
Private Keyword-Based Push and Pull with
Applications to Anonymous Communication

Extended Abstract

Lea Kissner1, Alina Oprea1, Michael K. Reiter1,2, Dawn Song1,2, and Ke Yang1

1 Dept. of Computer Science, Carnegie Mellon University
{leak,alina,yangke}@cs.cmu.edu

2 Dept, of Electrical and Computer Engineering, Carnegie Mellon University
{reiter,dawnsong}@cmu.edu

Abstract. We propose a new keyword-based Private Information Retrieval (PIR)
model that allows private modification of the database from which information
is requested. In our model, the database is distributed over n servers, any one
of which can act as a transparent interface for clients. We present protocols that
support operations for accessing data, focusing on privately appending labelled
records to the database (push) and privately retrieving the next unseen record
appended under a given label (pull). The communication complexity between
the client and servers is independent of the number of records in the database
(or more generally, the number of previous push and pull operations) and of
the number of servers. Our scheme also supports access control oblivious to the
database servers by implicitly including a public key in each push, so that only the
party holding the private key can retrieve the record via pull. To our knowledge,
this is the first system that achieves the following properties: private database
modification, private retrieval of multiple records with the same keyword, and
oblivious access control. We also provide a number of extensions to our protocols
and, as a demonstrative application, an unlinkable anonymous communication
service using them.

1 Introduction

Techniques by which a client can retrieve information from a database without expos-
ing its query or the response to the database was initiated with the study of oblivious
transfer [17]. In the past decade, this goal has been augmented with that of minimiz-
ing communication complexity between clients and servers, a problem labelled Private
Information Retrieval (PIR) [8]. To date, PIR has received significant attention in the
literature, but a number of practically important limitations remain: queries are limited
to returning small items (typically single bits), data must be retrieved by address as
opposed to by keyword search, and there is limited support for modifications to the
database. Each of these limitations has received attention (e.g., [9,8,14,6]), but we are
aware of no solution that fully addresses these simultaneously.

In this extended abstract we present novel protocols by which a client can privately
access a distributed database. Our protocols address the above limitations while retaining
privacy of queries (provided that at most a fixed threshold t of servers is compromised)

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 16–30, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Private Keyword-Based Push and Pull with Applications 17

and while improving client-server communication efficiency over PIR solutions at the
cost of server-server communication. Specifically, the operations we highlight here in-
clude:

– push In order to insert a new record into the database, the client performs a push
operation that takes a label, the record data, and a public key as arguments.

– pull To retrieve a record, a client performs a pull operation with a label and a
private key as arguments. The response to a pull indicates the number of records
previously pushed with that label and a corresponding public key, and if any, returns
the first such record that was not previously returned in a pull (or no record if they
all were previously returned).

Intuitively, the pull operation functions as a type of “dequeue” operation or list iterator:
each successive pull with the same label and private key will return a new record pushed
with that label and corresponding public key, until these records are exhausted. We
emphasize that the above operations are private, and thus we call this paradigm Private
Push and Pull (P3).

As an example application of these protocols, suppose we would like to construct a
private bulletin board application. In this scenario, clients can deposit messages which
are retrieved asynchronously by other clients. An important requirement is that the
communication between senders and receivers remains hidden to the database servers, a
property called unlinkability. Clients encrypt messages for privacy, and label them with
a keyword, the mailbox address of the recipient. If multiple clients send messages to the
same recipient, there exist multiple records in the database with the same keyword. We
would like to provide the receiver with a mechansim to retrieve some or all the messages
from his mailbox. Thus, the system should allow insertion and retrieval of multiple
records with the same keyword.Another desirable property would be to provide oblivious
access control, such that a receiver can retrieve from its mailbox only if he knows a
certain private key. In addition, the database enforces the access control obliviously, i.e.,
the servers do not know the identity of the intended recipient. All these properties are
achieved by our P3 protocols and the construction of such a private bulletin board is an
immediate application of these protocols.

Our protocols have additional properties. Labels in the database, arguments to push
and pull requests, and responses to pull requests are computationally hidden from up to t
maliciously corrupted servers and any number of corrupted clients. The communication
complexity incurred by the client during a push or pull operation is independent of both
the number of servers and the number of records in the database, and requires only a
constant number of ciphertexts. While communication complexity between the servers
is linearly dependent on both the number of servers and the number of records in the
database, we believe that this tradeoff—i.e., minimizing client-server communication at
the cost of server-server communication—is justified in scenarios involving bandwidth-
limited or geographically distant clients.

Beyond our basic push and pull protocols, we will additionally provide a number of
enhancements to our framework, such as: a peek protocol that, given a label and private
key, privately retrieves the i-th record pushed with that label and corresponding public
key; a modification to pull to permit the retrieval of arbitrary-length records; and the

18 L. Kissner et al.

ability to perform a pull based not only on identical label matching, but based on any
predicate on labels (with additional cost in server-server communication complexity).

