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ABSTRACT
Many host-based anomaly detection systems monitor a pro-
cess by observing the system calls it makes, and comparing
these calls to a model of behavior for the program that the
process should be executing. In this paper we introduce
a new model of system call behavior, called an execution
graph. The execution graph is the first such model that
both requires no static analysis of the program source or
binary, and conforms to the control flow graph of the pro-
gram. When used as the model in an anomaly detection
system monitoring system calls, it offers two strong prop-
erties: (i) it accepts only system call sequences that are
consistent with the control flow graph of the program; (ii)
it is maximal given a set of training data, meaning that any
extensions to the execution graph could permit some intru-
sions to go undetected. In this paper, we formalize and prove
these claims. We additionally evaluate the performance of
our anomaly detection technique.
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1. INTRODUCTION
Many host-based intrusion detection systems (e.g., [4, 11,

17, 18]) and related sandboxing and confinement systems
(e.g., [12, 19]) monitor the system calls emitted by a process
in order to detect deviations from a previously constructed
model of system call behavior. We coarsely divide these
systems into “black box”, “gray box” and “white box” ap-
proaches, based on the information they use to build the
model to which they compare system calls at run time.
On the one hand, black-box and gray-box methods build
a model of system-call behavior by monitoring sample ex-
ecutions. Within this space, black-box detectors employ
only the system call number (and potentially the arguments,
though we do not consider arguments in this paper) that
pass through the system call interface when system calls
are made (e.g., [4, 16]). A gray-box detector extracts addi-
tional runtime information from the process, e.g., by looking
into the process’ memory (e.g., [3, 15]). On the other hand,
white-box approaches obtain the model by statically analyz-
ing the source code or binary (e.g., [2, 6, 7, 18]).
By their nature, black-box and gray-box detectors detect

anomalous behavior, i.e., behavior different from “normal”
runs, regardless of whether it results from an intrusion or an
execution path that was not encountered during training. In
contrast, white box detectors detect actual deviations from
the program text, for which an intrusion is virtually the only
conceivable explanation (assuming that the program is not
self-modifying). As such, white-box detectors can be de-
signed to have a zero false-positive rate, in the sense that an
alarm always indicates an intrusion. Since minimizing false
positives is a significant factor in gaining user acceptance,
this is an important advantage of white-box approaches.
White-box approaches, however, are not always viable.

First, source code is often not available, and the complexity
of performing static analysis on, e.g., x86 binaries is well
documented.1 In fact, all white-box intrusion detection sys-

1This complexity stems from difficulties in code discovery
and module discovery [13], with numerous contributing fac-
tors, including: variable instruction size (Prasad and Chiueh
claim that this renders the problem of distinguishing code
from data undecidable [10]); hand-coded assembly routines,
e.g., due to statically linked libraries, that may not follow
familiar source-level conventions (e.g., that a function has a
single entry point) or use recognizable compiler idioms [14];
and indirect branch instructions such as call/jmp reg32
that make it difficult or impossible to identify the target
location [10, 13]. Due to these issues and others, binary
analysis/rewrite tools for the x86 platform have strict re-
strictions on their applicable targets [9, 10, 13, 14].
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tems of which we are aware (including those cited above)
have eschewed this common platform. Static analysis is also
difficult for programs protected by obfuscation or digital
rights management (DRM) technologies that are designed
to render static analysis of control flow all but impossible
(e.g., [1]). Finally, white-box techniques can fail on self-
modifying programs. We thus believe that examination of
gray-box and black-box approaches can play an important
role where white-box approaches are unavailable.
In this paper we present a new gray-box model, called an

execution graph, that is, to our knowledge, the first gray-
or black-box technique for which a positive relationship to
what is achievable via common white-box techniques can be
proved analytically. Intuitively, the goal that we set for our
technique is to build a model that accepts the same system
call sequences as would be accepted by a model built from
the control flow graph of the program, which is the basis of
many white-box techniques. This, of course, is not achiev-
able, since our gray-box technique can train only on observed
runs of the program, which may miss entire branches of the
program that static analysis would uncover. Nevertheless,
using gray-box techniques alone, our approach constructs
an execution graph with the following two useful properties:
First, the system call sequences (the language) accepted by
the execution graph are a subset of those accepted by the
control flow graph of the program. Second, the language
accepted by the execution graph is maximal for the training
sequences it was provided. Specifically, we show that there
exists a program of which the control flow graph would ac-
cept the same language as the execution graph. In other
words, if the execution graph were to accept any other sys-
tem call sequence s, then there is a program that can emit
exactly the same training sequences but for which the con-
trol flow graph would not accept s.
In some sense, this is the best one can hope to achieve

toward using a gray-box technique to mimic the power of a
control flow model obtained via white-box analysis. More-
over, as the control flow model that we set for our goal is
equivalent to the most restrictive white-box models known
in the literature—the model is sensitive not only to the se-
quence of system calls, but the sequence of active function
calls when each system call occurs—our approach mimics
some of the best white-box techniques known today, us-
ing only gray-box analysis. Additionally, we demonstrate
through a prototype implementation that monitoring via an
execution graph is very efficient.
The rest of the paper is organized as follows. Section 2

discusses related work in this area. Section 3 defines an ex-
ecution graph, and the language accepted by an execution
graph. We show the claimed relationships between execu-
tion graphs and control flow graphs in Section 4. Perfor-
mance evaluations are discussed in Section 5. Finally, we
conclude in Section 6.

2. RELATED WORK
Numerous white-box approaches to intrusion detection

have focused on monitoring a process’ system-call confor-
mance with the control flow graph of the program it is os-
tensibly running. One of the earliest works, due to Wagner
and Dean [18], generates a range of models based on the con-
trol flow graph of the program, generated via static analy-
sis of the source. Their most accurate model, equivalent
to the control flow model that we adopt here (Section 4),

resulted in very substantial runtime monitoring overheads.
This cost, as well as the need for analyzing source code, were
addressed in following works due to Giffin et al. [6, 7] and
Feng et al. [2]. These works included modifying the binary
to permit the runtime monitor to perform more efficiently.
Black-box approaches were pioneered by Forrest et al. [4],

who introduced an approach to characterize normal program
behavior in terms of sequences of system calls. System call
sequences are broken into patterns of fixed length, which are
learned and stored in a table. Wespi et al. [20, 21] extend
this approach to permit variable-length patterns of system
calls. To our knowledge, Sekar et al. [15] proposed the first
gray-box approach, coupling the system call number with
the program counter of the process when the system call is
made. Feng et al. [3] proposed extending the gray-box infor-
mation used to include return addresses on the call stack of
the process when a system call is made. While the benefits
and costs of many of these approaches have been studied [5],
the behavior of none of these approaches has been formally
related to that of the white-box system call models. In fact
it is generally easy to confirm that these prior black- and
gray-box models neither contain nor are contained by the
white-box models, in terms of the languages of system call
sequences they accept. Black-box approaches have also been
extended to monitor system call arguments [8], however we
do not consider them in the paper.

