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AbstractÐIn this paper, we explore techniques to detect Byzantine server failures in asynchronous replicated data services. Our goal

is to detect arbitrary failures of data servers in a system where each client accesses the replicated data at only a subset (quorum) of

servers in each operation. In such a system, some correct servers can be out-of-date after a write and can therefore, return values

other than the most up-to-date value in response to a client's read request, thus complicating the task of determining the number of

faulty servers in the system at any point in time. We initiate the study of detecting server failures in this context, and propose two

statistical approaches for estimating the risk posed by faulty servers based on responses to read requests.

Index TermsÐByzantine fault tolerance, replicated data, quorum systems, fault detection.

æ

1 INTRODUCTION

DATA replication is a well-known means of protecting
against data unavailability or corruption in the face of

data server failures. Several recent works have studied the
use of quorums for replicating data efficiently across a
potentially large set of data servers, and in a way that
ensures that clients receive correct data even in the presence
of arbitrary (Byzantine) server failures [3], [16], [18]. A
defining property of these constructions is that each update
to the data is sent to only a subset, or quorum, of the
servers. Such designs pose new challenges for monitoring
the number of faulty servers, since correct servers may hold
different versions of the data; specifically, some correct
servers may not hold up-to-date data. Thus, in a read
operation, an inconsistent response from a server does not
necessarily indicate the server's failure.

In this paper, we initiate the study of statistical methods
for Byzantine fault detection in systems replicated among a
universe U of servers using quorum methods. Specifically,
we address the problem of detecting the presence (and to an
extent, the identity) of servers that respond to queries with
incorrect data. Our techniques are specifically designed for
asynchronous systems replicated using Byzantine quorum
systems [16] and probabilistic Byzantine quorum systems [19],
although our general approach may shed light on Byzantine
failure detection in other settings. A Byzantine quorum

system as defined in [16] is designed to mask any failure
scenario (set of faulty servers) contained within a failure
assumption B � 2U specified as a parameter to the quorum
system construction. For example, a common failure
assumption B is that containing all subsets of servers of at
most a specified size t; this expresses the common
assumption that at most t servers fail. The goal of this
work is to detect when the set of actual failures in the
system is approaching an element of B, i.e., a failure
scenario that the Byzantine quorum system is not designed
to mask.

Our motivation for exploring Byzantine failure detection
is drawn from a survivable and scalable data store called
Fleet [15]. Fleet is designed to provide consistent data
services in very challenging settings, where servers are
dispersed over a large network and may suffer malicious
penetration by attackers. Since each Fleet data object is built
to mask any failure scenarios in its predetermined failure
assumption, it is important that the system be monitored to
detect a situation in which actual failures are approaching
any of the failure scenario outside this assumption.
Monitoring failures can also improve the efficiency of
quorum selection in Fleet. Our goal is to design detection
algorithms that otherwise interfere with the system
minimally.

Because this is an initial investigation into the statistical
monitoring of replicated data, we simplify the problem in a
few key ways. First, we perform our analysis in the context
of read operations that are concurrent with no write
operations, as observing partially completed writes during
a read substantially complicates the task of inferring server
failures. In practice, (e.g, in Fleet), this is achieved using
probabilistic and highly efficient locking techniques [6].
Second, we assume that clients fail by crashing only. This
restriction may seem unrealistic when servers are presumed
to fail arbitrarily. However, in the context of Fleet, the
creator of a data object can prohibit untrusted clients from
modifying that object using access control mechanisms that
remain in force even when servers fail arbitrarily (provided
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that failure assumptions are not otherwise violated). Thus,
our assumption of client crashes in practice reduces to an
assumption about the clients trusted by the creator of an
object to modify that object. Third, our techniques are most
effective in detecting faulty servers that consistently return
incorrect responses, and we restrict our attention to this
case here. Faulty servers that evidence their failure only
intermittently are more difficult to detect, and we leave this
issue for future work.

Our technical approach is as follows: We assume that the
underlying system is accessed using quorums designed to
mask the failure of any failure scenario in its failure
assumption B. We set an alarm distance � with the intention
of issuing a warning whenever the set of actually faulty
servers F are within � of some element of the set 2U n B,
which we call B; i.e., whenever there exists a set S of �
servers such that F [ S 2 B. We call such an F dangerous.
We note that our definition does not distinguish between
the case where there are many such sets S and the case
where there are only a few (or even one) such sets S. When
a reader obtains responses from a quorum of servers, it
classifies the responding servers into those that returned
answers consistent with the one it chose as the correct
answerÐthis is called the justifying set for that answerÐand
those that did not. Our technique determines the prob-
ability that a certain observed justifying set indicates that F
is dangerous, and an alarm is triggered if this probability is
sufficiently high. We further enhance this approach with a
generic tagging technique, called a write marker protocol,
which tags the quorum to which an update is written, so
that it can later be identified by a reader. With the write
marker protocol, certain incorrect responses by faulty
servers indicate without doubt that they are faulty. Again
we apply statistical tests to determine when such a set of
detected failures indicates an unacceptably high probability
of a dangerous failure scenario. In both cases, we show that
if the alarm distance is correctly selected and read
operations are frequent, both methods can be expected to
issue warnings in a timely fashion, i.e., within a few
incorrect responses by a sufficient number of faulty servers.

