
An Authorization Model for a Public Key
Management Service

PIERANGELA SAMARATI
Università di Milano
MICHAEL K. REITER
Carnegie Mellon University
and
SUSHIL JAJODIA
George Mason University

Public key management has received considerable attention from both the research and commercial
communities as a useful primitive for secure electronic commerce and secure communication. While
the mechanics of certifying and revoking public keys and escrowing and recovering private keys
have been widely explored, less attention has been paid to access control frameworks for regulating
access to stored keys by different parties. In this article we propose such a framework for a key
management service that supports public key registration, lookup, and revocation, and private key
escrow, protected use (e.g., to decrypt selected messages), and recovery. We propose an access control
model using a policy based on principal, ownership, and authority relationships on keys. The model
allows owners to grant to others (and revoke) privileges to execute various actions on their keys.
The simple authorization language is very expressive, enabling the specification of authorizations
for composite subjects that can be fully specified (ground) or partially specified, thus making the
authorizations applicable to all subjects satisfying some conditions. We illustrate how the access
control policy and the authorizations can easily be expressed through a simple and restricted, hence
efficiently computable, form of logic language.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access
Controls; H.2.7 [Database Management]: Database Administration—Security, integrity, and pro-
tection; K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms: Security

Additional Key Words and Phrases: Access control, authorizations specification and enforcement,
public key infrastructure

The work of Pierangela Samarati was partially supported by the European Community within the
Fifth (EC) Framework Programme under contract IST-1999-11791–FASTER project.
Authors’ addresses: Pierangela Samarati, Dipartimento di Tecnologie dell’Informazione, Università
di Milano, Via Bramante, 65, 26013 Crema (CR), Italy; email: samarati@dsi.unimi.it; Michael K.
Reiter, Carnegie Mellon University, Pittsburgh, PA 15213; email: reiter@cmu.edu; Sushil Jajodia,
Center for Secure Information Systems, George Mason University, Fairfax, VA 22030-4444; email:
jajodia@gmu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in others works, requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2001 ACM 1094-9224/01/1100–0453 $5.00

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001, Pages 453–482.

© ACM, 2001. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/503339.503343.

454 • P. Samarati et al.

1. INTRODUCTION

The mechanics of public key management—i.e., the creation and distribution
of public key certificates and revocation lists, and the secure backup (escrow) of
private keys—has been explored extensively (e.g., see ACM [1996]). However,
much less attention has been paid to the authorization model that must sur-
round these mechanisms. At first glance, the authorization model seems quite
simple: a public key should be accessible to anyone, and an escrowed private key
should be accessible only to its owners, as their names indicates. This simple
model is, however, far too underdeveloped for many realistic settings.

—One purpose in escrowing a private key, relevant mainly in business settings,
is to delegate the authority to use that key to the escrowing service. For
example, upon leaving for vacation, an executive might escrow her private
key at the service and authorize that it be used to decrypt messages upon
request by at least two of her direct reports. When she returns from her
vacation, she can check the logs at the service to see what her key was used
to decrypt.

—It may be desirable that some “public” keys not be public at all, but available
to only a selected few for verifying signatures on private messages. In this
way, if a message is accidentally leaked from an organization, outsiders must
still obtain a certified verifying key to prove that the message actually origi-
nated from within the organization. Hiding “public” keys can also be useful
for preventing outsiders from sending encrypted email to targets within the
organization. Encrypted email could, for instance, be used to slip a virus-
laden document by virus-detection software at the organization’s firewall.

—The owner of a public key may confer revocation authority to others, so that
one of them can revoke the public key if the private key is stolen and the
owner’s copy is destroyed.

Access control for public key management services must also address the
peculiarities of dealing with keys as objects of authorizations. In particular,
keys enjoy a more dynamic behavior than traditional objects/resources, which
raises the issue of how keys should be referred to (e.g., via their values or their
principals). Also, the fact that keys can expire or be modified introduces the
problem of dealing with the authorizations specified on them and whether they
should still be considered valid.

In this article we present an authorization model for controling access to
the public and private keys held by a key management service. The model is
both powerful and flexible, as it addresses the issues above by allowing princi-
pals to specify different protection requirements on their keys. In addition, it
is simple enough to be realized in practice. It differs from authorization models
proposed for general database systems because it allows specification of, and
reasoning about, joint authority, delegation, and roles. It also addresses the
issue of authorizations on a key once the key is revoked or replaced. Our model
departs from previous proposals in the context of key management systems by
considering identities, groups, and roles in the specification of authorizations.
It allows users to interact with the service to establish keys and manage them.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 455

And, while previous proposals have focused mostly on certification authority
and certificate management, our approach specifically focuses on keys and re-
lated services.

The contributions of this article can be summarized as follows. First, it inves-
tigates the nuances of key management systems with respect to access control
and authorization specifications. Second, it proposes access and authorization
policies supporting ownership and authority. Third, it develops a simple, yet
expressive language for the specification of authorizations and enforcing the
proposed access control policies.

The generic key management service that forms the framework for this arti-
cle was inspired by theÄ service [Reiter et al. 1996], and our work complements
Ä nicely in that authorization and access control in Ä was left largely unde-
veloped [Reiter et al. 1996, Section 6]. We note that, while for concreteness
this article refers to the Omega key management service, our access control
model can be applied to any public key management system, including Yaksha
[Ganesan 1995], Sesame [McMahon 1995], and Micali’s proposed key manage-
ment service [Micali 1992]. Also, consistent with Ä, in this article we focus on
user keys. The model proposed can however be extended to regulate manage-
ment of different types of keys, such as session or encryption keys.

The remainder of this article is organized as follows. Section 2 describes the
basic services of the key management system, illustrating the different actions
that can be exercised on the stored keys. Section 3 introduces the basic ele-
ments of the authorization model. Section 4 defines the relationships between
subjects and principals and keys stored at the service. It also introduces the ad-
ministrative and access control policies applied by the KMS. Section 5 discusses
the nuances of a key management service with respect to access control, and
defines the basic elements of the access control language and the specification
of authorizations. Section 6 describes how the proposed policy and authoriza-
tions can be represented and enforced through a generic, simple, and efficiently
computable logic language. Section 7 discusses authentication of principals sub-
mitting requests to the key management service, and the particular execution of
first time registration and recovery. Section 8 discusses support of user groups
and roles by the key management service. Section 9 covers related work. Finally,
Section 10 presents our conclusions.