We define security of the P3 protocols in the malicious and honest-but-curious adver-
sary models. The definition of security that we employ is very similar to the definition
of secure multi-party computation [11]. Proofs that P3 satisfies the definition of security
in the malicious adversary model will be given in the full version of the paper. We also
propose a more efficient P3 protocol that is secure in the honest-but-curious model. We
thus achieve a tradeoff between the level of security guaranteed by our protocols and
their computational complexity.

To summarize, the contributions of our paper are:

– The definition of a new keyword-based Private Information Retrieval model
Our model extends previous work on PIR in several ways. Firstly, we enable private
modification of the database, where the database servers do not learn the modified
content. Secondly, we allow retrieval of a subset or all records matching a given
keyword. And, finally, we provide oblivious access control, such that only the in-
tended recipients can retrieve messages and the servers do not know the identity of
message recipients.

– The construction of secure and efficient protocols in this model
We design P3 protocols, that achieve a constant communication complexity (in
number of ciphertexts) between the clients and the servers and that are provably
secure in the malicious adversary model.

– The design of an unlinkable [16] anonymous messaging service using the new pro-
posed protocols
The anonymous messaging service we design is analogous to a bulletin board, where
clients deposit messages for other clients, to retrieve them at their convenience. The
security properties of the P3 protocols provide the system with unlinkability.

2 Related Work

As already mentioned, our P3 primitive is related to other protocols for hiding what
a client retrieves from a database. In this section we differentiate P3 from these other
protocols.

Private information retrieval (PIR) [9,8,3] enables a client holding an index i, 1 ≤ i ≤
d, to retrieve data item i from a d-item database without revealing i to the database. This
can be trivially achieved by sending the entire database to the client, so PIR mandates
sublinear (and ideally polylogarithmic) communication complexity as a function of d.
Our approach relaxes this requirement for server-to-server communication (which is not
typically employed in PIR solutions), and retains this requirement for communication
with clients; our approach ensures client communication complexity that is independent
of d. In addition, classic PIR does not address database changes and does not support
labelled data on which clients can search.

Support for modifying the database was introduced in private information stor-
age [14]. This supports both reads and writes, without revealing the address read or
written. However, it requires the client to know the address it wants to read or write. P3

Private Keyword-Based Push and Pull with Applications 19

eliminates the need for a client to know the address to read from, by allowing retrieval
of data as selected by a predicate on labels. P3 does not allow overwriting of values, but
allows clients to retrieve all records matching a given query.

The problem of determining whether a keyword is present in a database without
revealing the keyword (and again with communication sublinear in d) is addressed in [6].
The P3 framework permits richer searches on keywords beyond identical matching—
with commensurate additional expense in server complexity —though P3 using identical
keyword matching is a particularly efficient example. Another significant difference is
that P3 returns the data associated with the selected label, rather than merely testing for
the existence of a label.

Also related to P3 is work on oblivious keyword search [13], which enables a client to
retrieve data for which the label identically matches a keyword. Like work on oblivious
transfer that preceded it, this problem introduces the security requirement that the client
learn nothing about the database other than the record retrieved. It also imposes weaker
constraints on communication complexity. Specifically, communication complexity be-
tween a client and servers is permitted to be linear in d.

3 Preliminaries

A public-key cryptosystem is a triplet of probabilistic algorithms (G, E, D) running in
expected polynomial time. G(1κ

T E) is a probabilistic algorithm that outputs a pair of
keys (pk, sk), given as input a security parameter κT E . Encryption, denoted as Epk(m),
is a probabilistic algorithm that outputs a ciphertext c for a given plaintext m. The
deterministic algorithm for decryption, denoted as Dsk(c), outputs a decryption m of c.
Correctness requires that for any message m, Dsk(Epk(m)) = m.

The cryptosystems used in our protocols require some of the following properties:

– message indistinguishability under chosen plaintext attack (IND-CPA security) [12]:
an adversary is given a public key pk, and chooses two messages m0, m1 from the
plaintext space of the encryption scheme. These are given as input to a test oracle. The
test oracle chooses b ←R {0, 1} and gives the adversary Epk(mb). The adversary
must not be able to guess b with probability more than negligibly different from 1

2 .
– (t, n) threshold decryption: a probabilistic polynomial-time (PPT) share-generation

algorithm S, given pk, sk, t, n, outputs private shares sk1, . . . , skn such that parties
who possess at least t + 1 shares and a ciphertext c can interact to compute Dsk(c).
Specifically we require (n − 1, n) threshold decryption, where the private shares
are additive over the integers, such that sk =

∑n
i=1 ski.

– threshold IND-CPA security [10]: the definition for threshold IND-CPA security is
the same as for normal IND-CPA security, with minor changes. Firstly, the adversary
is allowed to choose up to t servers to corrupt, and observes all of their secret
information, as well as controlling their behaviour. Secondly, the adversary has
access to a partial decryption oracle, which takes a message m and outputs all n
shares (constructed just as decryption proceeds) of the decryption of an encryption
of m.