An attractive feature of our approach to failure detection
is that it operates within the standard read and write, by
mining the responses received from servers for indication of
failure. Furthermore, our approach makes it impossible for
faulty servers to return systematically incorrect responses
and yet avoid detection by our mechanisms: In each data
read, each faulty server must either return an incorrect
answer (or nothing) and risk detection, or return the correct
answer.

To summarize, the contributions of this paper are
twofold: We initiate the study of fault monitoring and
detection in the context of quorum-replicated data and we
propose two statistical techniques for performing this
detection for Byzantine quorum systems under the condi-
tions described above. We begin by surveying related work
in Section 2. In Section 3, we describe our system model and
necessary background. In Sections 4 and 5, we present and
analyze our two statistical methods using exact formulae
for alarm line placement in relatively small systems. In
Section 6, we present an asymptotic analysis for estimating

appropriate alarm line placement in larger systems for both
methods. We conclude in Section 7.

2 RELATED WORK

Our work is most directly related to prior work on the
diagnosis of faults in multiprocessor systems. Of particular
relevance is the general approach introduced in [14], [13],
[7], in which the faulty or correct status of a processor is
determined by comparing its responses to requests with the
responses to the same requests produced by other proces-
sors. This approach has been extended for effectively
diagnosing fully arbitrary faults in distributed systems
(e.g., [21], [4]). As in [14], [7], in which a presumed-correct
system performs comparisons to discover faulty processors,
this paper presumes that the clients, which solicit responses
from servers and perform comparisons, behave correctly.
However, our work differs from all the previous work of
which we are aware in two important ways. First, whereas
prior work in fault diagnosis has focused only on identify-
ing faulty processors, we also focus on evaluating a
hypothesis on the total number of faulty servers based on a
limited probing of the system, i.e., a single quorum access.
Second, our work is targeted at a setting in which even
correct servers may return inconsistent values to a read
query, because updates are sent to only a quorum of
servers.

Somewhat more distantly related is work on intrusion

detection (e.g., [2]). In host-based intrusion detection, a

trusted subsystem on each host monitors events on that host

for evidence of known attack patterns or anomalous
behavior. Our work differs from host-based intrusion

detection in that we presume a faulty server is entirely

corrupted; there is no trusted subsystem on that server to

monitor and report deviant behavior. A network-based

intrusion detection system monitors network traffic on the

network segment to which it is connected for evidence of

possible attacks or anomalies. In particular, it analyzes each

individual packet for anomalous features, such as the

presence of certain strings, target ports, and inconsistent

or dangerous headers. In contrast, our work utilizes

comparisons across multiple server response messages
and semantic properties derived from our data access and

replication protocols. In general, it will not be feasible to

perform this type of detection by examining individual

network packets.
The goal of our work is substantially different from that

of various recent works that have adapted failure detectors
[5] to solve consensus in distributed systems that can suffer
Byzantine failures [17], [8], [9]. These works focus on the
specification of abstract failure detectors that enable
consensus to be solved. Here, our goal is to develop
techniques for detecting Byzantine server responses speci-
fically in the context of data replicated using quorum
systems, without regard to abstract failure detector speci-
fications or the consensus problem.

Finally, Lin et al. [11] analyze the process of gradual
infection of a system by malicious entities. Their analysis
attempts to project when failures exceed certain thresholds
by extrapolating from observed failures onto the future on
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the basis of certain a priori assumptions about the
communication patterns of processes and the infection rate
of the system. Our methods do not depend on these
assumptions, as they do not address the propagation of
failures in the system. Rather, they attempt to measure the
current number of failures at any point in time.

3 PRELIMINARIES

3.1 System Model

Our system model is based on a universe U of n data servers.

A correct server is one that behaves according to its

specification, whereas a faulty server deviates from its

specification arbitrarily (Byzantine failure) and, we assume,

consistently. We denote the set of actually faulty servers by

F , and express our failure assumption (equivalent to the

fail-prone set of [16]) as follows:

Definition 1. A failure assumption B � 2U is a set of subsets
of servers such that (1) if B1 2 B and B2 � B1, then B2 2 B
and (2) in any run of the system, F 2 B.

As an example of a failure assumption, consider the

common assumption that there is some threshold t such

that at most t servers fail. We call this the t-threshold failure

assumption:

Definition 2. The t-threshold failure assumption is

B � fB � U j #�B� � tg:

(Here and throughout this paper, we use #�S� to denote the
cardinality of the set S.)

Our system model also includes some number of clients,

which we assume to be correct. Clients communicate with

servers over point-to-point channels. Channels are reliable,

in the sense that a message sent between a client and a

correct server is eventually received by its destination. In

addition, a client can authenticate the channel to a correct

server; i.e., if the client receives a message from a correct

server, then that server actually sent it.

3.2 Masking Quorum Systems

In order to focus attention on our fault detection techniques,

we consider a simple scenario in which each server holds a

copy of some replicated variable Z, on which clients can

execute write and read operations to change or observe its

value, respectively. The protocols for writing and reading Z

employ a masking quorum system [16], [18], or the probabil-

istic variations thereof [19].

