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Abstract

Although client puzzles represent a promising ap-
proach to defend against certain classes of denial-of-
service attacks, several questions stand in the way of
their deployment in practice: e.g., how to set the puzzle
difficulty in the presence of an adversary with unknown
computing power, and how to integrate the approach
with existing mechanisms. In this paper, we attempt to
address these questions with a new puzzle mechanism
called the puzzle auction. Our mechanism enables each
client to “bid” for resources by tuning the difficulty of
the puzzles it solves, and to adapt its bidding strategy
in response to apparent attacks. We analyze the effec-
tiveness of our auction mechanism and further demon-
strate it using an implementation within the TCP pro-
tocol stack of the Linuz kernel. Qur implementation
has several appealing properties. It effectively defends
against SYN flooding attacks, is fully compatible with
TCP, and even provides a degree of interoperability
with clients with unmodified kernels: Even without a
puzzle-solving kernel, a client still can connect to a puz-
zle auction server under attack (albeit less effectively
than those with puzzle-solving kernels, and at the cost
of additional server expense).

1 Introduction

Denial-of-service (DOS) attacks aimed at exhaust-
ing a target server’s resources have become a major
threat to today’s Internet. With the help of automatic
attack tools (such as Tribal Flooding Network (TFN),
TFN2K, Trinoo, and stacheldraht) [6, 10, 11, 17}, not
only can adversaries control large number of zombie
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computers to launch a distributed denial-of-service at-
tack (DDoS), but they also might be able to simulate
roughly normal traffic patterns on victim’s network—
in particular, with zombies using their authentic IP
addresses. Such attacks pose challenges for existing
countermeasures, such as intrusion detection, ingress
filtering and TCP SYN-cookies.

Client puzzles [18, 2, 9] are an intriguing counter-
measure which assist in defending against such attacks.
This approach forces each client to solve a crypto-
graphic “puzzle” for each service request before the
server comimits its resources, thereby imposing a large
computational task on adversaries bent on generat-
ing legitimate service requests to consume server re-
sources. Despite its promise, this approach has not
enjoyed much use in practice, and we believe this is
for at least two reasons. First, puzzles add to legiti-
mate clients’ load, and in the presence of adversaries
with unknown computing power, it may be difficult to
appropriately tune puzzle difficulty to minimize legit-
imate client cost. Second, very few implementations
of client puzzles are available. This hinders us from
studying the effectiveness of the idea in practical envi-
ronments, its costs, and interoperability with existing
protocols.

In this paper, we propose a new puzzle mechanism
called a puzzle auction. Our auction lets each client
determine the difficulty of the puzzle it solves and al-
locates server resources first to the client that solved
the most difficult puzzle when the server is busy. This
gives each client the flexibility to choose service prior-
ity against its valuation (computation paid for the ser-
vice). We further design a bidding strategy for clients
to raise the puzzle difficulty (bid) gradually via retrans-
missions to just above adversaries’ capabilities. We
describe our implementation of this idea within the
TCP protocol in the Linux kernel. Our implementa-
tion achieves full compatibility with the original pro-
tocol, and even provides a degree of interoperability
with clients having unmodified kernels: Even without
a puzzle-solving kernel, a client still can connect to
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the puzzle-auction server under attack (albeit less ef-
fectively than a modified client can and with greater
server expense).

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 describes our
puzzle auction model and analyzes its security char-
acteristics. Section 4 presents an implementation of
the model within the TCP protocol stack of the Linux
kernel and empirical results with this implementation.
Section 5 concludes the paper and discusses future
work.

2 Related work

In this section, we first review countermeasures to
DDoS attacks and then focus on the existing client puz-
zle techniques.

2.1 Countermeasures to denial-of-service attacks

The type of DoS attacks in which we are inter-
ested are attempts to consume the limited resources
of a server, which include network bandwidth, CPU
cycles, memory, disk space and network connectiv-
ity [7]. According to CERT {7], the most frequent at-
tacks involve network connectivity, for example, the
well-known TCP SYN flooding attack [8]. Throughout
the paper, we take this attack as an example.

TCP SYN flooding aims to exploit a weakness in
the TCP connection establishment protocol (three-way
handshake) where a connection state can be half-open.
A typical TCP three-way handshake proceeds as fol-
lows: A client first sends a SYN packet to the server.
Upon receipt of the SYN, the server allocates state to
hold information associated with the half-open connec-
tion and sends back a SYN-ACK packet to the client.
The client completes the connection by replying with
an ACK packet. In SYN flooding attacks, attackers ini-
tiate many SYN requests without sending ACK pack-
ets. This exhausts the server’s half-open waiting queue
and thus blocks a legitimate client’s request from be-
ing serviced. Moreover, standard TCP will not time
out a half-open connection until a certain number of
SYN-ACK retransmissions have been made. This usu-
ally takes several to more than one hundred seconds.
Therefore, even an attacker with a low-bandwidth com-
munication channel (e.g., dial-up connection) might
cripple a server on a fast network.

Some of the most frequently investigated counter-
measures to DoS attacks include intrusion detection
and ingress filtering. These are less effective, how-
ever, when adversaries can use zombies’ authentic IP

addresses. There are other methods designed specifi-
cally to defend against TCP SYN flooding. Random
early drop randomly discards the half-open requests
when the waiting queue becomes full {19]. This does
not work well when the attacking throughput substan-
tially exceeds legitimate clients’ packet rates because
in this case, the legitimate client’s requests will often
be dropped. Another countermeasure that is widely
implemented is TCP SYN-cookies [19]. This approach
removes the SYN-RECEIVED (i.e., half-open connec-
tion) state in the TCP protocol and hides authen-
tication data (hashing connection parameters with a
server secret) in the initial sequence number (ISN) of
the SYN-ACK. Only upon receipt of the ACK packet
carrying a sequence number that can be used to au-
thenticate the connection parameters, which the server
re-derives, does the server allocate the data structure
for the connection.

Although this approach seemingly eliminates the
target of SYN flooding attack, i.e., the half-open con-
nection queue, it is essentially only an authentication
scheme to prevent use of spoofed IP addresses. Ad-
versaries who are capable of intercepting SYN-ACK
packets from the server or capturing large numbers of
zombies to send SYN packets with authentic IP ad-
dresses, still can flood the server’s accept queue (i.e.,
the queue that contains the complete connections) with
ACK packets. Another difficulty with SYN-cookies is
compatibility: it cannot encode all service parameters
into ACK packets and thus prevents clients from using
certain TCP performance enhancements and transac-
tional TCP [19]. More seriously, if the ACK packet is
lost, the server cannot reconstruct the connection state
or thus retransmit a SYN-ACK. This does not happen
in the original protocol with the SYN-ACK retransmis-
sion mechanism [19]. Finally, the approach is designed
specifically for TCP, i.e., to defend against SYN flood-
ing in the TCP protocol. It is not clear how to gen-
eralize the idea to prevent attacks on other resources
such as CPU cycles and bandwidth.