– partial homomorphism: there must be PPT algorithms +pk , −pk , ·pk for addi-
tion and subtraction of ciphertexts, and for the multiplication of a known constant by

20 L. Kissner et al.

a ciphertext such that for all a, b, in the plaintext domain of the encryption scheme,
c ∈ Z, such that the result of the desired operation is also in the plaintext domain
of the encryption scheme:

Dsk(Epk(a) +pk Epk(b)) = a + b

Dsk(Epk(a) −pk Epk(b)) = a− b

Dsk(c ·pk Epk(a)) = ca

– blinding: there must be a PPT algorithm Blindpk which, given a ciphertext c which
encrypts message m, produces an encryption of m, pulled from a distribution which
is uniform over all possible encryptions of m.

– indistinguishability of ciphertexts under different keys (key privacy) [1]: the adver-
sary is given two different public keys pk0, pk1 and it chooses a message from the
plaintext range of the encryption scheme considered. Given an encryption of the
message under one of the two keys, chosen at random, the adversary is not able
to distinguish which key was used for encryption with probability non-negligibly
higher than 1

2 .

3.1 Notation

– a||b denotes the concatenation of a and b;
– x← D denotes that x is sampled from the distribution D;
– x̄ denotes an encryption of x under an encryption scheme, that can be inferred from

the context;
– E = (G, E, D), an IND-CPA secure, partially homomorphic encryption scheme,

for which we can construct proofs of plaintext knowledge and blind ciphertexts. For
the construction in Sec. 5, we also require the key privacy property. The security
parameter for E is denoted as κE .

– T E = (Gh, Eh, threshDecrypt), a threshold decryption scheme, which is thresh-
old IND-CPA secure. threshDecrypt is a distributed algorithm, in which each party
uses its share of the secret key to compute a share of the decryption. In addition, it
should have the partial homomorphic property and we should be able to construct
proofs of plaintext knowledge. The security parameter for T E is denoted as κT E .

– ME
pk denotes the plaintext space of the encryption scheme E for public key pk.

– Π = zkp[p] denotes the zero-knowledge proof of predicate p, Π = zkpk[p] denotes
the zero-knowledge proof of knowledge of p

3.2 Paillier

The Paillier encryption scheme defined in [15] satisfies the first six defined properties.
In the Paillier cryptosystem, the public key is an RSA-modulus N and a generator g
that has an order a multiple of N in Z

∗
N2 . In order to encrypt a message m ∈ ZN , a

random r is chosen in ZN , and the ciphertext is c = gmrN mod N2. In this paper, we
will consider the plaintext space for the public key (N, g) to be M(N,g) = (−N

2 , N
2) so

that we can safely compute −x, given x in the plaintext space.

Private Keyword-Based Push and Pull with Applications 21

For the construction in Sec. 5, we need key privacy of the encryption scheme used.
In order to achieve that, we slightly modify the Paillier scheme so that the ciphertext is
c + µN2, where µ is a random number less than a threshold T = 24κT E

N2 (κT E is the
security parameter).

The threshold Paillier scheme defined in [10] can be easily modified to use additive
shares of the secret key over integers (as this implies shares over Nλ(N), and thus with
the modification given above, satisfies the properties required for T E .

The unmodified Pailler cryptosystem satisfies the requirements for E . Zero-
knowledge proofs of plaintext knowledge are given in [7].

3.3 System Model

We denote by n the number of servers, and t the maximum number that may be corrupted.
Privacy of the protocols is preserved if t < n.

Assuming the servers may use a broadcast channel to communicate, every answer
returned to a client will be correct if t < n or all servers are honest-but-curious. This
does not, however, guarantee that an answer will be given in response to every query.
If every server may act arbitrarily maliciously (Byzantine failures), a broadcast channel
may be simulated if t < n

3 .
We do not address this issue in this paper, but liveness (answering every query) can

be guaranteed with t < n
3 if every misbehaving server is identified and isolated, and the

protocol is restarted without them. Note that this may take multiple restarts, as not every
corrupted server must misbehave at the beginning.

In the malicious model, our protocols are simulatable [11], and thus the privacy of
client queries, responses to those queries (including the presence or absence of infor-
mation), and database records is preserved. In the honest-but-curious model, we may
achieve this privacy property more efficiently. For lack of space, we defer the proofs to
the full version of this paper.

The database supports two types of operations. In a push operation, a client provides
a public key pk, a label �, and data δ. In a pull operation, the client provides a secret
key sk and a label x, and receives an integer and a data item in response. The integer
should be equal to the number of previous push operations for which the label � = x
and for which the public key pk is the corresponding public key for sk. The returned
data item should be that provided to the first such push operation that has not already
been returned in a previous pull. If no such data item exists, then none is returned in its
place.

4 The P3 Protocol

We start the description of P3 with the push protocol. Before going into the details of the
pull protocol, we construct several building block protocols. We give several extensions
to the basic protocols. We then analyze the communication complexity of the proposed
protocols. At the end of the section, we suggest a more efficient implementation of our
protocols in the honest-but-curious model.