3. EXECUTION GRAPHS
In this section we describe our model, called an execution

graph, for anomaly detection, which is built using a gray-box
technique. Our technique assumes that the program being
monitored is implemented in a programming language for
which the runtime utilizes a call stack, where each stack
frame corresponds to a function call in the program and
includes a return address. Every implementation of the C
and C++ programming languages known to us satisfies this
criteria, and these languages are the primary motivations
for our work.
The execution graph technique we describe in this paper

works, during both training and monitoring, by observing
system calls along with additional runtime information that
it extracts upon each system call, namely the return ad-
dresses on the call stack of the monitored process when the
system call is made. We define a system call along with the
return addresses on the call stack when a system call is made
as an observation. Each such observation can be represented
by an arbitrary-length vector of integers, each in the range
of [0, 232) assuming a 32-bit platform. The last element of
the vector is the system call number, and the preceding el-
ements are the return addresses on the call stack when the
system call is made, with the first address being an address
in main(), i.e., an address in the first function executed.
We formally define the concept of observation below, and

we call a sequence of observations an execution.

Definition 3.1 (Observation, execution). An observation
is a tuple of positive integers 〈r1, r2, . . . , rk〉, where k > 1.
An execution is an arbitrary-length sequence of observations.
✷

In particular, for an observation 〈r1, r2, . . . , rk〉, r1 is an
address in main(), rk−1 is the “return address” which corre-

319



sponds to the instruction that makes the system call,2 and
rk is the system call number.
We next introduce the concept of an execution graph,

which is built by observing executions as defined above. The
goal we set for this new model, as briefly stated in Section 1,
is to build a model that accepts the same system call se-
quences that will be accepted by most models built from
white-box techniques. Informally, we need to extract func-
tion call structures from observations so that a graph similar
to the control flow graph can be built. To achieve this we an-
alyze every two consecutive system calls and the return ad-
dresses on the call stack when each system call is made, i.e.,
to analyze two consecutive observations. Since each return
address represents a stack frame, consecutive observations
reveal some information about the function call structure of
the program. In the following definition, we show how this
information is used to build an execution graph.
The execution graph is one of the most important con-

cepts in this paper, especially the inductive definition of the
edges in the graph. Intuitively, we use Ertn to represent the
returning of a function to its calling location, use Ecrs to rep-
resent the execution flow within a function, and use Ecall to
represent the calling from a function call site to its call tar-
get. These three sets of edges are defined in the base case by
processing consecutive observations. The inductive part of
the definition is used to post-process these sets of edges, and
to discover “missing” edges, where the relationship between
two nodes could be derived from the executions, but not by
processing any individual pair of observations. (This induc-
tion is further explained in an example after we formally
present the definition.)

Definition 3.2 (Execution graph, leaf node,
crs→ ). An ex-

ecution graph for a set of executions X is a graph eg(X ) =
(V,Ecall, Ecrs, Ertn), where V is a set of nodes, and Ecall, Ecrs,
Ertn ⊆ V × V are directed edge sets, defined as follows:

• For each execution X ∈ X and each observation 〈r1,
r2, . . ., rk〉 ∈ X, V contains nodes r1, r2, . . . , rk. rk

is called a leaf node of the execution graph eg(X ). In
the case where 〈r1, r2, . . . , rk〉 is the first observation in
an execution, rk is also denoted as an enter node; in
the case where 〈r1, r2, . . . , rk〉 is the last observation in
an execution, rk is also denoted as an exit node. (Note
that an execution graph could have more than one enter
node and more than one exit node.)

• The sets Ecall, Ecrs, Ertn are defined inductively to con-
tain only edges obtained by the following rules:

– (Base case) For each execution X in X and each
pair of consecutive observations 〈r1, r2, . . ., rk〉,
〈r′1, r′2, . . . , r′k′〉 in X,

Ertn ← Ertn ∪ {(ri+1, ri)}�≤i<k

Ecrs ← Ecrs ∪ {(r�, r
′
�)}

Ecall ← Ecall ∪ {(r′i, r′i+1)}�≤i<k′

2Though on most platforms, system calls are implemented
differently from function calls, rk−1 can be retrieved from
the stack in a similar fashion, and we still refer to it as a
return address.

where


 =




k − 1
if 〈r1, r2, . . . , rk〉 = 〈r′1, r′2, . . . , r′k′〉(

argmaxj : 〈r1, r2, . . . , rj〉 = 〈r′1, r′2, . . . , r′j〉
)
+ 1

otherwise

If rk is an enter node,

Ecall ← Ecall ∪ {(ri, ri+1)}1≤i<k

If r′k′ is an exit node,

Ertn ← Ertn ∪ {(r′i+1, r
′
i)}1≤i<k′

– (Induction) Define the relation r
crs→ r′ to be true

if there exists a path from r to r′ consisting of only
edges in Ecrs.

∗ If (x0, x1) ∈ Ecall, x1
crs→ x2, and (x2, x3) ∈

Ertn, then Ertn ← Ertn∪{(x2, x0)} and Ecall ←
Ecall ∪ {(x3, x1)};
∗ If (x0, x1) ∈ Ecall, x1

crs→ x2, and (x3, x2) ∈
Ecall, then Ecall ← Ecall∪{(x3, x1)} and Ecall ←
Ecall ∪ {(x0, x2)};
∗ If (x1, x0) ∈ Ertn, x1

crs→ x2, and (x2, x3) ∈
Ertn, then Ertn ← Ertn∪{(x1, x3)} and Ertn ←
Ertn ∪ {(x2, x0)}.

✷

Note that the integers in an observation serve as labels
for the nodes created. For simplicity, we do not differentiate
a node and its label, i.e., in the above definition, r and x
denote both the nodes and their labels.
Example 3.1 illustrates the reason why such an inductive

definition is necessary. (Source code and the execution graph
of Example 3.1 are shown in Figure 1.)

Example 3.1. In this example, f() is called twice from
main(), while each time it is called not all instructions in
f() are executed. Some execution paths of the program might
not be uncovered, e.g., due to the fixed values of a and b

in the executions. In this example, edges (f.3, main.5)

and (f.5, main.3) can only be obtained by the inductive
definition in Definition 3.2.

With the inductive definition in Definition 3.2, execution
graph as shown in Figure 1 can be obtained even if the value
of a and b are fixed in executions X .3 ✷

Definition 3.3 (
call→ ,

rtn→ ). Let eg(X ) = (V , Ecall, Ecrs,

Ertn) be an execution graph. r
call→ r′ iff there exists a path

from r to r′ consisting of only edges in Ecall. r
rtn→ r′ iff there

exists a path from r to r′ consisting of only edges in Ertn. ✷

Recall that we want to mimic the power of the most re-
strictive control flow graph model known in the literature,
where not only the system call sequence, but also the se-
quence of active function calls when each system call occurs,
are captured. To do this, we use the notion of execution stack
to capture the active function calls allowed in an execution
graph.