2.2 Client puzzles

An inherent weakness of today’s Internet applica-
tions is that attackers may consume significant server
resources at little cost. Client puzzles are a tech-
nique that strives to improve this situation: The client
is required to commit computing resources before re-
ceiving resources. The idea can even help to defend
against attacks with large numbers of zombie comput-
ers: A study shows that existing DDoS tools are care-
fully designed not to disrupt the zombie computers,
so as to avoid alerting the machine owners of their
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presence [15]. When client puzzles are used, zombie
computers are required to commit computing resources
during attacks. This may alert the owner to the at-
tacker’s use of this machine and motivate the owner to
stop the attack.

To our knowledge, the first proposal for using client
puzzles to defend against connection depletion attacks
appears in [18]. Client puzzles have also been proposed
to similarly protect authentication protocols against
denial-of-service [2]. More generally, cryptographic
puzzles have been employed in related fashions in the
contexts of key agreement [20], defending against junk
e-mail [12], creating digital time capsules [22], meter-
ing Web site usage [13], lotteries [16, 23] and fair ex-
change [23, 14, 5]. Whereas most puzzle proposals im-
pose a number of computational steps to generate a so-
lution, a recent “memory bound” alternative imposing
memory accesses has been devised in an effort to im-
pose similar puzzle solving delay even on clients with
very different computational power [1]. Though here
we will employ computational puzzles, we expect that
memory-bound puzzles could work equally well in our
context and will explore this in future work.

The only prior implementation of client puzzles re-
ported in the literature, to our knowledge, was done
in the context of TLS [9]. Although [18] postulates a
TCP-based puzzle scheme, it does not report an imple-
mentation. In addition, this proposed implementation
is incompatible with TCP in that a computer with this
puzzle mechanism will not be able to communicate to
the computer without the mechanism. The proposal
we describe here offers better backward compatibility.

3 Puzzle auctions

In this section, we first describe the assumptions
made in our research. We then present our puzzle auc-
tion mechanism and analyze its effectiveness in defend-
ing against a broad range of DoS attacks.

3.1 Attack model

In our research, we make a series of assumptions
on the adversary’s capability. Many of these assump-
tions are similar to those in {18], and generally are no
stronger.

Assumption 1 Adversaries cannot modify the packets
between any legitimate client and the server.

Attackers capable of tampering with packets can
launch DoS attacks by simply destroying these pack-
ets. The same assumption is discussed in [18]. On

the other hand, similar to [18], our mechanism still
works well when attackers have only limited capability
to interfere the communication between the legitimate
clients and the server.

Assumption 2 Under DoS attacks, the server is at
least capable of rejecting the incoming packets and
sending reply messages to the origins of these packets.

Our approach cannot protect the server if adver-
saries can produce traffic sufficient to totally saturate
the server’s bandwidth. In other words, we require
that the server at least be able to reject requests and
send out packets. This seemingly limits the applica-
tions of our mechanism because many DDoS attacks
are characterized by flooding the server with a sheer
volume of service requests, for example, as in ICMP-
echo floods. However, we envision that by coordinat-
ing multiple routers installed with our mechanism, we
might be able to check the attack flows before they con-
verge to the victim. We will revisit this point in the
conclusion section.

Assumption 3 Adversaries can perform IP spoofing,
and can eavesdrop on all packets sent by the server.
The adversaries can also coordinate their activities per-
fectly so as to take mazimum advantage of their re-
sources, i.e., as if all zombie computers constitute a
single larger computer.

The first two assumptions were also made in [18].
Notably, the assumption that the adversary can read
packets sent by the server renders SYN-cookies less ef-
fective. We emphasize that the attacker may have po-
tentially large computing resources and we make no as-
sumptions to constrain its capability to integrate these
resources in an attack.

3.2 Overview and rationale

For our purposes, a puzzle consists of two algo-
rithms: one (possibly randomized) algorithm for gener-
ating “candidate solutions” and one deterministic algo-
rithm for verifying whether a candidate solution is an
acceptable solution. A trial is one sequence of (i) gener-
ating one candidate solution using the first algorithm
and (ii) verifying it using the second algorithm. We
presume that there is no more efficient way to gener-
ate an acceptable solution than repeatedly performing
trials until the verification algorithm reports a success.

The resource allocation problem we consider can be
characterized as a tuple (C, A, S,V, R), where: C =
{ci=1,2,..} is a set of legitimate clients; A = {a;=12,...}
is a set of adversaries; S denotes the server; and
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V:CUA — Nis a valuation function indicating the
maximum number of trials a client (either legitimate
or malicious) is willing to perform to obtain the re-
source in a reasonable waiting period, assuming that
it will actually obtain the resource having performed
these trials.

The parameter R is a model R = (L,7) for the
server’s resources: The server keeps a buffer queue with
the length L as resources and allocates a buffer to each
request upon deciding to service the request. Every re-
quest carries a priority chosen by the client. When the
buffer queue is full, the server can deprive a request
with low priority of its buffer to make room for a re-
quest with higher priority. If a request keeps the buffer
for a time interval no less than 7, we say the service
(of that request) is complete. Otherwise, we say the
service fails. This model is called buffer model.

The buffer model is sufficiently general to describe
a range of service types with limited resources. To
show this, we consider two general categories of re-
sources distinguished by Qie, Pang and Peterson [21]:
renewable resources such as CPU cycles and the band-
width of network; and non-renewable resources such as
processes, ports, TCP connection data structures and
locks. First consider services on renewable resources,
and let r be the available service rate and T, be the
maximum time the client can wait for the resource.
Now consider a client’s request that arrives at time
T': If among all requests inside the system between T
and T’ + T, the priority of the client’s request is within
top rT, requests, then the request will be served before
T’ + Ts. In other words, the adversaries need to sub-
mit at least 7T, requests with higher priorities within
T, time units to prevent the request from being served.
This situation is described by an instance of our buffer
model with L = rT, and service time 7 = T,. Holding
a buffer in this queue for a period no less than 7 is
equivalent to acquisition of the renewable resource. In
services on nonrenewable resources, we treat the length
of the buffer queue L as the total resources the server
has and 7 as the service time. A client must equip its
request with a priority high enough to obtain a buffer
and keep it until the completion of the service, where
the service is preemptive.!