22 L. Kissner et al.

In the protocols given in this paper, the selection predicate is equality of the given
label x to the ith record label �i, under a given secret key sk. This selection predicate is
evaluated using the protocol testRecord. The P3 system can be modified by replacing
testRecord with a protocol that evaluates an arbitrary predicate, e.g., using [7].

4.1 Initial Service-Key Setup

During the initial setup of a P3 system, the servers collectively generate a public/private
key pair (PK,SK) for the threshold encryption scheme T E , where PK is the public
key, and the servers additively share the corresponding private key SK. We call the
public/private key pair the system’s service key.We require that d < q, n·d·q2 < 2κT E−1,
22κE+3n

n−t < 2κT E−1, and 2κE+1 +3 ·22κE+2 < 2κT E−1 so that the operations (presented
next) over the message space MT E

pk (which is an integer interval of length about 2κT E ,
centered around 0) will not “overflow”. Here d denotes the number of records in the
database, and q is a prime.

For notational clarity, the protocols are given under the assumption that the data sent
to the server in a push operation can be represented as an element of Zq. This can be
trivially extended to arbitrary length records (see 4.5).

4.2 The Private Push Protocol

When a client C wants to insert a new record in the distributed database, it first generates
a public key/secret key pair (pk, sk) for the encryption scheme T E and then invokes a
push operation pushPK(pk, �, δ). Here PK is the service key, � is the label and δ is the
data to be inserted. The protocol is a very simple one and is given in Fig. 1. H(·) is a
cryptographically secure hash function, e.g., MD5.

Note that the data is sent directly to the server, and thus if privacy of the contents of
the data is desired, the data should be encrypted beforehand.

pushPK(pk, �, δ)
Client C computes y ← Eh

pk(�) and sends 〈y, H(δ)||δ〉 together with a zero knowledge
proof of knowledge Π = zkpk[l : l ∈ Zq, Dsk(y) = l].
This server adds the tuple 〈y, 〈H(δ), δ〉, Eh

PK(1)〉 to the shared database.

Fig. 1. The push protocol

4.3 Building Block Protocols

The Decrypt Share Protocol. When the decryptShare protocol starts, one of the servers
receives a ciphertext c encrypted using the public key pk of the threshold homomorphic
encryption scheme T E . It also receives an integer R representing a randomness range
large enough to statistically hide the plaintext corresponding to c. We assume that the

Private Keyword-Based Push and Pull with Applications 23

servers additively share the secret key sk corresponding to pk, such that each server
knows a share ski. After the protocol, the servers additively share the corresponding
plaintext m. Each server will know a share mi such that

∑n
i=1 mi = m and it will

output a commitment of this share (m̄i = Eh
pk(mi)). The protocol is given in Fig. 2 and

is similar to the Additive Secret Sharing protocol in [7].

decryptSharesk1,...,skn
(c, R)

We assume that an arbitrary server holds c — assume it is Sj .

1. For 1 ≤ i ≤ n, Si chooses ai ← [0, . . . , R], computes ci ← Eh
pk(ai).

2. For i = 1, . . . , n, Si broadcasts ci together with a zero knowledge proof of plaintext
knowledge of ci: Πi = zkpk[ai : ai ∈ [0, . . . , R], Dsk(ci) = ai].

3. All the servers check the zero knowledge proofs received from the other servers. If some
proofs do not verify, then the servers that sent them are excluded from the protocol.

4. Sj computes c′ ← c +pk c1 +pk c2 +pk · · · +pk cn.
5. All servers participate in m′ = threshDecryptsk1,...,skn

(c′).
6. The additive share of m for Sj is mj = −aj + m′ and the commitment m̄j can be

computed as m̄j = c′ −pk cj ;
The additive share of m for Si, i �= j is mi = −ai and the commitment m̄i can be
computed as m̄i = −pk ci.

Fig. 2. The decryptShare protocol

The Multiplication Protocol. The mult protocol receives as input two encrypted values
x̄ and ȳ under a public key pk of the threshold homomorphic encryption scheme T E ,
and an integer R, used as a parameter to decryptShare. We assume that the servers
additively share the secret key sk corresponding to pk, such that each server knows a
share ski. The output of the protocol is a value z̄ such that Dsk(z̄) = xy. The protocol
is given in Fig. 3 and is similar to the Mult protocol in [7].

multpk(x̄, ȳ, R)

1. All the servers participate in decryptSharesk1,...,skn
(ȳ, R), ending with additive

shares of y: y1, . . . , yn and commitments of these shares ȳ1, . . . , ȳn.
2. For 1 ≤ i ≤ n, Si computes t̄i = x̄ ·pk yi and broadcasts t̄i together with a zero

knowledge proof of knowledge Πi = zkpk[yi : Dsk(ȳi) = yi, t̄i = x̄ ·pk yi].
3. All the servers check the zero knowledge proofs received from the other servers. If some

proofs do not verify, then the servers that sent them are excluded from the protocol.
4. The output of the protocol is z̄ = t̄1 +pk . . . +pk t̄n.