3Nodes in an execution graph are typically denoted by inte-
gers only. In Figure 1 we show the correspondence with the
line number and function name, for the purpose of illustra-
tion.
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int main(int argc, char *argv[]) {
1: int a, b;
2: a = 1; b = 2;
3: f(a);
4: g();
5: f(b);

}

void f(int x) {
1: sys_call(5);
2: if (x == 1)
3: sys_call(3);
4: else if (x == 2)
5: sys_call(4);

}

void g() {
1: sys_call(2);

}

main.4

sys_call(3)

f.5

sys_call(5) sys_call(4)

Ecall

Ecrs

sys_call(2)

main.5

g.1f.1f.3

main.3
Ertn

(a) source code of Example 3.1 (b) execution graph of Example 3.1

Figure 1: Source code and execution graph of Example 3.1

Definition 3.4 (
xcall→ , Execution stack). Let eg(X ) = (V ,

Ecall, Ecrs, Ertn) be an execution graph. r
xcall→ r′ iff

• (r, r′) ∈ Ecall; or

• There exists a node r′′ ∈ V , such that (r, r′′) ∈ Ecall ∧
r′′ crs→ r′.

An execution stack in eg(X ) is a sequence of nodes 〈r1, r2,
. . ., rn〉, such that

• For each 1 ≤ i < n, ri
xcall→ ri+1; and

• r1 corresponds to an address in main(), i.e., an ad-
dress in the first function executed; and

• rn is a leaf node.

✷

Intuitively, an execution stack captures a system call and
the active functions (functions that have not returned) when
the system call is made, which is also what an observation
captures. However, an execution stack might or might not
have a corresponding observation in the executions X that
are used to construct the execution graph eg(X ).
We next define the notion of successor. Intuitively, if ob-

servation x′ follows another observation x in an execution,
then x′ corresponds to an execution stack that is a succes-
sor of the execution stack corresponding to x. The notion
of successor in an execution graph defines whether a system
call (and the corresponding active functions) are allowed to
follow another system call.

Definition 3.5 (Successor). Execution stack s′ = 〈r′1,
. . ., r′n′〉 is a successor of execution stack s = 〈r1, . . ., rn〉 in
an execution graph eg(X ) = (V , Ecall, Ecrs, Ertn) if there ex-

ists an integer k such that rn
rtn→ rk, (rk, r

′
k) ∈ Ecrs, r

′
k

call→ r′n′ ,
and for each 1 ≤ i < k, ri = r′i. ✷

Definition 3.6 (Execution path). An execution path δ
is a sequence of execution stacks in an execution graph eg(X )
= (V , Ecall, Ecrs, Ertn), say δ = 〈s1, s2, . . . , sn〉, si = 〈ri,1,
ri,2, . . ., ri,mi〉, where

• For each 1 ≤ i < m1, (r1,i, r1,i+1) ∈ Ecall; and

• r1,m1 is an enter node; and

• For each 1 ≤ i < n, si+1 is a successor of si.

✷

Intuitively, an execution path is a sequence of execution
stacks that corresponds to a possible execution of the pro-
gram that emitted the executions X . Notice that it only
requires the sequence of execution stacks to be allowed by
the execution graph (captured by the notion of successor,
which is defined in Definition 3.5), which might or might
not have appeared in the executions X from which the exe-
cution graph eg(X ) is built.

Definition 3.7 (Language accepted by eg(X )). The lan-
guage accepted by eg(X ), denoted Leg(X ), is the set of all
execution paths in eg(X ). ✷

Each string in the language accepted by an execution
graph is a sequence of execution stacks. Each execution
stack consists of a sequence of integers, which intuitively
represents a system call and the return addresses of the ac-
tive functions when the system call is made. Though we have
defined execution graphs built from observations including
return addresses, they also have a black-box variant: In the
case where only the system call number is used to describe a
system call (return addresses are not extracted), an execu-
tion stack consists of only one integer, which is the system
call number. Consequently a string in the language will be-
come a sequence of system call numbers. We do not discuss
this variation further.

4. PROPERTIES OF EXECUTION GRAPHS
We briefly stated in Section 1 that the goal of our tech-

nique is to build a model that accepts system call sequences
that would be accepted by a model built from the control
flow graph of the program. In this section, we formalize
two important properties of an execution graph. First, it
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accepts only system call sequences that are consistent with
the control flow graph of the program. Second, it is maximal
given a set of training data, meaning that any extensions to
an execution graph could permit some intrusions to go un-
detected. To formalize these two properties, we first define
control flow graphs, the language a control flow graph ac-
cepts, and well-behaved executions. With these definitions,
the theorems are presented in Section 4.3.

4.1 Control Flow Graphs
A control flow graph is an abstract representation of a

procedure or program. In this paper, it is convenient to
consider a variation on the traditional control flow graph
for a program P , denoted cfg(P ). First, cfg(P ) consists
of a number of control flow subgraphs, one per function F
in P , denoted cfsg(F ). Second, since we are interested
only in function calls and system calls in P , each cfsg(F )
has one node per function call and two nodes per system
call that it contains, in addition to its entry and exit node,
and no other nodes. Though these variations render cfg(P )
different from a traditional control flow graph, we will still
refer to it as one.
In this paper, we refer to a jump as a nonsequential trans-

fer of control, distinct from a function call or a system call.
With this, we define the relationship between two instruc-
tions in a function.

Definition 4.1 (Follow). Instruction t′ follows instruc-
tion t iff t and t′ are in the same function and

• (Base case) t′ is at a higher address than t, and there
is no jump, function call or system call between t and
t′;

• (Induction) There exists a jump c and a correspond-
ing jump target c′, such that t′ follows c′ and c follows
t.

✷

The above definition defines the relative position of two
instructions in a function. Next we define control flow sub-
graph (cfsg) and call nodes in a cfsg. In order to simplify
the definition, we assuming that there are two no-op instruc-
tions in each function F denoting the starting and ending of
F respectively.

Definition 4.2 (Control flow subgraph, call node). A con-
trol flow subgraph for a function F is a directed graph cfsg(F )
= (V,E). V contains

• A function call node per function call in F ;

• A system call node per system call in F ;

• A system call number node per system call in F ;

• A designated F.enter node and a designated F.exit node.

Function call nodes and system call nodes are the call
nodes of cfsg(F ). Each node is identified by a label. (u, v) ∈
E iff

• The instruction that corresponds to v follows (as de-
fined in Definition 4.1) the instruction that corresponds
to u; or

• u is a system call node and v is the corresponding
system call number node.