2. THE KEY MANAGEMENT SERVICE

The key management service stores the public keys of principals and escrowed
private keys to allow the use of these keys by the principals who are authorized
to do so. In this article we consider a KMS that closely mimics the Ä system
[Reiter et al. 1996] in functionality. In particular,Ä supports interfaces by which
a client can, if access control policy allows,

–register a public key at the service;
–retrieve a public key that was registered at the service (or retrieve the principal

corresponding to a public key);
–revoke a registered public key from the service;

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

456 • P. Samarati et al.

Table I. Actions on Keys and Their Semantics

Action Semantics
Register(p, K) Registers public key K for principal p. Any key K ′ previously regis-

tered for p is revoked, i.e., Revoke(K ′) is automatically performed (see
Section 7.2). Register(p, K) fails if K was ever given as an argument
to any Register action before.

Lookup(p) Returns public key K last registered for p, provided that Revoke(K)
has not been performed. Lookup(p) fails if no key has been registered
for p or if the last key registered for p has been revoked.

Lookup(K) Returns the name of the (unique) principal p for which K was previ-
ously registered, and a flag indicating whether K has been revoked.
This operation fails if K has never been used in a register action. Note
that this operation will succeed even after Revoke(K) has been per-
formed, but will indicate that the key is revoked in its return value.

Revoke(K) Revokes public key K . This operation fails if K has never been regis-
tered at the service.

Escrow(K−1) Escrows the private key K−1 at the service. This operation fails if K ,
the corresponding public key, was not previously registered.

Decrypt(m, K) Decrypts message m with K−1 and returns the result. This operation
fails if K−1 has not been escrowed at the service.

Sign(m, K) Returns the signature of m using K−1. This operation fails if K−1 was
not previously escrowed or if K has been revoked.

Recover(K) Returns K−1. This operation fails if K−1 was not previously escrowed.

–escrow a private key at the service;
–decrypt a message using a private key escrowed at the service;
–sign a message using a private key escrowed at the service; and
–fully recover a private key that was registered at the service.

To all these actions, which are summarized in Table I, other services could
be added. We also note that all of these actions need not be supported for every
registered key in a real KMS. For example, additional arguments to the Register
action might limit the use of the registered key K to signature verification only.
In this case, Decrypt(m,K) can be made to fail (even for those subjects that would
otherwise be authorized to perform this action). And, presumably, other input
arguments would be added to Lookup(p) to specify the type of key requested,
and another output from Lookup(K) would indicate the intended use of the key.
To minimize the complexity of these interfaces, however, here we omit further
treatment of such functional restrictions on keys, though we realize that such
restrictions are sometimes important in practice.

In the following, we use the term key to denote either the public or the private
key—whether we refer to public key K or private key K−1 is clear from the con-
text. A key can be registered for at most one principal. A principal has a single
valid key registered for it at any given time (the principal’s “current key”), and
registration of a new key automatically revokes the one registered previously.
However, different keys may be registered for a given principal at different
times. We assume the KMS does not discard old keys, but maintains a history
of all keys registered at the service (and to whom they were registered). If keys
were simply discarded at their revocation, it would not be possible for subjects

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 457

to decrypt messages encrypted with revoked keys or to verify a signature of
a principal on a message signed before the key was revoked. As discussed in
Section 4.2, revoked keys are available for restricted use, that is, only a subset
of the actions in Table I can be exercised on old keys (for instance, a revoked
key cannot be used to sign messages).

3. AUTHORIZATION MODEL: BASIC CONCEPTS

In the description of the key management service, we generally talk about prin-
cipals as entities with whom keys stored at the service are associated. Besides
those principals, the key management service has to recognize and reason about
other types of principals, namely those submitting requests on the stored keys,
and hence for which authorizations should be specified. In this section we dis-
cuss the basic entities distinguished by the authorization model. In the next
section we discuss how they are considered in the characterization of entities
presenting requests and how they relate to the keys stored at the service.

3.1 Users, Groups, and Roles

The access control model distinguishes the following concepts:

Users: Entities that can make requests directly at the service and correspond
to user identifiers. Note that the term user is intended in the sense of user
identifier and not “human user.” A single human user may be associated with
more than one identifier.

Roles: Named collections of privileges [Sandhu 1996]. Intuitively, a role iden-
tifies a privileged hat that users need to activate to perform specific organi-
zational activities. Examples of roles can be secretary, manager, programmer,
project-head, and so on. By assuming a given role, a user is able to exercise
the privileges associated with the role. Multiple roles can be simultaneously
active for a user.

Groups: Named collections of users.

Note the distinctions we make among these three concepts. Users correspond
to identifiers associated with individuals connecting to the service; groups are
sets of users; and roles are sets of privileges needed to perform specific activities.
The basic difference between groups and roles is therefore that groups define
groupings of people, while roles define groupings of privileges [Samarati and
De Capitani di Vimercati 2001; Sandhu 1996].

The consideration of groups allows the specification of authorizations which
hold for all the members of a group. This avoids the inconvenience of specifying
authorizations for each individual user and keeping track of her membership in
the group—upon termination of which, her authorizations should be revoked.
To illustrate, consider the case where an access should be allowed to all users
who are employed at acme. By grouping them in a group, acme-employees, and
specifying the access authorization for the group, we avoid the need for specify-
ing a different authorization for each employee. Also, the specified authorization
will be applicable only to users for whom there is proof of membership in group
acme-employees. Hence, if the membership of a user in the group ceases, the

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

458 • P. Samarati et al.

authorization granted to the group will automatically become nonapplicable to
the user.

The consideration of roles allows the specification of authorizations that ap-
ply to users when performing certain activities. Intuitively, a role identifies and
isolates specific privileges related to the execution of a particular job, granting
them to users only when they need to execute the job. Consider, for example,
a user alice who is project-manager. As project-manager, alice has special
privileges, such as looking up budget information and signing contracts. How-
ever, these privileges should be available to alice only when executing project
management activities and not, for instance, when accessing personal files.