Definition 3. A masking quorum system for a failure
assumption B is a set Q � 2U of subsets of servers such that
8Q1; Q2 2 Q, 8B1; B2 2 B : �Q1 \Q2� nB1 6� B2.

Intuitively, if each read and write is performed at a
quorum of servers, then the use of a masking quorum
system ensures that a read quorum Q2 intersects the last
write quorum Q1 in a set �Q1 \Q2� n F such that this set can
be distinguished as containing a correct server. This suffices
to enable the reader to determine the last written value. A

straightforward masking quorum system is the Uniform
masking quorum system [16]:1

Definition 4. A Uniform masking quorum system for the
t-threshold failure assumption is

Q � Q � U j #�Q� � n� 2t� 1

2

� �� �
:

A client's choice of quorum to access in any given
protocol instance is determined by an access strategy w that
is a probability distribution on the quorums: the client
chooses quorum Q with probability w�Q�. All probabilities
from here on are computed when the choice of quorums is
made according to the access strategy.

We consider the following protocols for accessing the
replicated variable Z, which were shown in [16] to give Z
the semantics of a safe variable [10]. Each server u maintains
a timestamp Tu with its copy Zu of the variable Z. A client
writes the timestamp when it writes the variable. These
protocols require that different clients choose different
timestamps and, thus, each client c chooses its timestamps
from some set T c that does not intersect T c0 for any other
client c0. Client operations proceed as follows:

Write: For a client c to write the value v to Z, it queries
each server in some quorum Q to obtain a set of value/
timestamp pairs A � f< Zu; Tu >gu2, chooses a timestamp
T 2 T c greater than the highest timestamp value in A and
greater than any timestamp it has chosen in the past, and
updates Zu and Tu at each server u in some quorum Q0 to v
and T , respectively.

Read: For a client to read a variable Z, it queries each
server in some quorum Q to obtain a set of value/
timestamp pairs A � f< Zu; Tu >gu2Q. From among all
pairs returned by any subset S � Q of servers that satisfies
8B 2 B : S 6� B, the client chooses the pair < v; T > with
the highest timestamp T , and then returns v as the result of
the read operation. If there is no such pair in A, the result of
the read operation is ? (a null value).

In a write operation, each server u updates Zu and Tu to
the received values < v; T > only if T is greater than the
present value of Tu; this convention guarantees the serial-
izability of concurrent writes. As mentioned in Section 1, we
consider only reads that are not concurrent with writes. In
this case, the read operation will never return ? (provided
that the failure assumption is not violated).

3.3 Statistical Building Blocks

As described in Section 1, the primary goal of this paper
is to detect when F is dangerous, i.e., there exists a set S
of � servers such that F [ S 2 B, for some parameter �.
To do this, we exploit information made available during
the read protocol of Section 3.2, in conjunction with a
basic statistical technique called hypothesis testing.

Hypothesis testing is based on the slightly counter-
intuitive concept of testing for a condition by looking for
evidence that its opposite is false. More specifically, we
formulate the condition to be tested for as an experimental
hypothesis HE , (e.g., F is dangerous) and formulate its
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opposite as the complementary null hypothesis H0, (e.g., F is
not dangerous). We then perform an experiment (observe
the value of a random variable) whose probability distribu-
tion differs under the two hypotheses and watch for an
outcome that supports HE while being highly improbable
under H0 (we will discuss the exact meaning of ªhighly
improbableº below). Such an outcome is considered
evidence that HE is trueÐin our context, that the set F of
faulty servers in the system is dangerous.

The most obvious random variable for our purposes
would be the set of faulty server responses to a read
request. For example, if a quorum were expected to have k
faulty servers on average when F is not dangerous, and a
read observed considerably more than k faulty responses,
we would naturally regard this as evidence that F is
dangerous. Unfortunately, the set of faulty servers in a read
quorum is usually not directly observable (though we come
close with our write marker approach).

Instead, each of our methods defines a random variable
X whose value can be observed during a read operation,
and whose probability distribution varies with F . As
suggested above, we define HE and H0 as ªF is dangerousº
and ªF is not dangerousº, respectively. We treat the notion
of ªhighly improbableº as a parameter of our detection
algorithms by setting a rejection level �, 0 < � < 1. We then
define the region of rejection for H0� as the maximal range of
values for X that have a combined probability under H0 of
at most � but that have a significantly greater probability
under HE . Any observed value of X that falls into this
region of rejection is considered to be evidence that H0 is
false and HE is true, i.e., that F is dangerous.

Note that the rejection level � must be chosen carefully:
The higher it is, the greater the chances of false positives,
(i.e., alarms sent when F is not dangerous) but too low a
value increases the chance of false negatives (failure to
detect when F is dangerous). For reasonable values of �,
(e.g., � � 0:05) however, we give examples showing that the
former risk can be kept to a reasonable minimum, while the
latter can be made essentially negligible.

In this paper, we will typically choose � > 1, as our
primary goal is to detect dangerous conditions before the
integrity of the data has been compromised. The ªsafestº
value for � is the size of the smallest element of B minus
one, but a higher value may be desirable if small numbers
of faults are common and countermeasures are expensive.