✷

Each node in a cfsg has a label. The label of a call node
could be assigned as the address of the instruction that im-
mediately follows the call if static analysis is applied on bi-
naries, as assumed in Section 4.3 for convenience. The label
of a system call number node is the corresponding system
call number. As in the definition of execution graphs, we
do not differentiate a node and its label, i.e., in the above
definition, u and v denote both the nodes and their labels.
The control flow graph cfg(P ) of a program P is obtained

by connecting control flow subgraphs of each function in P
together to form a new graph.

Definition 4.3 (Control flow graph). Let P be a pro-
gram consisting of functions F1, F2, . . . , Fn. Let cfsg(Fi) =
(Vi, Ei) denote the control flow subgraph for Fi. The control
flow graph for P is a directed graph cfg(P ) = (V,E), where
V =

⋃
i Vi and where (u, v) ∈ E iff

• For some 1 ≤ i ≤ n, (u, v) ∈ Ei; or

• v = Fi.enter and u is a function call node representing
a call to Fi; or

• u = Fi.exit and v is is a function call node representing
a call to Fi. ✷

Figure 2 shows the control flow graph of the program in
Example 3.1 (the source code is shown in Figure 1).

main.3

f.3
main.4 g.1

f.5

main()f() g()

main.enterf.enter g.enter

main.exitf.exit g.exit

call f()

sys_call(3)

sys_call(2)

sys_call(4)

call g()

main.5
call f()

f.1
sys_call(5)

5

3

2

4

Figure 2: Control flow graph of Example 3.1

A control flow graph as described above defines all possible
executions of a program P , in terms of the function and
system calls it makes. During program execution, nodes in
the control flow graph are traversed by following the directed
edges. An execution of the program can be described by a
path through which the nodes are traversed. A call cycle
corresponds to the calling and returning of a function.

Definition 4.4 (Call cycle). A sequence of nodes 〈v1,
v2, . . ., vn〉 in cfg(P ) = (V,E) is a call cycle iff for some
function F ∈ P and the corresponding cfsg(F ) = (VF , EF )
in cfg(P ),
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• (Base case)

– v1 = vn is a function call node representing a call
to F , v2 = F.enter, vn−1 = F.exit; and

– For each 1 < i < n− 1, vi ∈ VF ; and

– For each 1 ≤ i < n, (vi, vi+1) ∈ E.

• (Induction) For some integers k and k′, where 1 <
k < k′ < n− 1,

– v1 = vn is a function call node representing a call
to F , v2 = F.enter, vn−1 = F.exit; and

– For each 1 ≤ i < n, (vi, vi+1) ∈ E; and

– For each 1 < i ≤ k and k′ ≤ i < n − 1, vi ∈ VF ;
and

– 〈vk, vk+1, . . . , vk′〉 is a call cycle.

✷

A series of call cycles is a concatenation of at least one call
cycle.

Definition 4.5 (Observable path). An observable path π
in cfg(P ) = (V,E) is a sequence of nodes, say 〈v1, v2, . . .,
vn〉, where

• v1 = main.enter, i.e., the entry node for the first func-
tion called in the program; and

• vn is a system call node; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E ; and

• For each 1 < i < n, if vi is a function call node rep-
resenting a call to F , then either vi+1 = F.enter or
vi−1 = F.exit; if vi−1 = F.exit, then there exists an in-
teger i′, where 1 < i′ < i, such that 〈vi′ , vi′+1, . . . , vi〉
is a call cycle.

✷

The path defined in Definition 4.5 is called observable be-
cause it induces a system call, and thus intuitively would
be visible to an intrusion detection system monitoring sys-
tem calls. Numerous white-box process monitors addition-
ally keep track of the active function calls in the process
running the program, based on information gathered from
static analysis of the program. We define active calls on an
observable path as follows.

Definition 4.6 (Active calls on an observable path). Let
π = 〈v1, v2, . . . , vn〉 be an observable path in cfg(P ) = (V,E).
We define the sequence of active calls on π, denoted A(π),
to be the result of the following procedure.

1. Delete all call cycles on π;

2. Denote the remaining nodes by 〈vi1 , vi2 , . . . , vik 〉, where
for each 1 ≤ j < k, ij < ij+1. For each 1 ≤ j < k,
delete vij unless vij is a function call node;

3. Append a node vn+1 to the end of the sequence, where
vn+1 is the system call number node such that (vn, vn+1)
∈ E.

✷

Since vn (the last node on an observable path) does not
belong to any call cycles, it is not deleted in the first step
of the procedure in Definition 4.6. As such, vik = vn in the
second step of the procedure in Definition 4.6, and this node
is not deleted in the second step either (since only nodes vij

for 1 ≤ j < k are eligible to be deleted). In other words,
vn is always the second last element in the output of A(π),
with the last element being the system call number.

Definition 4.7 (Language accepted by cfg(P )). Let Π be
the set of all observable paths in cfg(P ), and for any π ∈
Π, let pre(π) = 〈π1, π2, . . . , πn〉 denote all the observable
prefixes of π in order of increasing length, where πn = π.
Then, the language accepted by cfg(P ) is

Lcfg(P ) = {〈A(π1), . . . , A(πn)〉 :
[∃π ∈ Π : pre(π) = 〈π1, . . . , πn〉]}

✷

Notice that we define the language accepted by cfg(P ) in
terms of the system calls it makes and the active functions
when each system call is made. A string in the language is
a sequence of symbols, each of which describes a system call
made by the program.

Example 4.1. Figure 3 shows the source code and the
control flow graph of a very simple program, which consists
of four functions and makes four different system calls. In
the program shown in Figure 3, the second system call made
is read, which corresponds to the system call number 3. The
following is an observable path from main.enter to the node
that makes this system call.

π1 = 〈main.enter, main.1, main.2, f.enter,

f.1, g.enter, . . . , g.exit, f.1, f.2〉
When trying to find the active calls on π1, f.1, g.enter, . . .,

g.exit, f.1 should be deleted in the first step of the procedure
in Definition 4.6, since they correspond to a call cycle (a
completed function call). main.enter and main.1 should be
deleted in the second step of the procedure in Definition 4.6,
as they are not function call nodes. Therefore,

A(π1) = 〈main.2, f.2, 3〉
In this example, the language accepted by the control flow

graph is

Lcfg(Ex[4.1]) = {〈main.1, 5〉, 〈main.2, f.2, 3〉,
〈main.2, f.3, h.1, 4〉, 〈main.2, f.3, h.2, 6〉}

Figure 4 shows an execution graph built from executions
of the program in Example 4.1, assuming the input covers
all possible paths of the program.4

✷

Notice that the languages accepted by the execution graphs
of the two examples (Example 3.1 and Example 4.1) are
very similar to the languages accepted by their control flow
graphs. (In particular the only differences are the values of

4Nodes in an execution graph are denoted by integers only.
In Figure 4 we show the correspondence with nodes in the
control flow graph of the program, i.e., the line number and
function name, for the purpose of illustration.
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int main(int argc, char *argv[]) {
1: sys_call(5);
2: f();

}

void f() {
1: g();
2: sys_call(3);
3: h();

}

void h() {
1: sys_call(4);
2: sys_call(6);

}

void g() {
...