In the buffer model, we use an all-pay auction to
allocate the server’s limited resources. In an all-pay
auction, all bidders pay their bids before the auction-
eer announces the winner. All the payments are for-
feited, while only the winner gets the resources. In our

1Here, we assume nonrenewable resources are preemptive.
For example, during the establishment of TCP connections,
the server can drop some half-open connections and release the
buffers when the half-open queue is full.

mechanism, each client who requests resources is asked
to solve a puzzle at a level of difficulty of the client’s
choosing and attach the solution to its service request.
The server maps the difficulty of the puzzle to the pri-
ority with a non-decreasing function. When the buffer
queue is full, the server uses incoming requests with
higher priority to supplant ones with lower priority in
the buffer queue. We call this a puzzle auction.

In the puzzle auction, a client ¢ computes the max-
imum number of trials v, it will perform for solving
puzzles based on its valuation V'(c). For example,

v, = V(c) (1)

is an “optimistic” choice that client ¢ might make if
faced with no further information about the probabil-
ity of gaining service having performed V'(c¢) trials. If
¢ has additional information, however, it may tune v,
more carefully. For example, suppose the client knows
a non-increasing risk function P(.) that maps the num-
ber of trials performed to the empirical probabilities of
failure in the auction when the server is heavily loaded.
Such an estimate might be obtained from the client’s
experience during periods of apparently heavy load,
or statistics over the data about winning bids during
loaded periods disclosed by the server. With this ma-
terial, the client ¢ can compute its optimal investment
ve by weighing its profit from the service, V(c) — v,
against the loss if it does not get the service, v.

Ve = arg mf}ix{(l — P(w))(V(c) —v) — Pv)v} (2)

Formula 2 describes a security management process:
A client trades off its gain by obtaining service against
the associated costs (the number of trials) to make an
optimal decision on her security strategy. We call the
optimal number trials v. its optimal valuation. When
all clients have the same (or similar) risk functions,? a
client’s chance to win an auction depends on her valu-
ation.

Proposition 1 In a puzzle auction, a client ¢’s prob-
ability of obtaining resources is a non-decreasing func-
tion of its valuation V(c).

An interesting observation from a survey of existing
DDoS tools is that these tools are generally designed
not to disrupt the zombie computers [15], so as to not
alert the owner to their presence. In a puzzle auction,
this observation suggests that zombies’ valuations may
often be lower than legitimate clients’. That is, le-
gitimate users will be more tolerant of their computers

2This happens if clients make the estimates according to the
server’s data or they have interacted with the server for a long
time, provided that the empirical distribution converges.
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committing resources to solving puzzles than owners of
zombie computers will be (for the attacker’s requests).
If this is true, then according to Proposition 1, legiti-
mate clients stand a better chance to win the auction.

3.3 Auction protocol

In order to detail our auction protocol, we begin by
adopting a particular puzzle type. Here we employ a
puzzle similar to that of [2], consisting of a “nonce”
parameter N, created by the server and a parameter
N, created by the client. A solution to this puzzle is
a string X such that the first m bits of h(V,, Ny X)
are zeros, where h is a public hash function. We call
m the puzze difficulty. We presume that generating
candidate values for X is of negligible computational
cost, and so treat the verification of a candidate X (i.e.,
an application of h) as the cost of a trial.

In our mechanism, we take this puzzle construction
because it allows a client to select the puzzle difficulty
it solves. More specifically, many network protocols
have retransmission mechanisms. We exploit this and
the above puzzle formulation to design a bidding strat-
egy for clients to complete the service with minimal
computation. Specifically, a client can send its first
request without solving any puzzle. If the request is
declined, the client knows that the server may be un-
der an attack. Thus, it solves a puzzle and resends
a new request with the solution. If the request is de-
clined again, the client further increments the puzzle
difficulty in the next retransmission. This process con-
tinues until either the client completes the service or
her optimal valuation v, has been reached.

The auction protocol additionally employs the fol-
lowing notation:

e 7.: a service request from client ¢ € C.

e BF: the set of all service requests already in the
buffer queue. |BF| < L.

e DIF': a function mapping each service request to
the level of difficulty of the puzzle solution it con-
tains. For a puzzle solution X in r,, if the initial m
bits of h(IN,, N,, X) are zeros, then DIF (r,) = m.
For notational simplicity, we overload the function
and denote DIF(X) = m.

o CD: the target puzzle difficulty for the client’s
request.

e INIT: the client’s initial target puzzle difficulty.

e INCR: the value by which the client increments
the target puzzle difficulty for its request.
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e v.: maximum number of hash operations client
¢ will perform for this service request {(computed
using Formula (1) or (2)).

1. Client sends service request:

(a) Client ¢ sets CD = 0 and X = 0; computes
v.; and generates a new client parameter V..

(b) Client ¢ does a bruteforce search of the puzzle
solution with the difficulty level CD in the
interval X € [0, v.]:

While (DIF(X) < CD and X < v,)
X=X+1

If (X =v.)
exit and report failure.

Client ¢ constructs a request r. containing N,
and X, and sends the request to S.

2. Server allocates resources:

(a) Server S periodically checks the buffer queue
to clear the requests from BF that have com-
pleted service.

(b) On receipt of the client request r., server S
checks the client parameter N, in r,:

If (any ' € BF contains N,)
drop r. and goto 2(c).

Now server S checks BF':

If (|BF| < L)
insert r. into BF

else if (Vr' € BF : DIF(r') > DIF(r.))
drop r. and goto 2(c)

else
locate a request r' € BF with the low-
est puzzle difficulty among all requests
in BF, drop 7', insert 7. and goto 2(c).

(c) Server S sends to client ¢ a notification of ser-
vice failure which contains the current server
nonce N, where ¢ is the client whose request
r: has been dropped (if any) at 2(b).

3. Upon receipt of a failure notification, client
retransmits:
Client c extracts the server nonce N, from the mes-
sage, and increases its bid as necessary:

If (CD < INIT)
CD = INIT

else
CD = CD + INCR

Goto Step 1(b).
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In the protocol above, N, and N, play roles simi-
lar, but not identical, to nonce identifiers as often used
in cryptographic protocols. N, should change periodi-
cally, say every T time units, to limit the reuse of puz-
zles (and their solutions). N, is constrained merely to
not be in use simultaneously by two different requests.
Though the adversary can consecutively reuse a puz-
zle solution X for the same N, for up to T time units
(i.e., before N, changes), it still needs to generate at
least L puzzle solutions of sufficient difficulty in time
T to flood the server. In practice, enforcing that only
simultaneous requests bear different values for N,, as
opposed to all requests, avoids the server needing to
store a large list of previously seen nonce identifiers
(which could itself pose a DoS opportunity).

The puzzle auction protocol above is efficient in the
sense that the client can raise its bid just above the
attacker’s bids to win an auction. In other words, if
the client wins the auction, it wins with the minimum
expected computation for the given adversary.