A major difference between groups and roles is that roles can be “activated”
and “deactivated” by users at their discretion, while group membership always
applies [Samarati and De Capitani di Vimercati 2001]. Also, activation of roles
must be controlled (a user should be allowed to activate a role only if she or he is
authorized to do so) and may be subject to some restrictions. For instance, some
roles may be incompatible with one another, and their simultaneous activation
be forbidden, even if the user requesting it is allowed to activate each of the
roles singularly [Ferraiolo et al. 2001]. Moreover, privileges granted to groups
add to those of the users (i.e., by being member of a group a user can execute
more actions than the user could as an individual).1 By contrast, when playing
a role, a user may not be able to execute the actions for which the user is
authorized either as an individual or as a member of a group. The fact that the
authorizations given to a role are applicable only when the role is active for
the user has a double advantage. First, it allows the use of privileges needed to
perform a task only within task execution (not granting them indiscriminately
as would happen if authorizations were specified for users or groups). Second, it
allows the enforcement of the least privilege principle, according to which each
role (the user assuming it) is confined to the execution of only those actions
needed to perform the task.

Note that given the different semantics between groups and roles, their iden-
tifiers are required to be disjoint. However, under the two different views, the
same concept can be interpreted as a group or as a role. For instance, consider
the concept acme-manager. A group G acme-manager can be defined that collects
all the users who are managers at acme. A role R acme-manager can be defined to
which specific privileges related to the managerial activity at acme are associ-
ated, and which acme managers can assume in order to carry out their jobs. This
situation is completely proper and must not be considered either ambiguous
or redundant. G acme-manager groups together a set of people by collectively
referring to them with this name. Members of this group will be allowed all
the accesses that such membership implies. R acme-manager will have associ-
ated authorizations for privileges necessary to perform the managerial activity.
These privileges will be available to acme managers only when they have this
role active.

In the following, we indicate with U, R, and G the set of identifiers of users,
roles, and groups respectively, known at the key management service.

1Assuming that only positive authorizations are considered.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 459

3.2 Subjects

In our model, entities that can present requests at the key management service
can be any of the following:

—a user u ∈ U;

—a user u ∈ U in a particular role r ∈ R; and

—a conjunction of elements of any of the above type (conjuncted subjects).

Entities recognized at a system as sources of requests have often been re-
ferred to as principals [Saltzer and Schroeder 1975]. To avoid confusion be-
tween such entities and the principals associated with keys stored at the
service (cf., Section 2), we use the term subject to refer to entities that is-
sue requests to the service. The relationship between subjects (and elements
composing them) and principals whose keys are stored at the service are dis-
cussed in Section 4. For the time being, for clarity, we keep the two concepts
separated.

Intuitively, a conjuncted subject represents the situation where multiple sub-
jects jointly present a request to the service. Conjuncted subjects are useful in
cases where some subjects can execute an action when operating jointly but
cannot when operating individually. This may happen when allowing an action
to a single user (possibly in some roles) would give him too much privilege. As
a simple example of conjunction of subjects, consider the case when two users
in the role secretary are needed to sign a message with a manager’s key.

By representing conjuncted subjects as sets and individual users as users
associated with a null role, we can represent subjects in a uniform form, as
captured by the following definition.

Definition 3.1 (Subject). Let U and R be the set of users and roles. A subject
is a set, possibly singleton, of pairs of the form [u, r], with u ∈ U and r ∈ R∪{ε},
and where ε denotes the “null” role.

Hence, in the following, a subject is always a set of pairs where the first
element is a user and the second element is either null or it is a role. A user
(with no role) corresponds to a pair with second element null. Nonconjuncted
subjects correspond to singleton sets.

Example 3.1. Let U ={alice,bob,chris} and R={acme-manager,acme-
administrator} be the set of users and roles respectively. Some examples of
subjects are as follows:

p1: {[bob,ε]}
p2: {[alice,acme-manager]}
p3: {[bob,acme-administrator]}
p4: {[alice,ε],[bob,ε],[chris,ε]}
p5: {[alice,acme-manager],[bob,acme-administrator]}
p6: {[bob,ε],[alice,ε],[chris,ε]}
p7: {[alice,acme-manager],[alice,acme-administrator]}
p8: {[alice,acme-manager],[bob,acme-manager]}

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

460 • P. Samarati et al.

The order of component subjects in a conjuncted subject does not matter.
Two conjuncted subjects are said to be equal if they contain the same elements.
For instance, with reference to the subjects in Example 3.1, p4 and p6 denote
exactly the same subject. By exploiting set notation, subject equality reduces
to set equality.

For simplicity, Definition 3.1 restricts subjects to the form “single user in sin-
gle role” or their conjunction. This restriction is purely syntactical, and there-
fore our definition encompasses subjects where a given user activates more
roles or different users activate the same role. In particular, a given user u
activating a set of roles {r1, . . . , rn} can be represented as conjuncted subject
{[u, r1], . . . , [u, rn]}, as in the case of principal p7 in Example 3.1. Analogously,
a set of users {u1, . . . , un} activating a given role r can be represented as con-
juncted subject {[u1, r], . . . , [un, r]}, as in the case of principal p8 in Example 3.1.

For simplicity, in the following we omit set notation in the case of singleton
sets (i.e., nonconjuncted subjects), and the square brackets in case of users
(i.e., pairs with role element null), when such a simplification does not cause
any confusion. For instance, subjects p1 and p2 may be denoted as bob and
[alice,acme-manager], respectively.

Note that groups, discussed in the previous section as one of the basic
elements of the authorization model, do not appear in the definition of subject.
The reason is that users, even if members of groups, always operate individ-
ually. This aspect is very important to guarantee accountability [Sandhu and
Samarati 1997]. Also, the fact that roles appear in subjects, and groups do
not, is consistent with the point we made that group membership (and the
privileges it bears) always applies, while role activation is selectively chosen.