4 DIAGNOSIS USING JUSTIFYING SETS

Our first method of fault detection for masking quorum
systems uses the read and write protocols described in
Section 3.2. As the random variable for our statistical
analysis, we use the justifying set for a read operation,
which is the set of servers that return the value/
timestamp pair < v; T > chosen by the client in the read
operation. The justifying set can be as large as the read
quorum if the read quorum is the same as the quorum
used in the last completed write operation and contains
no faulty servers, but may be significantly smaller if it
contains faulty servers and intersects the last write
quorum minimally.

Since a quantitative analysis of using the justifying set for

fault detection is dependent on the failure assumption, we

now narrow our attention to a particular example, namely,

the common t-threshold failure assumption (Defintion 2). In

this case, F is dangerous if #�F � � tÿ�. For notational

simplicity, we define f � #�F � and ta � tÿ�; ta is called

the alarm line of our tests. Specifically, suppose that a read

operation is performed on the system and that the size of

the justifying set for that read operation is x. We would like

to determine whether this evidence supports the hypothesis

that F is dangerous, i.e., f > ta. If for all failure scenarios F

where f � ta the probability of observing a justifying set of

size x is at most the rejection level �, then this suggests that

the null hypothesis f � ta is false. That is, the region of

rejection for the null hypothesis is defined as x � highreject,

where highreject is the maximum value such that

Xhighreject

x�t�1

P �#��Q1 \Q2� n F � � x� � � �1�

for all F such that f � ta. Here, the probability P �#��Q1 \
Q2� n F � � x� is taken with respect to choices of the last

write quorum Q1 and the read quorum Q2, according to the

access strategy w for choosing quorums.
Computing the region of rejection depends on the

particular quorum system and strategy in use. Here, we

demonstrate the computation for size-based quorum con-

structions where a quorum consists of q servers chosen

uniformly at random from a universe of n servers. This

template includes both the Uniform construction of Defini-

tion 4, where q � dn�2t�1
2 e, and the probabilistic construction

of [19], where q � `t and 2 � ` � n=t. For such quorum

systems, rather than computing highreject directly using

(1), it is simpler to compute highreject conservatively to be

the maximum value such that

Xta
f̂�0

Xhighreject

x�t�1

P �#��Q1 \Q2� n F � � x j #�F � � f̂� � � �2�

since P �#��Q1 \Q2� n F � � x j #�F � � f̂� is the same for

any failure scenario F with f̂ failures. Note that,

max
F :#�F ��ta

Xhighreject

x�t�1

P �#��Q1 \Q2� n F � � x�

�
Xta
f̂�0

Xhighreject

x�t�1

P �#��Q1 \Q2� n F � � xj#�F � � f̂�;

for any value of highreject. So, computing highreject

according to (2) gives a potentially smaller region of

rejection than when computed according to (1), i.e., one

that will raise an alarm less frequently. In the remainder of

this section, we complete the computation of highreject

according to (2), and show that nevertheless the computed

region effectively detects the case when f passes ta.
Given f̂ faulty servers in the system, the probability of

exactly j failures in the read quorum can be expressed by a

hypergeometric distribution as follows:
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f̂
j

� �
nÿf̂
qÿj
� �
n
q

� �
:

Given that the number of failures in the read quorum is j,

the probability that there are exactly x correct servers in the

intersection between the read quorum and the previous

write quorum is formulated as follows: The number of ways

of choosing x correct servers from the read quorum is qÿj
x

ÿ �
,

and the number of possible previous write quorums that

intersect the read quorum in exactly those correct servers

(and some number of incorrect ones) is nÿq�j
qÿx

� �
. The

probability that the previous write quorum intersects the

read quorum in exactly this way is therefore:

qÿj
x

ÿ �
nÿq�j
qÿx

� �
n
q

� �
To get the overall probability that there are exactly

x correct servers in the intersection between the read and

most recent write quorums, i.e., that the justifying set size is

x, we multiply the conditional probability given j failures in

the read quorum by the probability of exactly j failures in

the read quorum, and sum the result for j � 0 to f̂ :

P �#��Q1 \Q2� n F � � xj#�F � � f̂�

�
Xf̂
j�0

qÿj
x

ÿ �
nÿq�j
qÿx

� �
f̂
j

� �
nÿf̂
qÿj
� �

n
q

� �2

�3�

This formula expresses the probability that a particular read
operation in a t-masking quorum system will have a
justifying set size of x given the presence of f̂ faults.

For a given rejection level �, then, the region of rejection
for the null hypothesis f � ta is defined as x � highreject,
where highreject is the maximum value such that:

Xta
f̂�0

Xhighreject

x�t�1

Xf̂
j�0

qÿj
x

ÿ �
nÿq�j
qÿx

� �
f̂
j

� �
nÿf̂
qÿj
� �

n
q

� �2
� �:

The left-hand expression above represents the significance
level of the test, i.e., the probability of a false positive (false
alarm).

If there are in fact f > ta failures in the system, the
probability of detecting this condition on a single read is:

Xhighreject

x�t�1

Xf
j�0

qÿj
x

ÿ �
nÿq�j
qÿx

� �
f
j

� �
nÿf
qÿj
� �

n
q

� �2
:

If we denote this value by 
, then the probability that
k consecutive reads fail to detect the condition is �1ÿ 
�k. As
shown in the following examples, k need not be very large
for this probability to become negligible.