Fig. 3. The mult protocol

24 L. Kissner et al.

The Share Reduction Protocol. The shareModQ protocol receives as input a prime q,
an encrypted value x̄ under a public key pk of the threshold homomorphic encryption
scheme T E , and an integer R, used as a parameter to decryptShare. We assume that
the servers additively share the secret key sk corresponding to pk, such that each server
knows a share ski. The output of the protocol is ȳ st Dsk(ȳ) = Dsk(x̄), ȳ = y1 + · · ·+
yn, yi ∈ Zq. The protocol is given in Fig. 4.

shareModQpk(x̄, q, R)

1. All the servers participate in decryptSharesk1,...,skn
(x̄, R), ending with additive

shares of x: x1, . . . , xn and commitments of these shares x̄1, . . . , x̄n.
2. For 1 ≤ i ≤ n, Si computes yi = xi mod q and broadcasts ȳi = Eh

pk(yi) together
with a zero knowledge proof of knowledge Πi = zkpk[xi, yi : yi ∈ Zq, Dsk(ȳi) =
yi, Dsk(x̄i) = xi, yi = xi mod q].

3. All the servers check the zero knowledge proofs received from the other servers. If some
proofs do not verify, then the servers that sent them are excluded from the protocol.

4. All the servers compute ȳ = ȳ1 +pk . . . +pk ȳn, which is the output of the protocol.

Fig. 4. The shareModQ protocol

The Modular Exponentiation Protocol. The expModQ protocol receives as input an
encrypted value x̄ under a public key pk of the threshold homomorphic encryption
scheme T E , an integer exponent k and a prime modulus q, and and an integer R, used
as a parameter to decryptShare. The output of the protocol is ȳ such that Dsk(ȳ) =
Dsk(x̄)k. In addition, the decryption of ȳ, y, can be written as y = y1 + · · ·+ yn with
yi ∈ Zq. We have thus the guarantee that 0 ≤ y ≤ (q − 1)n. The protocol is simply
done by repeated squaring using the mult protocol. After each invocation of the mult
protocol, a shareModQ protocol is executed.

4.4 The Private Pull Protocol

We have now all the necessary tools to proceed to the construction of the pull protocol.
To retrieve the record associated with the label x encrypted under public key pk, the
client C must know both x and the secret key sk corresponding pk. C encrypts both the
label x and the secret key sk under the public service key PK and picks a public/secret
key pair (pk′, sk′) for the encryption scheme E . It then sends x̄, s̄k and pk′ to an arbitrary
server.

Overview of the Pull Protocol. The servers will jointly compute a template T =
(T1, . . . , Td), where d is the number of records in the database. The template is a series
of indicators encrypted under pk′, where Ti indicates whether x matches the label �i

under sk (threshDecryptsk(�i) = x) and whether i is the first record that matches �i

not previously read. This determines whether it should be returned as a response to the

Private Keyword-Based Push and Pull with Applications 25

query (Dsk′(Ti) = 1) or not (Dsk′(Ti) = 0 mod q). The protocol returns to the client
the template T and an encrypted counter, m̄ that denotes the total number of records
matching a given label.

The protocol starts in step 2 (Figure 5) with the servers getting additive shares of
the secret key sk, sent encrypted by the client. In step 3, several flags are initialized, the
meaning of which will be explained in Sec. 4.4. Then, in step 4, it performs an iteration
on all the records in the database, calculating the template entry for each record. In steps
4(a)-4(e), for each record j in the database with the label encrypted under public key pkj ,
a decryption under the supplied key sk and re-encryption of the label is calculated under
the service public key PK. In order to construct the template, the additive homomorphic
properties of the encryption scheme T E are used. For record j in the database, the servers
jointly determine the correct template value (as explained above), using the building
block testRecord.

The return result is constructed by first multiplying each entry in the template with
the contents of the corresponding record, and then adding the resulting ciphertexts using
the additive homomorphic operation +pk′ . At most one template value will hold an
encryption of 1, so an encryption of the corresponding record will be returned. All other
records will be multiplied by a multiple of q, and will thus be suppressed when the client
performs Dsk′(T) mod q. The bounds on the size of the plaintext range ensure that the
encrypted value does not leave the plaintext range.

An interesting observation is that our approach is very general and we could easily
change the specification of the pull protocol, by just modifying the testRecord protocol.
An example of this is given in Sec. 4.5, when we describe the peek protocol.

Flags for Repeated Keywords. In this section we address the situation in which multiple
records are associated with the same keyword under a single key. The protocol employs
a flag f̄ , which is set at the beginning of each pull invocation to an encryption of 1 under
the public service key. f̄ is obliviously set to an encryption of 0 mod q after processing
the first record which both matches the label and has not been previously read. It will
retain this value through the rest of the pull invocation. In addition, each record i in
the database has an associated flag, r̄i. The decryption of r̄i is 1 if record i has not yet
been pulled and 0 mod q afterwards. Initially, during the push protocol, r̄i is set to an
encryption of 1.