3.3 Access Requests

Access requests are requests by subjects to execute actions on keys stored at
the service. In the remainder of this article, we characterize access requests
as triples of the form 〈subject, action, key〉, stating that subject requests
permission to execute action on key. Here, subject is any subject allowed by
Definition 3.1; action is any action listed in Table I; and key is a public key
identifier (e.g., a digest of the public key computed using a collision-resistant
hash function). Note that requests can always be translated in this form, even
if the key is not explicitly indicated by the requesting subject. This is possible
because the server can always establish a correspondence between a principal
and its private or public key. For instance, the operation Lookup(p), where p
is a principal, can be translated into a triple where key is the key currently
registered for p at the KMS.

For the sake of uniformity with other actions, we see a request for the
register operation as a request on a key stored at the service. In particu-
lar, since the register operation modifies the key currently associated with
a principal, we see the register request as a request on the key being modi-
fied. Clearly, we are dealing here with keys stored at the service, and whose
principal is therefore already known at the service. Registration of new keys, or
more precisely new principals, requires separate treatment, and is addressed

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 461

in Section 7.2. Also, for the time being, we ignore the problem of authenticating
subjects presenting requests; this issue is addressed in Section 7.1.

Each request is evaluated by the KMS and allowed or denied according to the
KMS access control policy. The access control policy determines the actions to be
allowed or denied on keys according to basic privileges that must be warranted
(e.g., a key’s owner2 should always be able to revoke the key), as well as to
authorizations established by the owner of a key that grants other subjects the
privilege of executing actions on the key. Section 4 discusses the basic privileges
that the KMS must warrant to principals that store their keys at the service.
Section 5 discusses authorizations.

4. ACCESS AND ADMINISTRATIVE POLICIES

To describe the basic privileges that the KMS must allow on keys stored at the
service to subjects that can request action from them, we must first clarify the
relationship between principals (cf., Section 2) and subjects (cf., Section 3.2).

Consistent with other proposals [Lampson et al. 1992], we assume that only
users and roles have an associated key registered at the service. In other words,
a principal is either a user or a role. Each user/role p can have an associated
pair (K p, K−1

p) indicating its current public and private keys. The pair of keys
associated with a principal can change over time due to a new register op-
eration, but only one key at most is valid at any given time (a new register
operation has the automatic effect of revoking the previous key). Note that the
assumption that each principal has at most one associated key at a time re-
stricts each user identifier to at most one key, but it does not necessarily imply
that each human user will have only one associated key. As a matter of fact,
each given human user may correspond to more user identifiers. For instance,
user alice can register at the service as two different principals alice at work
and alice at home, each with its own key.

In addition to principals, our model supports two additional concepts, namely
ownership and authority, which tie subjects to keys. These concepts are dis-
cussed in the next section.

4.1 The Key’s Principal, Ownership, and Authority

The following three concepts describe the relationships that can relate subjects
to keys stored at the service.

Principal. As discussed above, each key pair (K , K−1) corresponds to one prin-
cipal. The principal associated with a key can either be a user or a role. As
we discuss in Section 7.1, the KMS will use the keys stored at the service to
authenticate the identity of subjects presenting requests to the service when
such a key is available.

Ownership. Each key has associated with it one or more owners. The owner of
a key can exercise any action on the key as well as grant this ability to other

2The precise meaning of the term “owner” will be clear in the next subsection.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

462 • P. Samarati et al.

subjects. For keys corresponding to users, the owner is usually unique and
coincides with the principal of the key. The owner may be different from the
principal in the case of a key whose principal is a role. If the role is considered
as owner of the key and allowed to manage it, the role identifier should also
be interpreted as a user identifier (in which case U∩R 6= ∅). This would allow
the role as such to make statements, and therefore interact with the service
to manage its key. However, we can usually expect that a different subject
will be considered owner of keys associated with roles. In such a case, the
owner of a key can be any subject. Also, we expect the owner of the key to be a
single (possibly conjuncted) subject; but a set of subjects (shared ownership)
is also possible.

Authority. Our model also supports the concept of authority over a key. The
authority of a key can be any (simple or conjuncted) subject. Like ownership,
more than one subject may have authority over a key. A subject with author-
ity over a key can always execute lookup, revoke, and decrypt actions on
the key. Intuitively, a subject with authority over a key can control how the
key is used and can revoke the key. The authority cannot however “imper-
sonate” the principal (cannot execute recover or sign actions) or interfere
with its activity. For instance, it cannot re-register the key or grant/revoke
privileges on the key to/from others.

There are different reasons why authority and ownership of a key can re-
main with different subjects. To illustrate, consider an organization acme whose
employees are registered at the service. Suppose that each employee has (is the
principal of) a key. Depending on why the keys are to be used, the organiza-
tion may wish to maintain authority over the key to be able to control how the
keys are used and, possibly, revoke them. Each employee will be considered the
owner of his or her key and, as such, granted all the accesses that this privi-
lege implies. However, at any time, acme will be able lookup the key, decrypt
messages encrypted with the key, and revoke the key. The organization can use
this last privilege when, for instance, an employee leaves the job. Authority
can also vary in the case of keys whose principals correspond to the same user.
For instance, consider user alice who is registered at the service as different
principals: alice, alice at work, alice at home. Although the principals (and
the owners) of the keys are different, the subject(s) with authority over the
keys can be the same. For instance, alice may have the authority on all the
three keys.

When more than one subject has ownership/authority on a given key, we
say that the ownership/authority is shared. Shared ownership/authority rep-
resents the fact that multiple subjects can exercise ownership/authority priv-
ileges. Each of the subjects can exercise this privilege independently of the
others. For instance, there can be a key bob and alice on which both users
alice and bob have authority. The ownership/authority over a key can also be
a conjuncted subject. For instance, subject {jim,tim} can have authority on key
jim and tim. In the case of shared authority, any of the principals (either bob or
alice in the example above) can exercise authority. In the case of authority by

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 463

a conjuncted subject, authority can be exercised by the subjects in the conjunct
only when operating jointly. With reference to our example, only a conjuncted
subject {jim,tim} can exercise authority, while neither jim nor tim individu-
ally can.

The specification of the subject(s) with ownership and authority over a key
is made at the time the first registered key for the principal, which involves
human control and interaction (Section 7.2). Modifications of a key due to new
register operations do not affect ownership/authority. In other words, a subject
with ownership (resp. authority) on a key being revoked acquires ownership
(resp. authority) on the new key. This aspect is particularly important, for in-
stance, in the case of an organization’s controlled keys, like those discussed
above: the organization should maintain authority over an employee’s key de-
spite modifications to the key by the employee. To this purpose, ownership and
authority information at the KMS is specified with respect to principals (users
and roles), rather than with respect to their specific keys. We discuss the rules
establishing ownership and authority in Section 6.