Example 1. Consider a threshold masking quorum system
of n � 101 servers, a quorum size q � 76, and a fault
tolerance threshold t � 25. In order to test whether there
are any faults in the system, we set ta � 0, so that the null
hypothesis H0 is f � 0 and the experimental hypothesis
HE is f > 0. Plugging these numbers into (3) over the full
range of x yields the results in Table 1. For all other
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values of x not shown in Table 1, the probability of a
justifying set of size x given f � 0 is zero.

Since P �51� � P �52� � P �53� � 0:019, while

P �51� � P �52� � P �53� � P �54� � 0:071;

the region of rejection for � � 0:05 is defined as x � 53; if a
read operation has a justifying set of size 53 or less, the
client rejects the null hypothesis and concludes that there
are faults in the system. This test has a significance level of
0.019; that is, there is a probability of 0.019 that the client
will detect faults when there are none. (If this level of risk is
unacceptable for a particular system, � can be set to a lower
value, thus creating a smaller region of rejection.)

Suppose that there are actually f failures in the system.
The probability that this experiment will detect the presence

of failures during any given read is:

X53

x�26

Xf
j�0

76ÿj
x

ÿ �
25�j
76ÿx
ÿ �

f
j

� �
101ÿf
76ÿj

� �
101
76

ÿ �2

Fig. 1 shows these values for 1 � f � 25.
Although the probability of detecting faults during a

given read in this system is relatively low for very small
values of f , it would appear that this test is reasonably

powerful. Even for fault levels as low as four or five, a
client can reasonably expect to detect the presence of

failures within a few reads, e.g., if f � 5, then the
probability of detecting that f > ta in only six reads is

already 1ÿ �1ÿ :345534�6 � :921. As the fault levels rise,

the probability of such detection within a single read
approaches near-certainty.

Example 2. Consider a much smaller threshold system

consisting of n � 61 servers. The maximum tolerance
threshold t for such a system is 15, with a quorum size

q � 46. Furthermore, suppose that the administrator of
this system does not wish to be notified if fewer than

five failures occur, and therefore sets ta to five rather

than zero. In this situation, the null hypothesis H0 is

f � ta. Given � � 0:05, the region of rejection for H0

can be computed to be x � 28 by similar means to

those used in Example 1. The probabilities of detecting

this condition for actual values of f between 6 and 15

inclusive are shown in Fig. 2.

As one might expect, error conditions are more
difficult to detect when they are more narrowly defined,
(e.g., 5 < f < 15 versus 0 < f < 25), as the contrast
between Examples 1 and 2 shows. Even in the latter
experiment, however, a client can reasonably expect to
detect a serious but nonfatal error condition within a
small number of reads. For f � 12, the probability that
the alarm is triggered within six read operations is
1ÿ �1ÿ 0:428527�6, approximately .965. The probability
that it is triggered within ten reads is over .996. We can
therefore reasonably consider this technique to be a useful
diagnostic in systems where read operations are signifi-
cantly more frequent than server failures, particularly if
the systems are relatively large.

A similar analysis could be performed for masking
quorum systems for a t-threshold failure assumption other
than Uniform masking systems, taking (1) as the goal to
compute. Rather than focusing on another example of this
computation, however, we instead move on to a more
powerful method of fault detection. The technique of the
present section gives little indication of the specific number
of faults that have occurred and provides little information
toward identifying which servers are faulty. Our next
diagnostic method addresses both these needs.

5 DIAGNOSIS USING QUORUM MARKERS

The diagnostic method presented in this section has
two distinct functions. First, it estimates the fault distribu-
tion over the whole system using a technique similar to that
of the previous section, but with greater precision. Second,
it pinpoints specific servers that exhibit detectably faulty
behavior during a given read. The diagnostic operates on an
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enhanced version of the read/write protocol for masking
quorum systems: the write marker protocol, described next.

5.1 The Write Marker Protocol

The write marker protocol uses a simple enhancement to the
read/write protocol of Section 3.2. For a replicated
variable Z, there is an accompanying replicated variable Z
that stores an identifier for the quorum, (e.g., an n-bit vector
indicating the servers in the quorum) that was used to
complete the write operation in which Z was last written.
The write protocol proceeds as in Section 3.2, except that
after the write to Zu at each u 2 Q0 completes, the client
writes (the identifier for) Q0 to Zu. We reiterate that, for the
purposes of this paper, we assume that all of this occurs
without interference by a different client's concurrent
operation.

The read protocol proceeds essentially as before, except
that each server returns the triple < Zu; Tu; Zu > in
response to a read request, where Zu is u's replica of Z.
From among all triples returned from any set S of servers
where S 6� B for all B 2 B, the client chooses the triple with
the highest timestamp.

We now describe how to use the triples returned by the
servers to monitor fault levels in various types of quorum
systems. At the conclusion of this section, we also show
how they can be used to specifically identify a subset of the
faulty servers.