3.4 Security analysis

In this section, we analyze the security of the pro-
posed puzzle auction mechanism. We consider the fol-
lowing setting: An adversary with Z zombie computers
is trying to attack the server S by denying the service
over a buffer R = (L, 7). Here, we consider 7 « T,
where T is the duration of the “server nonce period”
before N, is changed, and for simplicity we consider
one legitimate client, i.e., |C| = 1. Let £ be the event
that the legitimate client ¢ € C cannot complete the
service. The objective of the adversary is to maximize
the probability Pr{¢}.

For simplicity, we assume that the client ¢ starts
bidding at the beginning of a server nonce period, and
consequently that the attackers competing with ¢ must,
as well. Let (bg, b, --,b,) be a sequence of bids. The
client first bids by. If rejected, it continues to bid b, and
so on. In total, it retries no more than n + 1 times. In
solving a puzzle, we call a hash operation a hash step.
We further assume that each zombie and the client can
perform hash steps at the same rate s. We call s the
step rate.

We assume the hash function is a random function
(i.e., random oracle [3]). That is, for each input, the
hash function independently and randomly (with uni-
form distribution) maps it to an output in the image
space. The only restriction is that the same input al-
ways yields the same output. In practice, a good can-
didate for random oracle is MD5 with its output trun-
cated [3]. The random oracle model gives us a geomet-
ric random variable for the steps used to solve a puzzle.

Specifically, to solve a puzzle with initial m zero bits,
a hash step can be viewed as a Bernoulli experiment
with a probability of 27™ to succeed. Throughout the
rest of the paper, we describe and analyze the puzzle
auction mechanism with this model.

Let us first look at the adversary’s bidding strategy.
In Assumption 3, we assume that the adversary has
perfect coordination among zombie computers. There-
fore, we can view the attacker as a “super computer”
whose computing power is equal to the sum of all zom-
bie computers’. That is, the adversary can perform
hash operations at the step rate Zs.

We say a client set a bid to difficulty level m if in
solving a puzzle, the client bids with the first solution it
found whose difficulty level is no less than m. In order
for the adversary to cause this bid to be dropped, the
adversary must compute L bids of difficulty (at least)
m; we are interested in how long it will take the adver-
sary to generate L such bids. Let x7* be the random
variable describing the number of steps for computing
the i-th bid in all L bids set to difficulty m. x7*,---, x7
are i.i.d. random variables. When L is large, we can
apEroximate the total steps for computing the L bids:
Yic1 X with expectation E[x[*]L = 2™L. (During
this time, the legitimate client can compute roughly
s~ EZ—Q steps.)

To support the above approximation, we need to in-
vestigate the probability that the adversary takes fewer
steps to compute the L puzzles. This is answered by
Proposition 2.

Proposition 2 The probability of solving no less than
L puzzles with difficulty at least m in 2™ 'L steps is
no more than exp(—%L).

Proposition 2 shows that the attacker’s probability
to set L bids to difficulty 7 within 2™~!L steps drops
exponentially w.r.t. the length of the buffer queue L.
For example, if the server has L = 1024 buffers, the
attacker’s chance to overbid is less than e~ 170,

Approximation Assumption: With a sufficiently
long buffer queue, we ignore the adversary’s probability
to set all L bids to m within 2™~ 1L steps.

On this basis, we estimate the upper bound of the
attacker’s probability to launch a DoS attack with the
following theorem.

Theorem 3 Under the Approzimation Assumption,
for legitimate client ¢ with step rate s, service time T
and a bid sequence (bp,b1,---,b,), the probability that
the attacker can successfully prevent the client from
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completing service is

n

Pri¢} < (1-2-0) =7 2= T (1-27%)

=1

2bi—1_phi-1-1)p
4

(3)

Let us take TCP as an example. Suppose the length
of the server’s half-open queue is 1024. The attacker
controls 1024 zombies. The step rate s is 1 hash op-
eration per microsecond. The client’s SYN request
needs to be kept in the buffer for 250 microseconds
for the ACK packet. Let the client’s bid sequence be
(15,16,17,18,19). With Formula 3, the upper bound of
the attacker’s probability to launch an attack is 0.2248.
When the number of zombies drops to 500, the prob-
ability becomes 0.0502. This is an interesting result:
Just think about the SYN-cookies approach. When the
number of zombies is close to the server’s buffer size®,
they can easily exhaust all the buffers, while using au-
thentic IP addresses. While with the puzzle scheme,
the legitimate client still has a reasonably high prob-
ability to complete the service. Figure 1 further illus-
trates that the probability of attack increases with the
number of zombies and decreases with the buffer size.

20000

Probabllity to prevent the client from completing service

2000

Number of zombies 100

Number of buffers

Figure 1. Security of the puzzle auction.

4 TCP puzzle auction

In this section, we describe our implementation
of the puzzle auction mechanism in the TCP pro-
tocol stack of the Linux kernel, specifically version
2.4.17. Our implementation effectively defends against

3Since a client may make more than one connection to the
same service on the server, the adversary does not need 1024
zombies to circumvent SYN-cookies.
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connection-depletion attacks on TCP, preserves com-
patibility with the original protocol and introduces
only negligible overheads to the server. Our approach
is also interoperable to a degree with clients having
unmodified kernels: A client without a puzzle-solving
kernel still has the chance to connect to a puzzle auc-
tion server under attack, albeit with less effectiveness
and greater imposed server cost than a client with a
puzzle-solving kernel.

In the following subsections, we first talk about how
to construct the client puzzles with TCP service pa-
rameters and embed the auction mechanism into the
three-way handshake protocol. We then elaborate on
our implementation in Linux kernel, and finally present
our experimental study.

4.1 TCP client puzzle

To embed our protocol into the TCP protocol stack,
the first problem we need to solve is how to deter-
mine the client parameter N, and the server param-
eter N;,. When establishing a TCP connection, the
server decides whether a packet belongs to an exist-
ing connection or half-open connection according to its
source IP address (SIP), destination IP address (DIP),
source port (SP), destination port (DP) and the ini-
tial sequence number (ISN). In other words, the server
does not allow two connections from the same client
for the same ports and the same initial sequence num-
ber. Therefore, we can take these parameters, i.e., SIP,
DIP, SP, DP and ISN, as the client parameter N.. This
treatment prevents clients from using the same puzzle
to make two connections simultaneously. Moreover, it
also simplifies the process to verify a puzzle: No extra
work is necessary for detecting repeated client parame-
ters because the existing classifier that filters incoming
packets automatically does the job.

The server nonce N, is supposed to change after
each nonce period. A straightforward construction is
to hash a server secret with a timer which increases for
every nonce period. This guarantees that the server
nonce changes periodically. Moreover, so as to make
an adversary’s task more difficult when it cannot eaves-
drop on responses to requests bearing a spoofed IP ad-
dress (in contrast to Assumption 3), we add the client’s
IP address to the input of the hash function for gener-
ating the server nonce. Thus, clients with different IP
addresses are given different server nonces. If the ad-
versary sends requests with spoofed IP addresses and
cannot intercept the server responses, it will not obtain
correct server nonces to compute solutions to puzzles.
Figure 2 illustrates the construction of TCP puzzle, in
which X represents the puzzle solution.
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Figure 2. TCP client puzzle.