4.2 Administration and Access Control Policies

The support of ownership and authority implicitly dictates some basic services
that the KMS must provide. In particular: the owner of a key must be able
to exercise all the actions on the key; the authority for a key must be able to
exercise all the actions on the key that this privilege implies. Besides basic
accesses, other accesses may need to be provided on the keys stored at the
service. As a matter of fact, one of the reasons for a key management service
is to allow owners to make their keys available to others. The owner of a key
must therefore be able to grant privileges on her key to others. Consequently,
the KMS must grant, beside the accesses implied by ownership and authority
privileges, all the accesses that owners wish to be granted. At the same time,
to keep the trust of the owners that store their keys at the service, the KMS
must ensure that no other accesses will be permitted. It must also guarantee
that only operations that can be executed will be granted (for instance, no sign
action can be executed on revoked keys).

We start by defining the actions that can be allowed on keys and the access
privileges warranted by ownership and authority.

Definition 4.1 (Allowed Action). The following actions are allowed on keys:

—Current keys: register, lookup, escrow, decrypt, revoke, recover and sign.
—Revoked keys: lookup, decrypt, recover.

In other words, the KMS access control will permit on current keys all the
actions supported by the service, provided that the subject is authorized for
it. It will, however, permit only a subset of such actions on revoked keys. Re-
voked keys can still be available for lookup, decrypt, and recovery services.
However, since they are no longer valid, the system will not permit their
use for signing messages. They also cannot be revoked, re-registered, or
escrowed.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

464 • P. Samarati et al.

Definition 4.2 (Ownership/Authority Privileges). The following privileges
are warranted by ownership and authority.

Ownership: The owner of a key can
execute all the actions allowed on its key(s);
grant the privilege of exercising any actions on its keys;
revoke the privilege of exercising any actions on its keys.

Authority: The authority of a key can
execute the lookup, decrypt, and revoke actions when the key is current;
execute the lookup and decrypt actions when the key is revoked.

Definition 4.2 simply makes explicit the concepts of ownership and authority
discussed in Section 4.1.

The access control policy can then be stated as follows:

POLICY 1 (Access Control Policy). A subject can execute an action on a key
only if both of the following conditions hold:

(1) the action is allowed (Definition 4.1);

(2) the subject can exercise the action due to ownership, authority, or in virtue
of an authorization granted by a key’s owner (Definition 4.2).

All other accesses that do not satisfy the conditions above must be denied
(closed-world assumption).

We have adopted the ownership policy for administration: only the owner(s)
of a key can grant (and revoke) authorization to others to exercise actions on the
key. We note that delegation policies could be considered by which the owner
can grant, together with authorizations to execute an action, the ability to
grant such privileges to others. The reason for not delegating administration
in our model is twofold. First, for the specific objects (keys) and actions we
consider, delegating administration does not seem to be needed: we imagine
that the owner of the key wishes to retain control of those who can access and
use the key. Second, as we will see shortly, our language allows specification
of authorizations supporting variables and conditions, resulting in expressive-
ness and flexibility in specifications. However, coupling delegation management
with expressiveness introduces complications. In particular, the revoke opera-
tion (not trivial in the case of chains of delegation [Samarati and De Capitani
di Vimercati 2001]) would be complicated further, as revoking authorization to
administer an access may correspond to the partial invalidation of an autho-
rization granted through it, instead of a complete revocation. This requires the
system to execute, at access control time, the cumbersome task of recursively
determining if a chain of delegations for an authorization still holds.

In the next section we illustrate the authorizations through which owners
can grant access on their keys to others. In Section 6 we illustrate how the
authorizations so specified, together with ownership and authority data, are
used in enforcing access control.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 465

5. THE AUTHORIZATION SPECIFICATION LANGUAGE

Any access control system requires the support of rules (authorizations) that
specify the actions that subjects can exercise on objects (keys in our case). In our
framework, traditional authorizations would then correspond to triples of the
form 〈subject,action,key〉, whose semantics is that subject can execute action
on object key, i.e., request 〈subject,action,key〉 should be granted (Section 3.3).
This framework, although used effectively in systems where subjects are not
conjuncted and objects are information containers, in our context is limiting for
two reasons. First, unlike object names, keys are subject to relatively frequent
modifications. This introduces some complications. For instance, how should
keys be referenced? Should the authorizations specified on a key still be valid
when the key is modified? Second, composite and conjuncted subjects introduce
several interesting issues about how authorizations should be interpreted. For
instance, should the authorizations specified for a user be considered valid when
the user is in some roles? Should the authorization specified for a subject be
considered valid when the subject is conjuncted with other subjects?

Models that consider authorizations in the form of simple triples as above
give a specific interpretation to the authorizations, which may limit expres-
siveness in some cases. This is true even for models semantically very rich,
such as that of Abadi et al. [1993]. Our model provides a simple, yet flexible,
language capable of representing the different answers that can be given to
the questions above. In particular, the language allows the specification of au-
thorizations referring to specific keys or to all keys satisfying some conditions,
and/or to specific subjects or to all subjects satisfying some conditions. In the
remainder of this section we discuss these issues in more detail and illustrate
the authorizations supported by our model.

5.1 Authorization Objects

Traditional access control systems are based on authorizations to exercise ac-
tions on specific objects. This paradigm, which works well in environments
where objects are relatively static, may be limiting when objects are keys, which
are, by contrast, subject to change. A natural way to overcome this limitation is
to specify authorizations on a key with reference to the key’s principal, rather
than the key identifier. This way, changes to the key do not affect authorizations,
which will be “propagated” to the new key. However, this approach may also be
limiting in certain situations (where authorizations are intended to apply to a
specific key, and should not be applied to new keys registered in its place). Our
model supports both ways of referring to keys, thus allowing the specification of
authorizations on keys with reference to either the key identifier (digest) or the
principal of the key. Authorizations referred to a key digest hold only for that
specific key and do not “propagate” to the new key when the key is modified.
Authorizations specified with respect to the principal propagate instead to the
new key upon reregister operations.