The testRecord Protocol. The equality test protocol, testRecord, first computes w̄
(steps 1-2), such that 1̄ −PK w̄ is an encryption of 1 if x = y mod q and an encryption
of 0 mod q otherwise. In step 3, a flag s̄ is computed as an encryption of 1 if the record
matches the label, f = 1 (this is the first matching record), and r = 1 (this record has not
been previously retrieved). We then convert s̄ from an encryption under the service key
PK to an encryption under the client’s key pk of the same plaintext indicator (0 mod q
or 1). This is performed in steps 4-7 with result u. We then update the flags f̄ and r̄, as
well as the counter m̄. Both r̄ and f̄ are changed to encryptions of 0 mod q if the record
will be returned in the pull protocol. The new value of m̄ is obtained by homomorphically
adding the match indicator 1̄ −PK w̄ to the old value.

The detailed pull and testRecord protocols are given in Figs. 5 and 6.

26 L. Kissner et al.

pull(sk, x, pk′, sk′)
The database, is a collection of d tuples {Dj = 〈Eh

pkj
(�j), ej , r̄j = Eh

PK(rj)〉}dj=1

Here �j ∈ Zq and ej ∈Mpk′ can be parsed as ej = H(δj)||δj

1. C sends (pk′, x̄ = Eh
PK(x), s̄k = Eh

PK(sk)) to an arbitrary server Sj , who broadcasts
pk′.

2. All the servers participate in decryptShareSK1,...,SKn

(
s̄k, 22κE+3

n−t

)
and end with

additive shares of sk: sk1, . . . , skn and commitments s̄k1, . . . , s̄kn.
3. An arbitrary sever computes f̄ ← Eh

PK(1), m̄ ← Epk′(0) and broadcasts them to all
the servers.

4. For 1 ≤ j ≤ d, do:
a) The server that holds Dj = 〈Eh

pkj
(�j), ej〉 broadcasts it;

b) All the servers participate in decryptSharesk1,...,skn

(
Eh

pkj
(�j), 2q2

n−t

)
and end

with additive shares of �′
j : �′

j1, . . . , �
′
jn and commitments of these shares:

�̄′
j1, . . . , �̄

′
jn (�′

j = �j ⇔ sk = skj);
c) Each serverSi broadcasts ȳji ← Eh

PK(�′
ji), together with a zero knowledge proof

of plaintext equality Πi = zkp[yji : DSK(ȳji) = yji, Dsk(�̄′
ji) = yji];

d) All the servers check the zero knowledge proofs received from the other servers.
If some proofs do not verify, then the servers that sent them are excluded from the
protocol;

e) All the servers compute ȳj = ȳj1 +PK . . . +PK ȳjn;
f) All the servers participate in testRecordpk′(PK, x̄, ȳj , f̄ , r̄j , m̄) to obtain

(Tj , f̄ , r̄′
j , m̄).

g) Set the database tuple Dj to be 〈Eh
pkj

(�j), ej , r̄
′
j〉.

(the template is (T1, T2, . . . , Td))
5. An arbitrary server computes T = (T1 ·pk′ e1) +pk′ · · · +pk′ (Td ·pk′ ed) and

sends T and m̄ to C.
6. C computes e← Dsk′(T) mod q, m← Dsk′(m̄) mod q and parses e as e = (r, δ).

– if m = 0, output none;
– otherwise, check r = H(δ) and if this holds, output data δ and m number of

matches;
– if consistency check does not hold, output error.

Fig. 5. The pull protocol

4.5 Extensions

Data of Arbitrary Length. The protocols given above can be extended to record data
of arbitrary length as follows. First, the push operation can be naturally extended to
include multiple data items, e.g., push(Epk(�), δ1, ..., δk). Next, step 4 in the pull pro-
tocol (Fig. 5) can be performed for each of the k data items, using the same template
(T1, ..., Td). Note that this does not increase the communication complexity among the
servers. This is particularly efficient for large data records. For example, if the Paillier
system is used, then the client/server communication complexity is asymptotically twice
the actual data size transmitted.

Private Keyword-Based Push and Pull with Applications 27

testRecordpk(PK, x̄, ȳ, f̄ , r̄, m̄)

1. All the servers participate in z̄ ← shareModQPK

(
x̄ −PK ȳ, q, 2q2

n−t

)
.

2. All the servers participate in w̄ ← expModQPK

(
z̄, q − 1, q, 2q2

n−t

)
.

3. All the servers participate in ḡ ← multPK

(
1̄ −PK w̄, r̄, 2q2

n−t

)

and s̄← multPK

(
ḡ, f̄ , 2q2

n−t

)
.

4. All the servers participate in decryptShareSK1,...,SKn

(
s̄, 2(n−1)2q2

n−t

)
and end up

with shares s1, . . . , sn and commitments s̄1, . . . , s̄n.
5. Si computes ui ← Epk(si), i = 1, . . . , n. Then, Si broadcasts ui together with a zero

knowledge proof Πi = zkp[ti : Dsk(ui) = si, DSK(s̄i) = si].
6. All the servers check the zero knowledge proofs received from the other servers. If some

proofs do not verify, then the servers that sent them are excluded from the protocol.
7. All the servers compute u = u1 +pk u2 +pk · · · +pk un.