To achieve compatibility, we advocate embedding
the puzzle auction protocol into the communication
flows of the original protocol. In practice, this is fea-
sible because there are numerous covert channels in
network protocols. In a TCP header, several fields can
be used to carry the server nonce and the puzzle solu-
tion. During the three-way handshake, the SYN packet
from the client has its acknowledgement sequence num-
ber empty, into which a 32-bit puzzle solution can be
placed. We also take the RST packet as the failure no-
tification and insert the server nonce Ny into its 32-bit
sequence number field and, if a larger N, is desired,
in the window size and/or urgent pointer fields (for a
total of up to 64 bits).

We roughly describe the TCP puzzle auction in Fig-
ure 3: A client first sends a SYN packet without a puz-
zle solution to the server. After receiving the packet,
the server first checks the puzzle difficulty to deter-
mine the priority of the request (i.e., the difficulty of
the puzzle solved, which should be small, since the
client did not intentionally solve a puzzle), and then
adds the request to the half-open queue if the buffer
queue is not full. Otherwise, the server drops a request
with the lowest priority (probably the new packet) and
sends back a RST packet with the server nonce gener-
ated according to the client’s IP address. The receiver
of the RST packet uses the server nonce to increase
its bid (i.e., compute a puzzle) and retransmits a new
SYN with the puzzle solution. If the request is de-
clined again, the client further raises its bid and does
a retransmission again. This process continues until
the client either receives the SYN-ACK or runs out
the maximal number of retransmissions preset by the
protocol.

The new protocol is backward compatible with the

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP’03)
1081-6011/03 $17.00 © 2003 IEEE

Client Server

SYN(X0)
First SYN
RST(Ns) . . .
If Dif(X) <= minimum bid,
Raise the bid and SYNXD in the buffer, drop the request
i ) )
retransmit SYN ' ' !
SYNACK i
If Dif(X) > minimum bid,
ACK

queue the request

Figure 3. TCP puzzle auction.

original protocol in the following sense. First, dropping
the half-open connections is generally acceptable. Ac-
tually, many existing approaches (such as random early
drop) do the same thing when the half-open queue is
full [19]). Our protocol sends a RST packet to reset
the session being dropped. This avoids the state in-
consistency between the server and the client. Sec-
ond, though the RST packet is not a part of the origi-
nal three-way handshake protocol, it does not conflict
with the original protocol: for the client not supporting
puzzles, RST does nothing more than reset the cur-
rent connection session. Finally, TCP requires that
the client retransmit the SYN after exponential back-
off once the connection timer expires. This repeats for
several times, e.g., five times in Linux. Our protocol
takes advantage of these retransmissions, especially the
time interval of exponential backoff, to increase the dif-
ficulty level of the solved puzzle.

Generally, a drawback for client puzzles is that the
client needs to install puzzle-solving software. If imple-
mented within the network protocol stack, this may re-
quire modifying every client’s kernel, which is generally
not feasible. Our implementation, however, mitigates
this problem: in the TCP puzzle auction protocol, the
server determines the puzzle difficulty of a packet by
computing h(N,,SIP,DIP,SP,DP,ISN,X). For a
client without a puzzle-solving kernel, the puzzle solu-
tion X is fixed in each connection effort. However, it is
still able to change the puzzle difficulty with different
ISNs. TCP requires that each new session start with
a more or less random ISN for preventing TCP hijack-
ing [4]. A client can generate a new ISN by simply
starting a new session. Qur protocol supports launch-
ing new sessions consecutively by using a RST packet
to immediately reset the client without a puzzle-solving
kernel, thus saving it from doing exponential backoff.
By resetting new sessions to query the server with dif-
ferent ISNs, a client will finally hit a puzzle difficulty
high enough to complete a connection in most cases.
This can be viewed as another strategy to solve puz-
zles that is undertaken by clients unaware of the puzzle
mechanism: instead of performing hash operations it-
self, the client treats the server as an oracle to test its
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solution. We call this strategy bid and query.?

In some sense, the bid and query strategy can pro-
vide a puzzle-solving interface to the application level.
Instead of modifying the kernel, a small program is
enough to keep querying the server, for example, a
batch file or a Java applet helping to repeatedly try
connections until one succeeds. Though not an ideal so-
lution, this may be a useful temporary measure to per-
mit the use of puzzle auctions even on client platforms
where the network protocol implementation in the ker-
nel cannot easily by modified (e.g., Windows). The
bid-and-query approach allows for the puzzle-solving
program to run effectively at the application layer.

A problem, however, is that the attackers also can
take this strategy. More seriously, they do not need to
wait for the answer of the query (SYN-ACK or RST)
and thus can continuously generate numerous packets
in hopes that many of them can get into the queue.
However, this approach is limited by the server’s band-
width. For example, let us look at a 1 Gbps net-
work. Since the shortest TCP/IP packet is 64 bytes,
the maximal packet rate of this network is no more
than 1,953,125 packets per second (pps). In the Linux
TCP implementation, the server drops “old” half-open
connections (i.e., that have timed out after sending the
SYN-ACK at least once) when the queue is full. This
may take only 9 seconds, during which the adversary
can submit 1,953,125 x 9 packets. Since in expecta-
tion, only about 1/2™ of these will bear puzzles of dif-
ficulty at least m (supposing the adversary is choosing
them randomly), if L > (1,953,125 x 9)/2™ then the
adversary will probably fail to consume all L buffers
with puzzles of difficulty at least mn using this strategy.
For example, if L = 1024 then a legitimate client will
probably be able to succeed with a bid of only m = 15,
which the legitimate client can generate in roughly 5
seconds using repeated queries to the server, assuming
a round trip time (RTT) of 200 microseconds.

That said, if the attackers can generate such a large
throughput, they do not need SYN flooding to attack
the server, because they can already exhaust the server
bandwidth. This is interesting because it is widely be-
lieved that SYN flooding needs a relatively small num-
ber of packets and thus is very easy to launch. Our

4Semantically, a RST packet usually indicates to the client
that no server is listening to a port, thus discouraging the client
from reconnecting. To preserve these semantics for a client with
a puzzle-solving kernel, a puzzle auction server can signal a
dropped bid in some of the unused bits of the corresponding
RST header. In the absence of this signal, the client can inter-
pret the RST as meaning there is no server process listening on
that port, as usual. A client without a puzzle-solving kernel, on
the other hand, will attempt a connection for a preset number of
times (without exponential backoff, and so this should proceed
quickly) and stop after a number of tries without success.