Regardless of whether authorizations on a key propagate or not to the new
key, another issue to be addressed is whether the authorizations specified for
a key should still hold when the key is revoked. As discussed in Section 2,

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

466 • P. Samarati et al.

revoked keys can remain available at the service for restricted use. Beside
being available to their owners and authorities, revoked keys could also remain
available to other subjects (who can then still be able to verify a principal’s
signature on an old message signed with a key that has been revoked). Again,
no answer is good for all scenarios, and while in some cases authorizations
on a key should continue to hold even after the key is revoked, in other cases
they should be invalidated upon key revocation. Hence, our model gives the
owner specifying an authorization on its key the ability to state whether the
authorization should continue to hold once the key is revoked.

5.2 Authorization Subjects

Authorization subjects are the entities for which authorizations to exercise
actions on keys stored at the service are specified. Approaches proposed in the
context of public key systems and certification authority management tend to
identify authorization subjects with their keys, thus associating permissions
with keys rather than user identifiers [Blaze et al. 1997; Ellison 2000]. This
solution has two main drawbacks. First, granting privileges to keys does not
allow the enforcement of expressive and flexible access control policies that take
group membership and roles into consideration. Second, unlike user identifiers,
keys are subject to modification, which results in the automatic invalidation of
all the key’s privileges and in the corresponding principal’s inability to exercise
them.

It should be clear from Section 3 that our model assumes the granting of
authorizations to subjects with reference to the subjects’ identifiers. This way,
a subject’s authorizations continue to hold despite changes to the keys with
which the subject is authenticated (see Section 7.1). We note, however, that our
language, allowing the specification of variables and conditions, is also able to
support authorizations to exercise actions which are granted to “a specific key,”
or better, to the principal corresponding to that key.

Roles and conjuncted subjects introduce several questions regarding the in-
terpretation of authorizations. Questions include the following:

(1) Can authorizations explicitly refer to users in roles, or should they instead
refer to either users or roles, where authorizations of a role are applicable
to every user in that role? For instance, should authorizations be specified
for acme-manager regardless of the user who assumes the role, or can they
refer to a specific user in that role, like [alice,acme-manager]?

(2) Should the authorizations specified for a user be considered valid when the
user is in some roles? For instance, should an authorization specified for
alice be valid for [alice,acme-manager] also?

(3) Should the authorizations specified for a user in a role be considered valid
for the user itself? For instance, should an authorization specified for
[alice,acme-manager] be considered valid for alice also?

(4) Should an authorization specified for a subject s be considered valid for
conjuncted subjects containing s as a conjunct? For instance, should an
authorization specified for bob be considered valid for {bob,alice}?

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 467

Different scenarios can be imagined where various ways of answering the
questions above could be supported. Therefore, instead of including specific
policy decisions in the model itself, we allow subjects to express the approach
they want to be applied through the authorization language.

5.3 Basic Elements of the Language

The authorization language is based on the following alphabet:

(1) Constant symbols: Every member of U ∪ R ∪ G ∪ S ∪ K ∪ A. Where
U is the set of users, R is the set of roles, G is the set of groups, K is the
set of key identifiers (digests), A is the set of actions, and S is the set of all
possible subjects that can be obtained from U and R.

(2) Variable symbols: There are five sets of variable symbols Vu, Vr , Vg ,Vk ,Vs
ranging over the sets U, R, G, K, and S, respectively.
In future, the following terminology will be used. Variables in Vu and mem-
bers of U are user terms. Variables in Vr and members of R are role terms.
Variables in Vg and members of G are group terms. Variables in Vk and
values in K are key terms.

(3) Predicate symbols: We assume the following predicate symbols:
(a) A binary predicate symbol memberof, whose first argument is a user

term and whose second argument is a group term. It expresses the
membership relationships between users and groups. Given a user u
and a group G, if memberof(u, G) is true then it means that u is a
member of group G according to the membership information known at
the KMS (cf., Section 7).

(b) A binary predicate symbol principal, whose first argument is a key term
and whose second argument is a principal term. It captures the rela-
tionship between principals and their keys (cf., Section 4.1).

(c) A unary predicate symbol current, whose argument is a key term. It
tests whether a key is currently valid or has been revoked.

(d) A binary predicate subsequent, whose arguments are key terms (one of
which must necessarily be ground). It captures the time relationship
between keys registered for a principal.

(e) Three basic symbols=, ∈,⊆, expressing equality, inclusion, and set con-
tainment. By exploiting the representation of subjects as sets, we use
these operations to test equality, inclusion, and containment between
subjects.

Borrowing from the logic programming terminology, if p is one of the above
predicate symbols with arity n, and t1, . . . , tn are terms appropriate for p (as
defined above), we refer to p(t1, . . . , tn) as an atom. We use the expression literal
to denote an atom or its negation. For instance, if PT is a principal term and
KT is a key term, then principal(KT, PT) and ¬principal(KT, PT) are literals. We
call a literal containing predicate pred a pred-literal, e.g., principal-literal. The
literal is said to be negative or positive according to whether or not the predicate
appears negated. We refer to constants as ground terms. A subject/literal is said
to be ground if it contains only ground terms.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

468 • P. Samarati et al.

Note that since subjects can be composed of different elements, the case can
be where both constants and variables are used to denote a subject. Therefore,
subject terms can include, at the same time, both values and variables.

Example 5.1. Let U= {alice,bob} be the set of users and R= {acme-manager,
acme-administrator} be the set of roles. Some examples of nonground subject
terms are as follows.

s (any subject);
{[alice, r]} (user alice in any role);
{[s, acme-administrator]} (any user in role acme-administrator);
{[s, r]} (any user in any role);
{[alice, ε], [s, acme-administrator]} (a conjunct composed of user alice and

any user in role acme-administrator).