5.2 Fault Detection

Our revised statistical technique uses the quorum markers
to determine the set of servers whose returned values are
expected to match the accepted triple in the absence of
faults, (i.e., the set of servers in the intersection between the
read quorum and the previous write quorum) and the
subset of those servers whose returned values actually do
match that triple. With this extra information, we can
substantially refine the technique of Section 4 to yield
greater accuracy. Specifically, we can use this information
to determine the probability of having observed a justifying
set given a failure scenario F and given that the intersection of
the read and previous write quorums is a known set S. For
example, consider again the t-threshold failure assumption.
Then, following our reasoning from Section 4, the region of

rejection for the null hypothesis is defined as x � highreject,

where highreject is the maximum value such that

Xhighreject

x�t�1

P �#��Q1 \Q2� n F � � x j Q1 \Q2 � S� � � �4�

for all F such that #�F � � ta. Again, the probability

P �#��Q1 \Q2� n F � � x j Q1 \Q2 � S�
here is computed with respect to choices of Q1 and Q2

according to the strategy w for choosing quorums (and

satisfying Q1 \Q2 � S). Computing the region of rejection

depends on the quorum system and access strategy in use.

5.2.1 Size-Based Quorum Systems

To illustrate computing a region of rejection when the write

marker protocol is used, we return to size-based quorum

systems in which a quorum is defined as a selection of

q servers uniformly at random. Because of the random

selection of the servers that make up the quorum for a given

operation,

P �#��Q1 \Q2� n F � � x j #�F � � f̂ ; Q1 \Q2 � S�
is the same for any F and any S of size s � #�S�.
Specifically, this can be expressed by the hypergeometric

formula:

P �#��Q1 \Q2� n F � � x j #�F � � f̂ ;#�Q1 \Q2� � s�

�
f̂
sÿx
� �

nÿf̂
x

� �
n
s

ÿ � :

Following the treatment in Section 4 for size-based

quorums, we compute a region of rejection for the null

hypothesis as the highest value highreject � s, such that

Xta
f̂�0

Xhighreject

x�t�1

f̂
sÿx
� �

nÿf̂
x

� �
n
s

ÿ � � �:

Again, the left-hand expression represents the probability of

a false alarm.
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The increased strength of this method turns experiments

in which ta � 0 into a degenerate case. The presence of any

faults in the intersection set is visible and invalidates the

null hypothesis; the probability of a false positive in such

cases is zero, as the formula above confirms. Likewise, as

the number of faults increases, the probability of detecting

faults within one or two reads rapidly approaches certainty.

Example 3. Consider again the system of n � 101 servers,

with a fault tolerance threshold of t � 25, a quorum size

of q � 76, and ta � 0, and suppose that a given read

quorum overlaps the previous write quorum in

s � 57 servers (the most likely overlap with a probability

of about 0.21). Here, the only possible justifying set size

under the assumption f � 0 is x � s and, hence, it is

rejected for any x < s. The probability of alarm on a

single read operation for various values of f < t is shown

in Fig. 3, which also illustrates the dramatically higher

precision of the write-marker method over the justifying

set method.

The added precision of the write marker method has

additional advantages when ta is set to a value greater than

zero, as shown in the next example.

Example 4. Consider again the system of n � 61 servers,

with a fault tolerance threshold of t � 15, a quorum size

of q � 46, and ta � 5, and suppose that a given read

quorum overlaps the previous write quorum in the

common intersection size s � 34 servers. The region of

rejection for the null hypothesis f � 5, calculated using

the formula above, is x � 29. The probability of alarm on

a single read operation for various values of f , ta < f < t,

is shown in Fig. 4. Again, the increased strength of the

write-marker method is evident.

As in the method presented in Section 4, the write-

marker technique has the advantage of flexibility. If we

wish to minimize the risk of premature alarms, (i.e., alarms

that are sent without the alarm threshold being exceeded),

we may choose a smaller � at the risk of somewhat delayed

alarms. In fact, the greater precision of this method
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decreases the risks associated with such a course: Even
delayed alarms can be expected to be timely.

A Note on Smaller Systems. So far our discussion has
centered around large systems. For the technique described
in Section 4 this restriction is necessary, as the method is not
powerful enough to detect faults reliably in small systems.
As the comparisons above show, however, the write marker
method is considerably stronger and, is in fact, suitable for
fault detection in more moderately-sized threshold systems,
even when the alarm line is greater than zero.

Example 5. Consider a system where n � 25, t � 6, q � 19,
and ta � 2. Suppose a read quorum overlaps a write
quorum in the most common intersection size of 14. The
probability of detecting f > 2 on a single read is
moderately high; the probability of detecting the condi-
tion within k reads increases dramatically with k, as
shown in Fig. 5.

5.2.2 Quorum Systems for Other Failure Assumptions

Fault detection using the write marker technique can be
applied for failure assumptions other than the threshold
one. In this section, we demonstrate this using a more
sophisticated type of quorum system: the BoostFPP system.

A BoostFPP masking quorum system is described in [18]. It

is constructed as a composition of two quorum systems. The

first is a quorum system based on a finite projective plane

(FPP), suggested originally as a quorum system by [12]. In the

FPP quorum system, there are q2 � q � 1 elements and

quorums are of size q � 1 (corresponding to the hyperplanes

of the FPP), where q � pr � 2 for some prime p and integer r.