}

main.2

f.2

f.3

h.1

h.2

main() f() h()

main.enter f.enter h.enter

main.exit f.exit h.exit

call f()

call g() sys_call(4)

call h() sys_call(6)

main.1
sys_call(5)

sys_call(3)

f.1

3

5

6

4

(a) source code of Example 4.1 (b) control flow graph of Example 4.1 (cfsg(g()) is not shown)

Figure 3: Source code and the control flow graphs of Example 4.1

f.2
sys_call(5)

sys_call(3)

sys_call(4) sys_call(6)

Ecall

Ecrs

main.2

f.1

h.1

f.3

h.2

main.1

Ertn

Figure 4: Execution graph of Example 4.1

the labels.) Intuitively this similarity is what we are try-
ing to achieve and why execution graphs are very useful in
anomaly detection. In Section 4.3 we will formally intro-
duce the relationship between the two, by showing two very
useful properties of execution graphs.

4.2 Well-Behaved Executions
To this point in the paper, we have not specified the pro-

gram executions that are useful to build an execution graph
(though any execution results in one). However, to prove a
relationship with the control flow graph of the program, it
is necessary to specify which executions are useful for this
purpose. Intuitively, these executions are ones that do not
include an attack, and more specifically, for which the return
addresses are a reliable reflection of the intended execution
of the underlying program. We refer to such executions as
well-behaved.
More precisely, denote the execution of program P on in-

put I by P (I). Input string I includes all inputs to the
process running P since its initialization, and can include
multiple “invocations” if program P is a server program. In
this case, the multiple invocations of P are separated in I
in a canonical way. The runtime process that executes P (I)

maintains a call stack in conformance with certain conven-
tions, induced via the function call and return code emitted
by the compiler for the language. While we do not detail
these conventions here, we expect that the return address of
each stack frame is inserted when the function call occurs
and is not modified until return from the function—at which
time the stack frame is destroyed. We say that a program P
is “well-behaved” on an input I if the execution P (I) con-
forms strictly to this expectation, i.e., that return address
fields in stack frames are modified only in this fashion, and
the stack frames are created only when function calls are
made by the program P .

Definition 4.8 (Well-behaved executions). Program P is
well-behaved on input I if execution P (I) maintains a call
stack consisting of stack frames, one per active function call,
and such that the return address in each stack frame is not
modified while the corresponding function call is active. ✷

Of course, a common method of exploiting a vulnerable pro-
gram P involves running P on an input I ′ for which it is
not well-behaved, i.e., that modifies a return address on the
stack when the function call is still active.
The anomaly detector that we describe in this paper is

assumed to be trained on the observed behaviors (emit-
ted system calls) in executions P (I1), . . . , P (Ik) where P
is well-behaved on each Ij . In this way, the return ad-
dresses extracted from the stack (as in [3]) reflect the exe-
cution of the program. We denote these executions P (I) =
{P (I1), . . . , P (Ik)}.
4.3 Properties of Execution Graphs
Recall that an execution graph is a model constructed by

a gray-box technique. None of the previous gray-box tech-
niques, to our knowledge, has been formally related to the
control flow graph of the underlying program. The execu-
tion graph differs from these approaches in the sense that
the language accepted by an execution graph can be directly
related to the language accepted by the control flow graph of
the underlying program. Moreover, this relationship can be
proved analytically. This is a significant improvement since
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goals of many white-box techniques can now be achieved us-
ing gray-box techniques, i.e., without static analysis on the
source code or binary.
Here we show two theorems of the execution graph and

the control flow graph of a program. Without loss of gener-
ality, we assume that the label of a call node in the control
flow graph is the address of the instruction that immediately
follows the function call or system call, which is easily ob-
tained by static analysis of the binary. If this is not the case,
e.g., if static analysis is applied on the source code, there is
always a one-to-one mapping between the labels and these
addresses. For convenience, we omit this mapping in the
following theorems and the proofs in the Appendices.

Theorem 4.1. If P is a program that is well-behaved on
input I, then Leg(P (I)) ⊆ Lcfg(P ).

The proof of this theorem is in Appendix A.
Theorem 4.1 says that the language accepted by an execu-

tion graph is a subset of the language accepted by the control
flow graph of the program, which is a property unavailable
in most other gray-box techniques. It provides another level
of confidence: if some execution is allowed by an execution
graph, it is guaranteed that the execution is not only normal
(“similar” to past executions), but also valid (allowed by the
control flow graph). Such a property could only be achieved
previously by white-box techniques.
Theorem 4.1 only says that Leg(P (I)) ⊆ Lcfg(P ). They

are not equal because, e.g., the input I might not cover all
possible executions of the program, in which case there is no
way for eg(P (I)) to safely accept such a missing execution,
even with the inductive definition in Definition 3.2.
Theorem 4.2 shows that if the execution graph were to be

extended to allow any additional strings in the language, it
could accept some intrusions that program P does not allow.

Theorem 4.2. Let I be a set of inputs, and eg(P (I))
be an execution graph where P is well-behaved on I. There
exists a program P ′, which is also well-behaved on I, such
that Lcfg(P ′) = Leg(P (I)).

Theorem 4.2 states that for any input I and the execution
graph obtained on input I, there exists a program P ′ which
is well-behaved on I, such that the language accepted by the
control flow graph of this program is the same as the lan-
guage accepted by the execution graph. This means that the
execution graph is the “accurate” model of some program
P ′. Since there exists such a program P ′, if the execution
graph were to be extended to accept any additional string
in its language, it will allow an intrusion to the program
P ′. Informally, this means that the execution graph is a
maximal graph given the set of input.
Please refer to Appendix B for a proof of Theorem 4.2.

5. PERFORMANCE EVALUATION
In this section we provide insight into the likely perfor-

mance of our technique in an anomaly detection system.
During program monitoring there are two tasks the anomaly
detector needs to perform for each system call: (i) to walk
through the stack frames and obtain all return addresses; (ii)
to determine whether the current system call is allowed. We
previously measured the cost of extracting program return
addresses and found that for a Linux kernel compilation it
adds less than 6% to the overall execution time. Therefore,

extracting return addresses from the running process should
introduce only moderate overhead.
Second, we measure the time it takes to process system

calls when using our execution graph model. We observe
the executions of four common FTP and HTTP server pro-
grams, wu-ftpd, proftpd, Apache httpd, and Apache httpd

with a chroot patch, and extract the execution graphs from
them. Information, including return addresses, of every sys-
tem call is recorded into log files, and subsequently processed
to detect anomalies. We measure the time it takes to pro-
cess these system calls by running the anomaly detector on a
desktop computer with an Intel Pentium IV 2.2 GHz CPU.
Results are shown in Table 1.
Although the average processing time per system call is

very different for these four programs (due to the differ-
ent number of functions in the program and consequently
the different number of return addresses to be processed for
each system call), results show that program monitoring is
extremely efficient when using the execution graph model.