Definition 5.1 (Satisfaction of predicates). Satisfaction of ground predi-
cates is as follows:

—memberof(u, g) is satisfied for u ∈ U and g ∈ G iff user u is a member of
group g (w.r.t. the membership information known at the KMS);

—principal(p, k) is satisfied for p∈U∪R and k ∈K iff key k was registered for p;
—current(k) is satisfied for k ∈ K if k has been registered and is not revoked.
—subsequent(k, k′) is satisfied for k, k′ ∈ K iff key k and k′ were registered for

the same principal and either k = k′ or k was registered after k′.
—A literal ¬L is satisfied iff L is not satisfied.

A nonground literal L is satisfied iff there exists a ground instance of L,
i.e., an instance obtained by substituting values in place of variables, which is
satisfied.

The predicates above can be used to grant authorizations to all keys and/or
all subjects that satisfy given conditions. Conditions on keys or subjects are
specified through conditional expressions, defined as follows.

Definition 5.2 (Key conditional expression). A key conditional expression
over a key term k is a (possibly negated) literal of the form principal(p, k),
current(k), subsequent(k, k′), subsequent(k′, k), or a conjunction of such (pos-
sibly negated) literals.

Definition 5.3 (Subject conditional expression). A subject conditional exp-
ression is a conjunction of (possibly negated) literals of the form memberof,
principal, current, subsequent,=, ∈,⊆.

Definition 5.4 (Satisfaction of conditional expressions). A key/subject con-
ditional expression E that contains only ground literals is satisfied iff all the
literals in E are satisfied. A key/subject conditional expression E whose literals
contain some variables is satisfied iff there exists a possible instantiation of
the variables, that is, a substitution 2 of values to variables in E such that the
resulting expression E2 is satisfied.

We refer to the pair composed by a key (resp. subject) term and a key (resp.
subject) conditional expression as a key (resp. subject) expression.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 469

Example 5.2. Some examples of key/subject expressions follow:

—Key term: k. Expression: principal(bob, k).
Satisfied by all keys k that have bob as principal (of which one will be the
current valid key, while the others will be past revoked keys).

—Key term : k. Expression: principal(bob, k) & subsequent(k, 0xA40B96C7).
Satisfied by all keys k that have bob as principal and have been registered
for bob after key 0xA40B96C7 (key 0xA40B96C7 included).

—Key term: 0xA40B96C7. Expression: current(0xA40B96C7).
Satisfied by key 0xA40B96C7 when not revoked.

—Subject term: {[alice, r]}. Espression: true.
Satisfied by user alice in any role.

—Subject term: {[u, manager], [u′, manager]}. Expression: u 6= u′.
Satisfied by any subject that is a conjunct of two distinct users in role man-
ager.

— Subject term: {[u, ε]}. Expression: principal(u, 0xA40B96C7) & current(0xA40-
B96C7).
Satisfied by the user who is the principal of valid (i.e., unrevoked) key
0xA40B96C7.

— Subject term: s. Expression: {[u, ε]} ⊆ s & memberof(u, acme-employee) &
memberof(u, US-citizens).

Satisfied by subjects that are either (1) a user member of groups acme-
employee and US-citizens or (2) a conjunct containing such a user.

Having given the basic elements and constructs of the language, we are now
ready to introduce authorizations.

5.4 Authorizations

The basic elements introduced in the previous section allow a key’s owners
to specify authorizations. Authorizations, which can be specified and revoked
through a simple language like the one in Figure 13 are defined as follows:

Definition 5.5 (Authorization). An authorization is a 6-tuple composed of
the following elements:

subject: is a subject term;
action: is an action in A;
key: is a key term;
k-cond: is either the value true or a key conditional expression over the key

term;
s-cond: is either the value true or a subject conditional expression;
grantor: is the ground subject that specified the authorization where k-cond

and s-cond have no variables in common.

3In the syntax, key-term, user-term, and role-term are key, user, and role terms, as discussed
above; subj-entity is either a user, a role, or a group term; and variable is any variable.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

470 • P. Samarati et al.

Fig. 1. The authorization specification language.

The semantics of an authorization of the form above is that subject can ex-
ercise action on key, provided that key satisfies conditional expression k-cond
and subject satisfies conditional expression s-cond. Note that, as discussed
in Section 3.3, the semantics of register authorizations referred to a key is
that the subject can register a new key in place of key (i.e., the subject can
modify the key). Therefore, register authorizations will generally have a vari-
able for the key, that is, they will refer to the key of a principal instead of a
specific key.

The grantor field reports the subject who specified the authorization and
is always ground, that is, no variables appear in it. This aspect is impor-
tant for accountability, as well as to restrict the applicability of authorizations
to keys on which the grantor has ownership privileges. Given the possibility
for subjects to specify authorizations with variables in place of keys, this con-
straint cannot be enforced when authorizations are specified, but must be
enforced at access control time. Intuitively, from the point of view of the se-
mantics of authorizations, this constraint can be enforced easily by adding
predicate owner(grantor, key) to the key condition k-cond, restricting the keys
to which the authorization applies. For the time being, we focus on the au-
thorizations specified and ignore the issue of restricting their applicability ac-
cording to the subjects who specified them. We discuss the latter issue in the
next section.

The semantics of authorizations is better clarified with reference to the re-
quests they authorize, as stated by the following definition.

Definition 5.6 (Authorized Request). A request 〈subject′,action′,key′〉 is
authorized by an authorization 〈subject, action, key, k-cond, s-cond, grantor〉
iff action′ and action are the same action, and

—there exists a substitution 2k of ground terms for variables such that
key2k=key′ and k-cond2k is satisfied; and

—there exists a substitution2s for variables in s such that subject2s=subject′
and s-cond2s is satisfied.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 471

Fig. 2. Some examples of authorizations.

Figure 2 illustrates some examples of authorizations that can be expressed
in our model. The semantics of the authorizations is as follows:

(A1) User tim can exercise action decrypt using key 0xA40B96C7. If a new key
is registered for the principal associated with 0xA40B96C7, tim will not be
able to exercise the action on the new key; tim will however be able to
decrypt with key 0xA40B96C7 even after the key has been revoked.

(A2) Same as A1, but tim will not be able to decrypt with key 0xA40B96C7 after
the key has been revoked.

(A3) Any subject can lookup the current key registered for principal bob, what-
ever this key is. When the key changes, the authorization will be applica-
ble to the new key just registered. It will no longer apply to the key that
has been revoked.