TCP puzzle mechanism, however, raises the bar to this
kind of threat and makes it potentially harder to ex-
ploit than bandwidth-exhaustion attacks.

4.2 Implementation

We built the puzzle auction mechanism into the
IPv4 protocol stack in Linux kernel 2.4.17. We choose
MD5 with its initial 64 bits as the hash function.

When implementing puzzles, an interesting question
is precisely how to map the puzzle difficulty to the ser-
vice priority. A straightforward solution is the direct
mapping we described in previous sections. However,
in practice, this approach is inefficient: Due to the ran-
domness in puzzle solving time, an adversary can gen-
erate puzzles of varied difficulties within a fixed num-
ber of hash steps. In particular, even packets from an
adversary not intentionally solving a puzzle at all may
have a non-zero difficulty when evaluated at the server.
This, in turn, can result in superfluous insertions and
subsequent deletions from the half-open queue, each of
which involves gaining mutual exclusion to the queue
(since it is a critical region in the Linux kernel). Thus,
excessive usage of the queue itself may cause a DoS.
To minimize this risk, we map multiple puzzle difficul-
ties to one priority. This reduces the server overhead
but increases the legitimate client’s computing costs
for making a connection. At a high level, our strategy
is to use a coarse-grained mapping for easy puzzles to
reduce the server load and a fine-grained mapping for
difficult puzzles to save the client’s computation. In
the implementation, we take the mapping in Table 1.
In Appendix B, we also present a rough model and
explain how to get this mapping table.

Puzzle Difficulty l Priority

0,1,2,34,5,6,7 0

8,9,10,11 1

12,13 2
k>13 k—11

Table 1. Mapping from level of puzzie difficulty
to priority

Another question is how to structure the priority
queue for puzzle auctions in the server. In the Linux
TCP stack, there are two queues concerning the three-
way handshake, the half-open queue and the accept
queue. The half-open queue is organized as a hash ta-
ble to accelerate the search for a half-open connection
when its ACK packet comes. Removing the queue will
reduce the system performance. In our implementa-
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tion, we build a priority queue over the hash table.
That is, a half-open connection is inserted in both the
priority queue and the half-open queue. When a new
request comes, the server checks it and drops the low-
est priority request from the priority queue (and the
corresponding entry in the half-open queue). When an
ACK comes, the server locates its half-open connec-
tion from the half-open queue. For the convenience of
maintenance, we adopted a doubly linked list as the
data structure for both queues.

After a request completes the three-way handshake,
the kernel moves it to the accept queue. Attackers also
can flood this queue if they use authentic IP addresses
or are capable of eavesdropping server outputs to other
clients. In the Linux kernel, once the accept queue is
full, not only are all requests in the half-open queue
blocked from moving to the accept queue but also no
new request is permitted to enter the half-open queue.
To counter this threat, we also restructure the accept
queue to be a priority queue. When this queue is satu-
rated, the kernel resets the connection with the lowest
priority and inserts the new one with the higher prior-
ity.

4.3 Experiment

In this section, we report our experimental study of
the puzzle auction mechanism in a network environ-
ment. Our setup contains three computers: a client,
a server and an attacker. The client is an obsolete
Pentium Pro 199MHz machine with 64MB memory.
The server has an Intel PIII/600 with 256 MB memory.
Both computers have a 2.4.17 kernel, either a stan-
dard one or a customized one with our puzzle auction
mechanism. The attacker is strong, having two Intel
PIII/1GHz CPUs and 1GB memory. It is also equipped
with Linux kernel 2.4.17. Roughly speaking, the at-
tacker has computing power ten times the client’s. All
these computers are attached to a 100Mbps campus
network.

The objectives of this empirical study are: (1) evalu-
ation of the overhead of the puzzle mechanism, (2) test
of the performance of the system under SYN flooding
attacks.

We first study the overhead of the puzzle auction
mechanism. When a SYN packet is entering the sys-
tem, the server first determines its priority. To avoid
keeping too much information in the kernel, we config-
ure the server to compute the server nonce for a request
on the fly. Therefore, the server needs to take two hash
operations to find out the priority of a request: one for
the nonce and the other for the puzzle difficulty. The
extra costs here are just a little bit above the two hash
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operations. In our experiment, we made 1,000 con-
secutive connections each to the server with standard
kernel and our customized kernel. The standard kernel
gave us the average connection time of 250.8 microsec-
onds. The puzzle auction kernel had an average time
of 255.4 microseconds. This empirical evaluation shows
that the extra costs brought in by the puzzle auction
mechanism are almost negligible: only 4.6 microsec-
onds.

Cost of the Puzzle Mechanism
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Figure 4. Overheads of puzzle mechanism.

The second experiment is on system performance
in the presence of attackers with different computing
power. In standard Linux, when a server is under a
SYN flood attack, the kernel reduces the number of
SYN-ACK retransmissions to two, so as to drop old re-
quests quickly and make room for new requests. That
is, a half-open connection may be held about 9 seconds
(3 seconds for the first timeout and 6 seconds for the
second). In our experiment, we first set the server’s
retransmission number under attack to 2 and then fur-
ther reduced it to only one, which took about 3 seconds
to discard a half-open connection after the half-open
queue became full. We refer to the first server setting
as Setting 2 (i.e., two retransmissions) and the second
as Setting 1. The server had a half-open queue with the
buffer size of 1024 and followed Table 1 to map puzzle
difficulty to priority.

On the attacker, we installed SYN flooding code ca-
pable of generating attack traffic with puzzles of var-
ied difficulty levels. In the experiment, the attacker
launched 5 attacks each on the server with different
retransmission settings. These attacks set puzzle dif-
ficulty to 0, 8, 12, 14, 15. Without solving puzzles,
the attacker started SYN flooding at a packet rate of
7,000pps. This rate easily brought down a server with
the standard kernel. With the difficulty level of 8, the
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attacker was still able to flood the server at the packet
rate more than 5,000pps. However, its capability to
generate packets was greatly impaired when the puzzle
difficulty went above 12.

In the experiment, we tested two bidding strategies
on the client: bid and query (BQ) and incremental
bidding (IB). The BQ client had a standard kernel
and a small program which made sequential and con-
secutive connections to the server. The IB client had
a puzzle-solving kernel which automatically increased
bids via retransmissions. Each experiment lasted un-
til the client completed 500 connections successfully.
After each successful connection, the client reset the
connection and waited for a period randomly drawn
from a uniform distribution between 0 and 150 mil-
liseconds before trying again (so that the next attempt
would not immediately reclaim the “opening” that clos-
ing the connection created). The connection time was
measured to the point when the connection succeeds,
and was restarted when the following connection at-
tempt was initiated. The average connection time was
computed by averaging the connection time over the
500 successful attempts.

Average connection time under attacks
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Figure 5. Average comnection time for BQ and
IB w.r.t different retransmission settings in the
server.

