with searches on
both the real and synthetic logs. These searches span the entire log, and for a
fair comparison to [17], we assume that summary blocks occur once per time
zone. For the synthetic log, searches are performed for keywords occurring with
varying probability. The left-hand side of Figure 3 depicts the results of searches
averaged over 100 randomly generated logs. The results show that when search-
ing for keywords that appears infrequently, our technique incurs significantly
less performance penalty than that of [17]. For example, if the search keyword
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occurred within 5% of the records in the log, our technique results in roughly 10
times fewer IBE decryptions than the enhanced index scheme of [17]. Moreover,
if the keyword being searched appears in less than 1% of the records (e.g, an
IP address), our approach requires roughly forty times less operations than the
enhanced scheme of [17].

 100

 1000

 10000

 100000

 1e+06

 0  10  20  30  40  50  60  70  80  90  100

IB
E

 D
ec

ry
pt

io
ns

Keyword Frequency (%)

Waters
Waters-Index

Ours
 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.5  1  1.5  2  2.5

IB
E

 D
ec

ry
pt

io
ns

Keyword Frequency (%)

Waters-Index
Ours

Fig. 3. Incurred IBE decryptions as a function of the keyword frequency. (Left) Search-
ing on the synthetic logs averaged across 100 runs. (Right) Searching on the Snort log

To see why this is the case, let e denote the number of entries in the log, b
the number of log entries per block, u the average number of distinct keywords
in a block, and k the number of log records that are related to a keyword w.
To perform a search for w using the scheme of [17] an investigator must retrieve
O(e/b + k) log records and perform O(u · e

b ) IBE decryptions. In practice, since
most useful searches are for infrequently occurring keywords then e/b� k, which
means that there are many distinct keywords in each block and so u > b. Hence,
the number of records retrieved (and associated IBE operations to be performed)
becomes proportional to the total number of records (e), rather than the number
of matching records, k. By contrast, our scheme is similar in performance to that
of [17] up until the first matching record is found, after which the number of
retrieved records and IBE decryptions are both O(k).

Similar performance improvements were observed for searches on the Snort
log (shown in the right-hand side of Figure 3). There, each point depicts the av-
erage number of IBE decryptions required to separately search for each keyword
that appears in the specified percent of records.
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