8. r̄′ ← multPK

(
r̄, 1̄ −PK s̄, 2(n−1)2q2

n−t

)
,

f̄ ′ ← multPK

(
f̄ , 1̄ −PK ḡ, 2(n−1)2q2

n−t

)
.

9. The servers get a re-encryption of 1−w under public key pk′, analogously to steps 4-6
above. Denote the additive shares by h1, . . . , hn and the encryption of 1 − w under
pk′ by h. Then, the servers update m̄′ ← m̄ +pk h.

10. The output of the protocol is the tuple (u, f̄ ′, r̄′, m̄′).

Fig. 6. The testRecord protocol

The Peek Protocol. In order to retrieve a matching record by index, here we sketch a
peek protocol, which can be easily derived from the pull protocol.

In addition to the parameters to the pull protocol, the peek protocol includes a flag ī,
which is an encryption of the desired index i under the public service key. The database
will return the ith record matching label i or 0, if this does not exist, as well as the
number of records matching the label. The flags r̄j for each record and the flag f̄ are not
used in this version of the protocol. In step 4(f) the parameters passed to the testRecord
protocol are PK, x̄, ȳj , and ī. These are the only changes to the pull protocol.

The servers obliviously decrement ī at each match found in the database, and re-
turn the record at which ī becomes an encryption of 0. After steps 1-2 in testRecord,
we test if ī is an encryption of 0. We insert a step 2’ after step 2, in which ē ←
expModQPK

(
ī, q − 1, q, 2q2

n−t

)
is computed. 1̄ −PK ē is an encryption of 1 if i = 0.

Step 3 changes to t̄ ← multPK

(
1̄ −PK w̄, 1̄ −PK ē, 2(n−1)2q2

n−t

)
. Steps 4-7 remain

the same. In step 8, we update the value of the index to ī −PK (1̄ −PK w̄).

Beyond Exact Label Matching. We have described our push and pull protocols in terms
of exact label matching, though this can be generalized to support retrieval based on
other predicates on labels. Specifically, given a common predicate Π , on a pull request
with label x the servers could use secure multiparty computation (the techniques in [7]

28 L. Kissner et al.

are particularly suited in our setting) to compute the template (T1, . . . , Td) indicating
the records for which the labels match x under predicate Π .

4.6 Efficiency

Our push, pull and peek protocols achieve a constant communication complexity in
ciphertexts between the client and the servers. The communication among the servers
in the pull protocol is proportional to the number of records in the distributed database
and the number of servers.

We achieve a tradeoff between the level of security obtained by our protocols and
their computational and communication complexity. If complexity is a concern, then
more efficient protocols can be constructed by removing the zero-knowledge proofs and
the value commitments generated in the protocols. Using standard techniques, we could
show that the protocols constructed this way are secure in the honest-but-curious model.
However, due to space limitations, we do not address this further in the paper.

5 Asynchronous Anonymous Communication

P3 potentially has many uses in applications where privacy is important. As an example,
in this section we outline the design of a simple anonymous message service using P3

as a primitive. This message service enables a client to deposit a message for another
client to retrieve at its convenience.

The messaging scheme is as follows:

– A sender uses the push protocol to add a label, encrypted under the receiver’s public
key, and a message to the database. In this context we call the label a mailbox address.
• The message should be encrypted for privacy from the servers.
• The mailbox address can either be a default address or one established by agree-

ment between the sender and receiver. This agreement is necessary so that the
receiver may retrieve the message.

– A receiver uses the pull or peek protocol to retrieve messages sent to a known
mailbox address under his public key.

Because messages will accumulate at the servers, they may wish to determine some
schedule on which to delete messages. Reasonable options include deleting all messages
at set intervals, or deleting all messages of a certain set age.

Privacy. We achieve the content privacy and unlinkability anonymity properties as
described in [9]. If the sender encrypts the message submitted to the servers, the servers
cannot read the message, and thus achieves content privacy. Unlinkability concerns the
ability for the servers to determine which pairs of users (if any) are communicating. As
the P3 servers can not determine the public key under which a label was encrypted, the
label itself, or the text of the message, it has no advantage in determining the intended
recipient of a message. Nor can they determine which message a client retrieved, if any,
or even if a message has been retrieved by any client at any past time. Thus the servers

Private Keyword-Based Push and Pull with Applications 29

have no advantage in determining which client was the actual recipient of any given
message.

As well as these properties, we achieve anonymity between senders and receivers.
Any party may either retain this anonymity, or identify himself to other parties.

Senders are by default anonymous to receivers if they address their message to the
default mailbox address. Note that the key with which they addressed their message
is invisible to the recipient, and so a recipient cannot give a certain public key to a
certain sender to abridge their anonymity. A sender may construct an anonymous return
address, for use in addressing return messages, by encrypting an appropriate label under
the sender’s own public key. As we require key privacy of the cryptosystem used, the
receiver cannot link the public key used to the identity of the sending party. A sender
may sign their messages using a key to which they have attached an identity, if they do
not wish to be anonymous.