Our experiment compared the average connection
time of these two strategies in various attack and re-
transmission settings. The results are presented in Fig-
ure 5, where the X-axis indicates the difficulty level of
the puzzles solved by the attacker and the Y-axis is the
average connection time for the client. If the attacker
did not solve puzzles at all, the client completed con-
nections quickly: In either setting, the average connec-
tion time is around 30 milliseconds (ms) for BQ client
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and 1.3 ms for IB client. With the attacker’s bids ris-
ing, the connection time was prolonged. For BQ client,
the peak came when the attacker set the puzzle diffi-
culty level to 8, 66.737 ms in Setting 2 and 40.581 ms
in Setting 1. IB client, however, suffered the maxi-
mal delay at difficulty level 12, 58.308 ms in Setting
2 and 28.738 in Setting 1. The expected connection
time dropped after the peaks, down to less than 500
microseconds at puzzle difficulty of 15. In general, the
client performed well with the puzzle auction server.
Even in the presence of strong attacker, a successful
connection costs less than 0.1 second on the average.

It is perhaps surprising that the BQ client did well
in the face of attacks with fairly difficult puzzles. An
examination of the distribution of connection time re-
veals that the BQ client actually did not solely rely on
the puzzles to make connections. Rather, it often cap-
tured the empty buffer left when the server dropped
a half-open connection, and the following seems to be
the explanation: With a standard kernel, after an at-
tacker floods the buffer queue, the server will not ac-
cept new requests until the old half-open connections
timeout. This constitutes a time interval during which
no request is added or dropped. We call this a holding
period. In a puzzle auction, however, the server still
can update the queue (replacing the low priority re-
quests with the high priority ones) throughout a hold-
ing period. In the experiment, owing to the random
puzzle-solving time, the attack packets carried puzzles
of various difficulty levels. This led to a continuous
modification of the buffer queue, thereby spreading out
the timeout deadlines of the requests inside the buffer.
In other words, due to the “diffusion” of timeout dead-
lines, the server could get into a state in which there
were requests timing out, say, every second. This phe-
nomena became prominent especially when the attack
throughput was high and priority granulation was fine.
For example, with 5000 pps (difficulty 8) and Table 1 as
the mapping function, the server would change 300 re-
quests in the half-open queue within a second. As half-
open connections were dropped, the greedy strategy of
the BQ client was able to succeed relatively quickly.
With a short round trip time (less than 200 microsec-
onds), the client could complete the handshake quickly,
before the attacker filled all the holes again. We call
this phenomena tirmeout diffusion.

Figure 6 further illustrates the phenomenon. For
the BQ client in Setting 1, its connection time is con-
centrated in the range from 10ms to 100ms when the
attacker set its puzzle difficulty to 8. This amounts to
making about 50 to 500 queries with a rough RTT of
200 microseconds. However, to solve a puzzle no eas-
ier than 12 (to beat the attacker bidding 8), the client
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Bid and query with difficulty level 8 and one server SYN-ACK retransmission
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Figure 6. Distribution of connection time for BQ
client. Attacker puzzle difficulty: 8 (top) and 12
(bottom); Server retransmissions: 1.

should try about 4,000 times on average. Therefore,
the experimental results suggest that in many cases,
the client kept querying the server until it captured a
hole left by an old request timeout, and before it com-
puted the right puzzle solution. When the attacker
bid with a puzzle difficulty of 12, it could not keep the
buffer full throughout a holding period. Thus, the BQ
client got more chances: From Figure 6, we observe
that nearly 30% of first attempts succeeded.

Timeout diffusion occurred due to the replacement
of low priority requests with the high priority ones.
This boosted the puzzle difficulty of the attacker’s re-
quests in the half-open queue. For example, when the
attacker set its bids to a minimum difficulty level of
8, generating 5000pps produces about 300 puzzles per
second with a difficulty level of 12. Since in Setting 2,
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the attacker had 9 seconds to update the puzzles in the
buffer queue, it is probable that there was a time inter-
val during which all bids in the buffer were at least 12,
The IB client who requested the service in that interval
would raise its bid to 14. The same problem happened
at difficulty level 12 and thus gave the longest average
connection time to IB client.

One solution to the problem is to shorten the hold-
ing period, thereby squeezing the attacker’s time inter-
val to accumulate difficult puzzles in the buffer queue.
From Figure 5, we can see that in Setting 1, IB client
did much better than in Setting 2. This is because the
former kept requests for only 3 seconds, leaving the
attacker a smaller chance to over bid. A shorter hold-
ing period also increases the frequency of dropping old
requests, which benefits the BQ client, as well. In gen-
eral, reducing the number of server retransmissions im-
proves the system performance under attack. The cost,
however, is the risk of inconsistency between the server
and client states once the SYN-ACK is lost twice.

Although BQ performs comparably to IB, this
largely owes to the short RTT in the experiment. Once
the server sits outside the client’s network, a RTT on
the order of milliseconds will raise the connection time.
In addition, a BQ client consumes significantly greater
server resources. Thus, we emphasize that this should
be considered at best a temporary approach to enable
a client without a puzzle-solving kernel to participate
in puzzle auctions.

5 Conclusions and future work

Client puzzles are a promising way to limit the ad-
versary’s capability to launch DDoS attacks. However,
there are still many challenges to be addressed, espe-
cially, how to adjust puzzle difficulty in the presence of
adversaries with unknown computing power, and how
to implement it in practical settings. In this paper,
we presented a puzzle auction and its implementation
within TCP, as one way of addressing these challenges.
Our mechanism allows clients to bid for service by com-
puting puzzles with difficulty levels of their own choos-
ing. The server under attack allocates its limited re-
sources to requests carrying the highest priorities. We
also designed a bidding strategy with which a client can
gradually raise its bids until it wins. This minimizes its
expected computing costs for obtaining resources even
in the presence of adversaries with unknown computing
power.

Our implementation of the auction mechanism in
TCP takes advantage of covert channels in the TCP
layer to achieve compatibility with the original pro-
tocol. Our experimental study shows that the imple-
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mentation performed well under attacks launched by
strong adversaries and incurred only negligible costs in
the non-attack case. An interesting property of our
approach is that it provides a way for clients with-
out puzzle-solving kernels to participate in the auction,
albeit with less effectiveness and greater cost to the
server. In our implementation, a client with a standard
kernel can connect to the puzzle auction server under
attack through a small program running at the applica-
tion layer. Of course, this approach does not scale, and
so should be considered a temporary measure. In com-
parison to alternative techniques like SYN-cookies, we
believe our approach is more effective against attackers
with authentic IP addresses (or that can eavesdrop on
server responses to IP addresses the attacker does not
own).