6. CONCLUSION
We introduce a new model of system call behavior for

anomaly detection systems, called an execution graph. Ex-
ecution graph is the first gray-box model that conforms to
the control flow graph of the program. We show that: an
execution graph accepts only strings (defined as sequences
of system calls and the active function calls when each sys-
tem call occurs) that are consistent with the control flow
graph of the program; and it is maximal given a set of train-
ing data, i.e., any extensions to the execution graph might
make some intrusions undetected. Finally, we provide evi-
dence that program monitoring using the execution graph
is very efficient.
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APPENDIX

A. PROOF OF THEOREM 4.1
We first prove the following lemmas. As stated in Sec-

tion 4.3, without loss of generality, we assume that the label
of any call node in the control flow graph is in fact the ad-
dress of the instruction that immediately follows the call. If
this is not the case, e.g., if the control flow graph is obtained
by static analysis of the source code, there is always a one-
to-one mapping between the labels and these addresses. For
convenience, we omit this mapping in the following proofs.
In the following proofs, we use µ to denote the length of

a function call or system call instruction. Since we assume
that the label of any call node x in the control flow graph is
the address of the instruction that immediately follows the
call, x − µ represents the address of the corresponding call
instruction. We use Fv to denote the function in P that
consists of node v.

Lemma A.1. Let P be a program that is well-behaved on
input I. Let eg(P (I)) = (V,Ecall, Ecrs, Ertn) and cfg(P ) =
(V ′, E′), then V ⊆ V ′.

Proof.

v ∈ V ∧ v is a leaf node
⇒ P is able to make a system call with system call num-

ber v
⇒ v ∈ V ′

v ∈ V ∧ v is not a leaf node
⇒ v is one of the return addresses observed when P makes

a system call
⇒ (v − µ) is the address of a call instruction
⇒ (v − µ) corresponds to some function or system call

site in P
⇒ v ∈ V ′

✷

Notice that there could be v′ /∈ V while v′ ∈ V ′, because
input I does not necessarily cover all possible executions of
P , and that some executions allowed by cfg(P ) might never
appear in actual runs.

Lemma A.2. Let P be a program that is well-behaved on
input I. If 〈r1, r2, . . . , rl, . . .〉 and 〈r′1, r′2, . . . , r′l, . . .〉 are two
observations in P (I), such that for each 1 ≤ i < l, ri = r′i,
rl �= r′l, then for some function F ∈ P , rl and r′l are both in
cfsg(F ).
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Proof.

〈r1, r2, . . . , rl, . . .〉 and 〈r′1, r′2, . . . , r′l, . . .〉 are two ob-
servations

⇒ (rl − µ) is in a function that is called from (rl−1 − µ);
(r′l − µ) is in a function that is called from (r′l−1 − µ)

Now, for each 1 ≤ i < l, ri = r′i, rl �= r′l
⇒ (rl−1 − µ) = (r′l−1 − µ)
⇒ (rl−µ) and (r′l−µ) are in the same function (instruc-

tion at address (rl−1 − µ) can call only one function)
⇒ rl and r′l are nodes in the same cfsg

✷

Lemma A.3. Let P be a program that is well-behaved on
input I. Let eg(P (I)) = (V,Ecall, Ecrs, Ertn) and cfg(P ) =
(V ′, E′). If (r, r′) ∈ Ecrs, then there exist a sequence of nodes
〈v1, v2, . . . , vn〉 in cfg(P ) such that

• v1 = r, vn = r′; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E′; and

• For each 1 < i < n, vi is not a system call node; and

• If n > 2, then 〈v2, v3, . . . , vn−1〉 is a (series of) call
cycle(s).

Proof.

(r, r′) ∈ Ecrs

⇒ there exists two consecutive observations o and o′

in P (I), where o = 〈r1, r2, . . . , rl, . . . rn〉, o′ =
〈r′1, r′2, . . . , r′l, . . . r′n′〉, such that for each 1 ≤ i < l,
ri = r′i, and rl = r and r′l = r′ (Definition 3.2)

o and o′ are two consecutive observations
⇒ there must be a path in cfg(P ) from rn−1 to r′n′−1

via rl and r′l that does not consist of any other system
call nodes

For each 1 ≤ i < l, ri = r′i, rl �= r′l
⇒ rl and r′l are addresses in the same function

(Lemma A.2)
⇒ any function call nodes on the path from r to r′ must

form a (series of) call cycles (completed function calls)
⇒ there must be a path in cfg(P ) from r to r′ that

satisfies the claimed properties.
✷

Lemma A.4. Let P be a program that is well-behaved on
input I. Let eg(P (I)) = (V,Ecall, Ecrs, Ertn) and cfg(P ) =
(V ′, E′). If (r, r′) ∈ Ecall and r′ is not a leaf node, then
there exists a sequence of nodes 〈v1, v2, . . . , vn〉 in cfg(P )
such that

• v1 = r, v2 = Fr′ .enter, vn = r′; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E′; and

• For each 3 ≤ i < n, vi is not a system call node; and

• If n > 3, then 〈v3, v4, . . . , vn−1〉 is a (series of) call
cycle(s).

Proof. According to Definition 3.2, (r, r′) ∈ Ecall results
from at least one of the following three conditions. We prove
Lemma A.4 in all these three conditions.

• (Base case of Definition 3.2)

There exists two consecutive observations o and
o′ in P (I), where o = 〈r1, r2, . . . , rl, . . .〉, o′ =
〈r′1, r′2, . . . , r′l, . . . , r, r′, . . .〉, and for each 1 ≤ i <
l, ri = r′i and (rl, r

′
l) ∈ Ecrs

⇒ after the system call corresponding to o is exe-
cuted, execution has to return to cfsg(Frl) and
then follow the path as described in Lemma A.3
and subsequently enter cfsg(Fr) and cfsg(Fr′)
in order to make system call that corresponds to
o′

⇒ instruction at (r−µ) calls function Fr′ , and there
must be a path in cfg(P ) from Fr′ .enter to r′

that satisfies the claimed properties.