Each pair of distinct quorums in FPP intersect in exactly one

element. For the second quorum system, we again employ the

Uniform masking quorum system [16] with a universe of size

4t� 1 and quorums of size 3t� 1. The composition of the two

systems is made by replacing each element of the FPP with a

distinct copy of a threshold system. That is, the universe for a

BoostFPP system is U � Sq2�q�1
i�1 Ui, where each Ui is a set of

4t� 1 servers andUi \ Uj � ; for any i 6� j. We refer to eachUi
as a ªsuper elementº. A quorum is chosen by first selecting a

quorum of super elements in the FPP, say Ui1 ; . . . ; Uiq�1
, and

then selecting 3t� 1 servers from each Uij . Fig. 6 depicts a

BoostFPP system with q � 2 and t � 1 with one quorum

shaded. We adopt a uniform access strategy, assigning equal

access probability to every quorum.
We use the following notation to ªmapº between super

elements and servers and vice versa:

1. IfX is a set of servers, then super�X� is the set of super
elements such that Ui 2 super�X� iff Ui \X 6� ;.

2. If Y is a set of servers and Ui is a super-element, then
�Y �Ui � Y \ Ui.

BoostFPP can tolerate the failure of up to t servers in each

one of its super elements. Hence, the failure assumption it
masks is

B � fB � U j 8i : �B \ Ui� � tg:
Now, we apply our techniques, using the write marker

protocol of Section 5, to detect when F is dangerous. In this
case,

B � fB � U j 9i : �B \ Ui� > tg:
Therefore, we set a threshold ta � tÿ� and aim to

detect if any super element contains more than ta faulty
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servers. More precisely, we define a region of rejection as
x � highreject, where highreject is the maximum value
such that

X
Ui2super�Q1\Q2�

Xhighreject

x�t�1

P �#���Q1�Ui \ �Q2�Ui� n �F �Ui�

� x j #��Q1�Ui \ �Q2�Ui� � si� � �:
Borrowing from the analysis of Section 5.2.1, this

becomes

X
Ui2super�Q1\Q2�

Xta
f̂�0

Xhighreject

x�t�1

f̂
siÿx
� �

4t�1ÿf̂
x

� �
4t�1
si

� � � �:

Recall that our aim is to detect when the number of
failures in the system approaches a failure scenario in B, i.e.,
when, in some super element, the number of faulty servers
exceeds ta. Since the choice of quorums randomizes the
choice of super elements that fall in the intersection of read
and write quorums, the likelihood of detecting a dangerous
condition within several reads is derived from the prob-
ability of detecting the corresponding dangerous condition
within any super element.

5.3 Fault Identification

The write marker protocol has an even stronger potential as
a tool for fault detection: It allows the client to identify
specific servers that are behaving incorrectly. By keeping a
record of this list, the client can thereafter select quorums
that do not contain these servers. This allows the system to
behave more efficiently than it would otherwise, as well as,
to gather the information needed to isolate faulty servers for
repair to preserve the system's integrity.

The fault identification algorithm accepts as input the
triples f< Zu; Tu; Zu >gu2Q that the client obtained from
servers in the read protocol, as well as the triple < v; T ;Q0 >
that the client chose as the result of the read operation. It

then computes the set S n S0 where S � Q \Q0 and S0 is the
set of servers that returned < v; T ;Q0 > in the read
operation. The servers in S n S0 are identified as faulty.

Note that the fault identification protocol does not
depend in any way on the specific characteristics of the
quorum system and can be applied to masking quorum
systems in general.

6 CHOOSING ALARM LINES FOR LARGE SYSTEMS

The analysis of the previous two sections is precise but
computationally cumbersome for very large systems. A
useful alternative is to estimate the performance of
possible alarm lines by means of bound analysis. In this
section, we present an asymptotic analysis of the
techniques of Sections 4 and 5 that shows how to choose
an alarm line value for arbitrarily large systems. Here we
return our focus to the t-threshold failure assumption and
size-based quorum constructions with quorum size q.

Let Q denote a read quorum, Q0 a write quorum, F the set
of faulty servers, and ta � tÿ� the alarm line. For every
f̂ � ta, we define a random variable Xf̂ � #��Q \Q0� n F �,
where #�F � � f̂ , and #��Q \Q0� n F � is the justifying set size.

We can compute the expectation of Xf̂ directly. For each
server u 62 F define an indicator random variable Iu such that
Iu � 1 ifu 2 �Q \Q0� n F and Iu � 0 otherwise. For suchu, we
have P �Iu � 1� � q2=n2 since Q and Q0 are chosen indepen-
dently. By linearity of expectation,

E�Xf̂ � �
X
u2UnF

E�Iu� �
X
u2UnF

P �Iu � 1� � �nÿ f̂� q
2

n2
:

Intuitively, the distribution on Xf̂ is centered around
its expectation and decreases exponentially as Xf̂ moves
farther away from that expectation. Thus, we should be
able to show that Xf̂ grows smaller than its expectation
with exponentially decreasing probability. A tempting
approach to analyzing this would be to use Chernoff
bounds, but these do not directly apply because the
selection of individual servers in Q (similarly, Q0) is not
independent. In the analysis below, we thus use a more
powerful tool, martingales, to derive the anticipated
Chernoff-like bound.

6.1 Martingales

Here we provide a brief introduction to martingales, which
summarizes only the necessary definitions and results from
the more thorough treatment found in [20].