Of course, client puzzles are an effective defense pri-
marily when attackers have difficulty capturing vast
computing resources. Interestingly, existing research
projects on collecting idle CPU cycles on the Inter-
net may bring into question the viability of this as-
sumption. A potential way around this challenge is
to replace our CPU-bound puzzle construction with
memory-bound functions, for which the solution time
should be far less variable as a function of the comput-
ing resources available to the attacker [1]. In our future
research, we plan to examine this more closely.

In Section 3.2 we framed the puzzle auction mech-
anism over a general model for service and resources,
so that any system that can be captured in the model
might be protected by our mechanism. In future work
we intend to examine other such systems, e.g., email
systemns in an effort to mitigate spam, or within routers
to protect bandwidth. In particular, in Section 4.1 we
mentioned that our mechanism cannot prevent attacks
with an extremely large volume of service requests.
Unfortunately, this is characteristic of many DDoS at-
tacks. However, implementing puzzle auctions within
the IP layer, in routers, might be a promising defense.
Before an attack, potentially each server (or adminis-
trative system) announces the maximum throughput it
can manage from each upstream router. These routers
then admit packets toward the server according to this
throughput limitation. Once the incoming packet rate
exceeds the specification, the routers only forward the
packets that bear solutions to the most difficult puz-
zles. This will help to check the attack flows before
they converge on the server. In our future work, we
intend to explore this direction and further study such
coordination among routers.
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A Selected proofs

Proof for Proposition 1:

Let ¢/,c € C be two clients such that V(c') < V{(c).
Our objective is to show that the optimal valuation of
¢', vy, is not higher than the optimal valuation of the
client ¢, v.. The result obviously holds if v, and v, are
computed by Formula (1), and so here we assume they
are computed by (2).

First, note that (1 — P(v))(V(¢) —v) - P(v)v =
(1~ P(v))V(c) —v. We will show that any v between 0
and v, gives the client ¢ a profit no more than v, does.
Specifically, since P(.) is a non-increasing function, we
have for any v € [0, v]:

(1-P)V(c)—v
+ (L= P@)(V(c) - V()
< (1=Plwe))V() - ve

+ (1= Pe))(V(e) - V()
= (1-Pvy))V(c) —ve

(1=P)V()-v =

Therefore, vo < v,.

Let m be the minimal puzzle difficulty for winning
an auction. Let P,(c¢) be the client ¢'s probability
to win within v, hash operations. With the random
oracle model, we have P,(c) =1 — (1 — 27™)%. This
gives us P, (c') < P,(c) f V(') < V(e). O

Proof for Proposition 2:
Our proof requires the following Hoeffding Bound:

Lemma 4 Hoeffding Bound Let X, X,,---, X,, be
a set of independent, identically distributed random
variables in [0,1], and let X = 3", X;. Then:

Pr{X - E[X] > eE[X]} < exp (—%ezE[X])

Under the random oracle model, we can take steps
for solving puzzles as a sequence of i.i.d. Bernoulli ran-
dom variables, with probability 2=™ for the outcome 1,
that is, found the solution to the puzzle; and probabil-
ity 1-27™ for 0. Let x1, X2, - - be this random variable
sequence. Therefore, we have that in 2™ 1 L steps, the
total number of puzzles being solved is y = 212:1 L Xi-
With the linearity of expectation, it is easy to get
Efx] = L/2. According to Lemma 4, we conclude:

Prix-E[x] > Elxl} < exp (—%E[xl) — eap (—éL)

O
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Proof for Theorem 3:

To prevent the client from completing the service,
the attacker must block all of ¢’s n + 1 bids. With the
Approximation Assumption, we ignore the probability
that the adversary generates L bids with difficulty level
at least b; within 2% 'L steps. The total Z zombies
allow the adversary to complete hash steps Z times
faster than the client ¢. That means, if the client ¢ can
set its bid to difficulty b; within 2%~1L/Z — 75 steps,
the adversary cannot prevent the client to complete the
service. On the other hand, from the adversary’s view-
point, this is the necessary condition to block the client.
Let &; be the event that the adversary successfully pre-
vents ¢ from getting the service after the client bids
bo,- -, b;. We have the client’s probability of failure in
the first bid is:

2bo—-1p,

Pri{} < (1-27%)"z "7

The adversary can continue to block b; only if
the client cannot generate the bid b in the follow-
ing (2"71LJZ — 15) — (27 L/Z — 75) = (2B —
2b0=1Y[,/Z steps. This gives us:

2b0-1p

Pri6} < (1-27%)"z

(2811 _obo—1yp

—-‘rs(l _2—b1) =

Following this line of reasoning, we can obtain the
result of the theorem. 0

B Mapping puzzle difficulty to priority

Here we present a rough model to construct the
mapping from puzzle difficulty to the service priority.

Let d be the difficulty of a puzzle. We map the diffi-
culty between d and d+7 —1 to the same priority rank.
Let Cgyop and Cpqq be the costs to drop and add a con-
nection request respectively. Let Cyrps be the cost of
a MD5 operation and ¢ be the request rate (number of
requests per second) of all legitimate clients. The ob-
jective of the server is to minimize both its own costs
and legitimate clients’ costs. However, the server might
not always weigh these two types of costs equally be-
cause it may care more about its own costs than the
client’s costs. We capture this intuition with a ratio p.

For puzzles set to the difficulty level mn, on the av-
erage, half of them have difficulty levels at least rn + 1.
Consider the worst situation where every packet with
difficulty more than m causes an additional add-drop
operation. If we group 7 difficulty levels starting from d
(including d} instead of one level into one priority rank,
the expected savings of extra operations is p(271—-271),
where p denotes the throughput (packets per second).

On the other hand, legitimate clients, who wish to get
into the system, have to spend additional (27 — 2)2¢
MD?5 operations on the average to win the competition.
Putting these pieces together, along with the weight ra-
tio, we can formally describe the server’s objective:

mgn{p(2_" - 2‘1)(0,170,, + Cuaq)p +0(2" — 2)2'1CMD5}
st. n=>1

Let v = ﬁc—d'—"c%’i’ﬁ By adapting the above for-

5
mula, we know that the optimal 7 must satify:

min{22(2-7 — 9-1) 4 gn+d _ 9d+1}
n o

Let g(n) = 22277 4+ 274, We can determine 7 ac-

cording to the first derivative condition: 6—%(#1 = 0.
This leads to

y = max{ 3 (log 22  4),1) (4)

For example, suppose the server sets v = 16. That
means, given the Coqq = Cyrop = Curps, the server
would rather have the client perform & extra hash
operations than do one extra operation on the half-
open queue. Let the expected attack throughput be
p = 4098pps and legitimate client’s requests come at
the rate ¢ = 1. According to Formula 4, the map-
ping from the levels of puzzle difficulty to priorities is
presented in Table 1 in Section 4.2.
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