Asynchronous Communication. Our system also benefits from the property of asyn-
chrony, meaning that the senders and receivers do not have to be on-line simultaneously
to communicate. The system is analogous to a bulletin board, where senders deposit
messages and from which receivers retrieve them in a given interval of time. From this
perspective, our system offers a different type of service than most prior approaches
to anonymous communication (e.g., [4,16,5,19,18]) which anticipate the receiver being
available when the sender sends. A notable exception is [9], which bears similarity to our
approach. However, our use of P3 permits better communication complexity between
the clients and servers than does the use of PIR in [9].

6 Conclusion

We defined the Private Push and Pull (P3) architecture. This allows clients to privately add
(through the push protocol) and retrieve (through the pull or peek protocols) records
in the database through transparent interaction with any of the distributed database
servers. Under the protocols given, the servers identify which record is to be returned
through keyword matching under a particular secret key. If at most t of n servers are
actively corrupted, the keyword, key, and return result of a pull or peek protocol is
computationally hidden from the servers, and any number of colluding clients.

Client communication in P3 is independent of both the size of the database and the
number of database servers, and requires only the number of ciphertexts corresponding to
encryption of the data. Communication between the servers is linear in both the number
of records in the database and the number of servers.

Using these protocols, we suggest an implementation of an anonymous messaging
system. It achieves unlinkability, but both sender and receiver anonymity can be achieved
through slight modifications.

References

1. M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval. Key-Privacy in Public Key Encryption.
In Advances in Cryptology — Asiacrypt’01, LNCS 2248.

30 L. Kissner et al.

2. M. Blum, A. De-Santis, S. Micali, G. Persiano. Noninteractive Zero-Knowledge. In SIAM
Journal on Computation, vol. 20, pp. 1084-1118, 1991.

3. C. Cachin, S. Micali, M. Stadler. Computational Private Information Retrieval with Polylog-
arithmic Communication. In Advances in Cryptology — Eurocrypt ’97, pp. 455-469, 1997.

4. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. In Com-
munications of the ACM 24(2):84–88, February 1981.

5. D. Chaum. The Dining Cryptographers Problem: Unconditional Sender and Recipient Un-
traceability. In Journal of Cryptology, 1(1), pp 65-75, 1988.

6. B. Chor, N. Gilboa, M. Naor. Private Information Retrieval by Keywords Technical Report
TR CS0917, Department of Computer Science, Technion, 1997

7. R. Cramer, I. Damgård, J. Buus Nielsen. Multiparty Computation from Threshold Homomor-
phic Encryption. In Advances in Cryptology – Eurocrypt 2001, pp. 280-299, 2001.

8. B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan. Private information retrieval. In Proc. 36th
IEEE Symposium on Foundations of Computer Science, 1995.

9. D. A. Cooper, K. P. Birman. Preserving privacy in a network of mobile computers. In Pro-
ceedings of the 1995 IEEE Symposium on Security and Privacy, pages 26–38, May 1995.

10. P. Fouque, G. Poupard, J. Stern. Sharing Decryption in the Context of Voting of Lotteries. In
Financial Crypto 2000, 2000.

11. O. Goldreich. Secure Multi-Party Computation. Working draft available at
http://theory.lcs.mit.edu/˜oded/gmw.html.

12. S. Goldwasser, S. Micali. Probabilistic Encryption. In Journal of Computer and Systems
Sciencee, vol. 28, pp 270-299, 1984.

13. W. Ogata, K. Kurosawa. Oblivious keyword search. Available at
http://eprint.iacr.org/2002/182/.

14. R. Ostrovsky, V. Shoup. Private information storage. In Proceedings of the 29th ACM Sym-
posium on Theory of Computing, 1997.

15. P. Paillier. Public-key cryptosystems based on composite degree residue classes. In Advances
in Cryptology – EUROCRYPT ’99 (LNCS 1592), pp. 223–238, 1999.

16. A. Pfitzmann, M. Waidner. Networks without user observability. Computers & Security
2(6):158–166, 1987.

17. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report, Tech. Memo.
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

18. M G. Reed, P. F. Syverson, D. M. Goldschlag. Anonymous connections and onion routing.
IEEE Journal on Selected Areas in Communication, Special Issue on Copyright and Privacy
Protection, 1998.

19. M. K. Reiter, A. D. Rubin. Crowds: Anonymity for web transactions. ACM Transactions on
Information and System Security 1(1):66–92, November 1998.

	Introduction
	Related Work
	Preliminaries
	Notation
	Paillier
	System Model

	The P3 Protocol
	Initial Service-Key Setup
	The Private Push Protocol
	Building Block Protocols
	The Private Pull Protocol
	Extensions
	Efficiency

	Asynchronous Anonymous Communication
	Conclusion