• (First induction of Definition 3.2) Given (x0, x1) ∈ Ecall,

x1
crs→ x2, (x2, x3) ∈ Ertn, x3 = r and x1 = r′

(x0, x1) ∈ Ecall

⇒ there exists a path in cfg(P ) from Fx1 .enter to
x1 that satisfies the claimed properties. (Base
case in this proof)

Since we have already found the path from Fx1 .enter to
x1 that satisfies the claimed properties, it only remains
to prove that (x3, Fx1 .enter) ∈ E′.

x1
crs→ x2

⇒ Fx1 = Fx2 (Lemma A.2)

(x2, x3) ∈ Ertn

⇒ (Fx2 .exit, x3) ∈ E′

⇒ (x3, Fx2 .enter) ∈ E′

⇒ (x3, Fx1 .enter) ∈ E′

• (Second induction of Definition 3.2) Given (x0, x1) ∈
Ecall, x1

crs→ x2, and (x3, x2) ∈ Ecall,

– When x3 = r and x1 = r′

(x0, x1) ∈ Ecall

⇒ there exists a path in cfg(P ) from Fx1 .enter
to x1 that satisfies the claimed properties.
(Base case in this proof)

Since we have already found the path from Fx1 .enter
to x1 satisfying the claimed properties, it only re-
mains to prove that (x3, Fx1 .enter) ∈ E′.

x1
crs→ x2

⇒ Fx1 = Fx2 (Lemma A.2)

(x3, x2) ∈ Ecall

⇒ (x3, Fx2 .enter) ∈ E′

⇒ (x3, Fx1 .enter) ∈ E′

– When x0 = r and x2 = r′

(x3, x2) ∈ Ecall

⇒ there exists a path in cfg(P ) from Fx2 .enter
to x2 that satisfies the claimed properties.
(Base case in this proof)

Since we have already found the path from Fx2 .enter
to x2 satisfying the claimed properties, it only re-
mains to prove that (x0, Fx2 .enter) ∈ E′.

x1
crs→ x2

⇒ Fx1 = Fx2 (Lemma A.2)

(x0, x1) ∈ Ecall

⇒ (x0, Fx1 .enter) ∈ E′

⇒ (x0, Fx2 .enter) ∈ E′

✷
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Analagous to Lemma A.4, we have Lemma A.5 as shown
below (proof of which is skipped).

Lemma A.5. Let P be a program that is well-behaved on
input I. Let eg(P (I)) = (V,Ecall, Ecrs, Ertn) and cfg(P ) =
(V ′, E′). If (r, r′) ∈ Ertn and r is not a leaf node, then there
exists a sequence of nodes 〈v1, v2, . . . , vn〉 in cfg(P ) such
that

• v1 = r, vn−1 = Fr.exit, vn = r′; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E′; and

• For each 1 < i ≤ n − 3, vi is not a system call node;
and

• If n > 3, then 〈v2, v3, . . . , vn−2〉 is a (series of) call
cycle(s).

Lemma A.6. Let P be a program that is well-behaved on
input I. Let eg(P (I)) = (V,Ecall, Ecrs, Ertn). If 〈r1, r2, . . . , rn〉
is an execution stack, then there exists an observable path π
in cfg(P ) such that A(π) = 〈r1, r2, . . ., rn〉.

Proof.

〈r1, r2, . . . , rn〉 is an execution stack

⇒ for each 1 ≤ i < n, ri
xcall→ ri+1 (Definition 3.4)

⇒ for each 1 ≤ i < n, (ri, ri+1) ∈ Ecall or(
∃z : (ri, z) ∈ Ecall ∧ z

crs→ ri+1

)
(Definition 3.4)

If for any 1 ≤ i < n− 1, (ri, ri+1) ∈ Ecall

⇒ there exists a path 〈ri, Fri+1 .enter, . . ., ri+1〉 in cfg(P )
(Lemma A.4).

If for any 1 ≤ i < n− 1, (ri, z) ∈ Ecall ∧ z
crs→ ri+1

⇒ there exists a path 〈ri, Fri+1 .enter, . . ., z, . . ., ri+1〉 in
cfg(P ) (Lemma A.4 and Lemma A.3).

Connecting 〈main.enter, . . . , r1〉 and all these paths from
each ri to ri+1 together forms an observable path π that
traverses r1, r2, . . . , rn−1.
Since each individual path 〈ri, . . . , ri+1〉 consists of only

ri, Fri+1 .enter, ri+1 and a (possibly empty series of) call cy-
cle(s) (Lemma A.4), A(π) = 〈r1, r2, . . . , rn〉 (Definition 4.6).
✷

Lemma A.7. Let P be a program that is well-behaved on
input I. Let eg(P (I)) = (V,Ecall, Ecrs, Ertn) and cfg(P ) =
(V ′, E′). If s = 〈r1, r2, . . . , rm〉 and s′ = 〈r′1, r′2, . . . , r′m′〉
are execution stacks in V , and s′ is a successor of s, then
there exist a sequence of nodes 〈v1, v2, . . . , vn〉 in cfg(P )
such that

• v1 = rm−1, vn = r′m′−1; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E′; and

• For each 1 < i < n, vi is not a system call node; and

• Let 〈vl1 , vl2 , . . . , vlj 〉 denote the remaining sequence of
nodes when all call cycles on 〈v1, v2, . . . , vn〉 are re-
moved, where for each 1 ≤ i < j, li < li+1. Then
there exists an integer k, such that

– For each 1 ≤ i < k, ri = r′i; and

– j = 2(m+m′ − 2k − 1); and

– vl1 = rm−1, vl2 = Frm−1 .exit;
. . .;
vl2(m−k)−3 = rk+1, vl2(m−k)−2 = Frk+1 .exit;

vl2(m−k)−1 = rk, vl2(m−k) = r′k;

vl2(m−k)+1 = Fr′
k+1

.enter, vl2(m−k)+2 = r′k+1;
. . .;
vl2(m+m′−2k)−3

= Fr′
m′−1

.enter, vl2(m+m′−2k)−2
=

r′m′−1.

Proof.

s′ is a successor of s
⇒ there exists an integer k such that rm

rtn→ rk, (rk, r
′
k) ∈

Ecrs, r
′
k

call→ r′m′ and for each 1 ≤ i < k, ri = r′i (Defini-
tion 3.5)

⇒ there exist three paths from rm−1 to rk (Lemma A.5),
from rk to r′k (Lemma A.3) and from r′k to r′m′−1

(Lemma A.4)
⇒ connecting the above 3 paths together forms the se-

quence of nodes with the claimed properties.
✷

Lemma A.8. Let P be a program that is well-behaved on
input I. If there is an execution path δ = 〈s1, . . . , sn〉
in eg(P (I)), where si = 〈ri,1, . . . , ri,mi〉, then there ex-
ists an observable path π = 〈main.enter, . . . , r1,m1−1, . . . ,
r2,m2−1, . . . , rn,mn−1〉 in cfg(P ) such that

• r1,m1−1, r2,m2−1, . . . , rn,mn−1 are the only system call
nodes on π; and

• Let pre(π) = 〈π1, π2, . . . , πn〉, then for each 1 ≤ i ≤ n,
A(πi) = si.