Definition 5. A martingale sequence is a sequence of random
variables X0; X1; . . . such that for all i > 0,

E�Xi j X0; . . . ; Xiÿ1� � Xiÿ1:

Our goal in constructing martingale sequences is to apply
the following theorem:

Theorem 1. (Azuma's Inequality, [20]). Let X0; X1; . . . be a
martingale sequence such that for each k,

#�Xk ÿXkÿ1� � c;
where c is independent of k. Then, for t � 0 and � > 0,

P �#�Xt ÿX0� � �� � 2eÿ
�2

2tc2

The particular method that we use for constructing
martingale sequences employs the notion of a filter over a
finite sample space 
, which is a nested sequence of event-
sets F0 � F1 � � � � � Fk, where F0 � f;;
g, Fk � 2
 and for
0 � i � k, Fi is closed under complement and union.
Intuitively, each Fi can be thought of as being generated
by a partition of 
 into disjoint events, where Fi�1 is
generated by a more refined partition than Fi. In Section 6,
each block (event) of the partition generating Fi is defined
by the first i choices of servers in each of two quorums.
Then we apply the following theorem to construct a Doob
martingale:

Theorem 2. (Doob martingale, [20]). Let F0; . . . ; Fk be a filter,
let X be any random variable, and define Xi � E�X j Fi�, i.e.,
Xi is the expected value of X conditioned on the events in Fi.
Then, X0; . . . ; Xk is a martingale.

6.2 Deriving the Bound

We bound the probability P �Xf̂ < k� using the method of
bounded differences, by defining a suitable Doob martingale
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sequence and applying Azuma's inequality. Here, a Doob
martingale sequence of conditional random variables is
defined by setting Xf̂;i, 0 � i � q, to be the expected value of
Xf̂ after i selections are made in each ofQ andQ0. Then,Xf̂ �
Xf̂;q and E�Xf̂ � � Xf̂;0, and it is not difficult to see that
#�Xf̂;i ÿXf̂;iÿ1� � 2 forall1 � i � q.Thisyields thefollowing
bound:

P �Xf̂ < E�Xf̂ � ÿ �� � 2eÿ
�2

8q:

Moreover, this bound is largest for f̂ � ta. This is
because if f̂ � ta, then E�Xf̂ � � E�Xta � and so E�Xf̂ � ÿ �0 �
E�Xta � ÿ � implies �0 � � and the inequality on the corre-
sponding bounds follows. Hence, we use this formula and
our desired rejection level � to determine a � such that
P �Xta < E�Xta � ÿ �� � �. Thus, we bound our probability of
a false alarm and can diminish it by decreasing � and
recalculating �. The value E�Xta � ÿ � defines our region of
rejection (see Section 3.3).

In order to analyze the probability that our alarm is
triggered when the number of faults in the system is f > ta,
we use the same analysis to obtain:

E�Xf � � �nÿ f� q
2

n2
< �nÿ ta� q

2

n2
� E�Xta �:

An analysis similar to the above provides the following
bound:

P �Xf > E�Xf � � �0� � 2eÿ
�02
8q :

To summarize, these bounds can now be used as

follows. For any given alarm line ta and any desired

confidence level �, we can compute the minimum � to

satisfy 2eÿ
�2

8q � �. Thus, we derive the following test: An

alarm is triggered whenever the justifying set size is less

than �nÿ ta� q2

n2 ÿ �. The analysis above guarantees that

this alarm will be triggered with false positive probability

at most our computed bound 2eÿ
�2

8q � �. If, in fact, f faults

occur and f is sufficiently larger than ta, then there exists

�0 > 0 such that E�Xf � � �0 � E�Xta � ÿ �. Then, by the

analysis above, the probability of triggering the alarm is

greater than 1ÿ 2eÿ
�02
8q .

In the case of the write marker protocol, we can tighten
the analysis by using the (known) intersection size between
Q and Q0 as follows. Define S � Q \Q0, s � #�S�, and a
random variable Y � #�S n F �. Y has a hypergeometric
distribution on s, nÿ ta, and n, and E�Y � � s�nÿ ta�=n. The
appropriate Doob martingale sequence in this case defines
Yi, 0 � i � s to be the expected value of Y after i selections
are made in S. Then, #�Yi ÿ Yiÿ1� � 1, and so to set the
region of rejection, we can use

P �Y < E�Y � ÿ �� � 2eÿ
�2

2s :

7 CONCLUSION

In this paper, we have presented two methods for
probabilistic fault diagnosis for services replicated using
masking quorum systems. Our methods mine server

responses to read operations for evidence of server failures
and, if necessary, trigger an alarm to initiate appropriate
recovery actions. We demonstrated both of our methods in
the context of size-based constructions in which quorums
are chosen of size q uniformly at random. Additionally, we
demonstrated the write marker technique for a nonuniform
construction, that of the BoostFPP quorum system. Our first
method has the advantage of requiring no modifications to
the read and write protocols proposed in [16]. The second
method requires minor modifications to these protocols but
offers better diagnosis capabilities and a precise identifica-
tion of faulty servers. Our methods are very effective in
detecting faulty servers, since faulty servers risk detection
in every read operation for which they return incorrect
answers.

A possible direction for future direction is fault detection
using an aggregate of responses from multiple read queries.
This would potentially allow us to eliminate some of the
restricting simplifications we made, particularly that reads
do not overlap any writes.
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