Proof. According to Lemma A.6, there exists a path β0

= 〈main.enter, . . ., r1,1, Fr1,2 .enter, . . ., r1,2, . . ., r1,m1−1〉
in cfg(P ). Since for each 1 ≤ i < m1, (r1,i, r1,i+1) ∈ Ecall

(Definition 3.6), r1,m1−1 is the only system call node on β0

(Lemma A.4).
According to Lemma A.7, for each 1 ≤ i < n, there is

a path βi = 〈ri,mi−1, . . ., Fri,mi−1 .exit, . . ., Fri,ki+1 .exit,
ri,ki , . . ., ri+1,ki , Fri+1,ki+1 .enter, . . ., Fri+1,mi+1−1 .enter,

. . ., ri+1,mi+1−1〉, where for each 1 ≤ j < ki, ri,j = ri+1,j .
Connecting β0, β1, . . . , βn−1 together forms π.
Since the only system call nodes on βi are ri,mi−1 and

ri+1,mi+1−1 (Lemma A.7), r1,m1−1, r2,m2−1, . . . , rn,mn−1 are
the only system call nodes on π.
Let k0 = m1 − 1 and for each 1 ≤ i < n, let li =

min(ki−1, ki). Since the subsequence 〈ri,li , Fri,li+1 .enter,

. . ., Fri,mi−1 .enter, . . ., ri,mi−1〉 from βi−1 and 〈ri,mi−1, . . .,

Fri,mi−1 .exit, . . ., Fri,li+1 .exit, ri,li〉 from βi forms a (possi-

bly empty) call cycle, they will be deleted from A(π) (First
step of the procedure in Definition 4.6).
Since for each 1 ≤ i < n and each 1 ≤ j < ki, ri,j =

ri+1,j (Definition 3.5), the remaining nodes of A(π) after
the second step of the procedure in Definition 4.6 are 〈rn,1,
rn,2, . . ., rn,mn−1〉. Therefore, A(π) = sn.

A(πi) = si can be proved similarly. ✷

Theorem 4.1 follows immediately from Lemma A.8.

B. PROOF OF THEOREM 4.2
To show the existence of such a program P ′, we (i) build

a graph G′ from the execution graph eg(P (I)); (ii) show
that G′ is the control flow graph of some program P ′ that is
well-behaved on input I, i.e., cfg(P ′) = G′; and (iii) show
that Lcfg(P ′) = Leg(P (I)).

Definition B.1 (E2G). The operation E2G takes as in-
put an execution graph eg(P (I)) = (V , Ecall, Ecrs, Ertn) and
performs the following operations:
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1. For each xi ∈ V where

• xi is not a leaf node; and

• there does not exist a leaf node v such that (xi, v) ∈
Ecall.

Let

C(xi) = {v : (xi, v) ∈ Ecall}
C′(xi) =

{
v : [∃v′ ∈ C(xi) : v

′ crs→ v]
}

C′′(xi) = {v : v is a leaf node ∧
[∃v′ ∈ (

C(xi) ∪ C′(xi)
)
: (v′, v) ∈ Ecall]

}

E(xi) =
{
(v1, v2) : v1 ∈

(
C(xi) ∪ C′(xi)

)∧
v2 ∈

(
C(xi) ∪ C′(xi)

) ∧ (v1, v2) ∈ Ecrs

}

E′(xi) =
{
(v1, v2) : v1 ∈

(
C(xi) ∪ C′(xi)

)∧
v2 ∈ C′′(xi) ∧ (v1, v2) ∈ Ecall

}

2. Define the equivalence relation xi ∼ xj if C(xi) =
C(xj). Let [xi] denote the equivalence class of xi. For
each equivalence class [xi], let G[xi] = (V[xi], E[xi])
where

V[xi] = C(xi) ∪ C′(xi) ∪ C′′(xi) ∪
{G[xi].enter, G[xi].exit}

E[xi] = E(xi) ∪ E′(xi) ∪{
(G[xi].enter, v) : v ∈ C(xi)

} ∪{
(v,G[xi].exit) : v ∈ V[xi] ∧ (v, xi) ∈ Ertn

}

3. Create a new graph G′ = (V ′, E′), such that

V ′ =


⋃

[xi]

V[xi]


 ∪M

E′ =
⋃
[xi]

(
E[xi] ∪ {(v,G[xi].enter) : v ∈ [xi]} ∪

{(G[xi].exit, v) : v ∈ [xi]}
)

∪ {(v1, v2) : {v1, v2} ⊆M ∧ (v1, v2) ∈ Ecrs}
where

M = {v : v ∈ V ∧
[there does not exist v′ ∈ V : v′ xcall→ v]}

Operation E2G returns the graph G′. ✷

In the above definition, M is the set of nodes that rep-
resent addresses in main(). With Definition B.1, we are
done with the first step in our proof. The next step is to
prove that cfg(P ′) = G′ for some program P ′ that is also
well-behaved on input I.

Lemma B.1. If graph G′ = (V ′, E′) is the output of op-
eration E2G on an execution graph eg(P (I)), then there
exists some program P ′ which is well-behaved on input I,
such that cfg(P ′) = G′.

Though we do not provide the proof of Lemma B.1, the
following is the intuition. From Definition B.1, one can no-
tice that graph G′ contains a set of subgraphs, which are
connected by directed edges from a function call node to the
entry node of the function subgraph, and from the exit node

of the function subgraph to the same function call node. Be-
sides that, each subgraph contains function call nodes and
system call nodes, as well as one entry node and one exit
node. When given this graph G′, programming languages
such as C and C++ can be used to implement each sub-
graph as a function, and implement the entire graph G′ as a
program P ′. If implemented correctly, the implementation
output P ′ will be well-behaved on input I, and the control
flow graph of P ′ will be the same as G′.
The last step in our proof of Theorem 4.2 is to show that

Lcfg(P ′) = Leg(P (I)), where cfg(P ′) = G′ = (V ′, E′). To
prove this we need to show that (i) Leg(P (I)) ⊆ Lcfg(P ′),
and (ii) Lcfg(P ′) ⊆ Leg(P (I)). The proof of (i) is very
similar to the proof of Theorem 4.1 and it is skipped in this
paper. We only show the important lemmas for the proof
of (ii). Notice that the difference between these two proofs
and those in Appendix A is that here V ′ and E′ are given
as in Definition B.1, whereas in Theorem 4.1 they are not
given.

Lemma B.2. Let P be a program that is well-behaved on
input I, and E2G (eg(P (I))) = G′. If π is an observ-
able path in G′, then there exists an execution stack s in
eg(P (I)) such that s = A(π).

Lemma B.3. Let P be a program that is well-behaved on
input I, and E2G (eg(P (I))) = G′. Let π be an observ-
able path in G′, and pre(π) = 〈π1, π2, . . . , πn〉, then 〈A(π1),
A(π2), . . ., A(πn)〉 is an execution path in eg(P (I)).
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