(A4) Users who are members of group acme-people can lookup the key reg-
istered for principal bob. The authorizations also apply to expired keys
(allowing subjects to lookup past keys).

(A5) Members of group acme-people can decrypt with the key whose principal
is bob. It applies to the current as well as past keys (so that if the key
is revoked, subjects can still exercise their privileges on it). The condi-
tion requiring the key to be subsequent to 0xA40B96C7 (which we assume
to be the key of bob at the time the authorization is specified) avoids a
retroactive effect of the authorization: the authorization does not hold on
keys that have been registered for the principal prior to the registration
of 0xA40B96C7, and therefore the granting of the authorization.

(A6) Any two distinct users operating in the manager role can sign with key
0xA40B96C7. Note that even if not specified in the authorizations, the au-
thorized operation will be allowed only when the key is current, since
action sign cannot be executed on revoked keys.

(A7) Any two distinct users operating in the manager role, at least one of which
is a member of group bob-friends, can sign with the key whose principal
is bob as director.

(A8) The user principal of key 0xA40B96C7, when this key is valid, can sign
messages with the key of bob.

Note the difference between authorizations with key element ground (e.g.,
authorization A1 above) and authorizations with key element variable (e.g.,
authorization A3 above). Authorizations with key element ground refer to a

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

472 • P. Samarati et al.

specific key, which is registered for a principal at a specific time. Authoriza-
tions with key element variable refer to the key of a principal (specified in
the conditional expression), regardless of the specific value of the key. As al-
ready discussed, the use of variables allows the expression of authorizations
on a key, or more precisely on the key of a principal that will continue to hold
even if the key changes (because the principal has reregistered). For both cases,
whether the authorizations should continue to hold on the revoked key depends
on whether the key is required by the key expression to be current (e.g., autho-
rization A1 vs authorization A2 above).

Note also how the inclusion of predicates over keys in the subject conditional
expression allows the granting of authorizations to keys, in contrast to princi-
pals (e.g., authorization A8 above), thus subsuming approaches applying such
an assumption (e.g., Blaze et al. [1997]; Ellison [2000]).

6. REPRESENTATION OF AUTHORIZATIONS AND ACCESS CONTROL

In this section we illustrate how the access control policies discussed in Sec-
tion 4 and the authorizations in Section 5 can be expressed and enforced at
the KMS through a simple, yet expressive, logic language. The logic language
captures ownership and authority definitions (stated directly at the service),
authorizations stated by the keys’ owners, which must be obeyed at the service,
and consequent enforcement of the access control and administration policies.

The logic language is based on the variables and predicates of the authoriza-
tion language, whose satisfactions have been discussed already (Definition 5.1),
plus the following predicates.

(1) A binary predicate allowed, whose first argument is an action term and
whose second argument is a key term. It states the actions that can be
executed on the key.

(2) A binary predicate owner, whose first argument is a subject term and whose
second argument is a key term. It states the ownership of a key.

(3) A binary predicate authority, whose first argument is a subject term and
whose second argument is a key term. It states the authority for a key.

(4) A ternary predicate authorize, whose first argument is a subject term, whose
second argument is an action, and whose third argument is a key identifier.
Intuitively, authorize predicates represent accesses that must be granted
due to authority/ownership privileges or to specified authorizations.

Satisfaction of the allowed predicate is established by Definition 4.1; that
is, allowed(a, k) evaluates true if a is an action allowed on k at the time the
predicate is evaluated. According to Definition 4.1, the predicate evaluates true
on every action when key k is current; it evaluates true on the subset of actions
allowed on expired keys when key k is not current.

Satisfaction of the other three predicates is established through three dif-
ferent kinds of rules: ownership and authority rules, establishing ownership
and authority relationships between subjects and keys, and authorization
rules, representing authorizations and establishing accesses to be granted as
a consequence of the authorizations, as well as of the ownership/authority

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 473

Fig. 3. Rules establishing ownership/authority and enforcing access control at the service.

relationships defined. The definition of these rules at the service is as sum-
marized in Figure 3 and discussed in the remainder of this section.

Definition 6.1 (Ownership Rule). An ownership rule is a rule of the form:

owner(s, k)← principal(p, k) & L1 & · · ·& Ln

where s is a subject term, p is a ground principal term, k is a variable term,
and L1, . . . , Ln are literals of the language.

Definition 6.2 (Authority Rule). An authority rule is a rule of the form:

authority(s, k)← principal(p, k) & L1 & · · ·& Ln

where s is a subject term, p is a ground principal term, k is a variable term,
and L1, . . . , Ln are literals of the language.

In general, we can expect ownership and authority rules to have a ground
subject on the left-hand side and only the principal-literal on the right-hand
side, giving, for example, each user the ownership/authority on the key regis-
tered for her or him. However, richer forms of specification can be possible, as
for instance, when establishing authority for keys associated with roles.

Example 6.1. The following are examples of ownership and authority rules.

(R1) owner({[bob, ε]}, k)← principal(bob, k).
(R2) authority({[bob, ε]}, k)← principal(bob, k).
(R3) owner({[bob-at-work, ε]}, k)← principal(bob-at-work, k).
(R4) authority({[acme, ε]}, k)← principal(bob-at-work, k).
(R5) owner({[u, acme-manager], [u′, acme-manager]}, k)← principal(acme-manager,

k), u 6= u′.
(R6) authority({[acme-headoffice, ε]}, k)← principal(acme-manager, k).
(R7) authority({[acme-admin, ε]}, k)← principal(acme-manager, k).

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

474 • P. Samarati et al.

According to these rules:

—bob has ownership and authority on the key where he is principal (rules R1
and R2).

—bob-at-work is the owner of the key of where he is principal, but acme has
authority over this key (rules R3 and R4).

—Any two distinct users in role acme-manager can exercise ownership priv-
ileges on keys register for acme-manager (rule R5). Both acme-headoffice
and acme-admin have authority (shared authority) over such keys (rules R6
and R7).

Ownership and authority rules for a principal (keys associated with it)
are defined at the service at the time of the principal first-time registration
(Section 7.2). In no way can they be specified, modified, deleted, or disobeyed
by subjects using the service. For each principal registered at the service, at
least one ownership and one authority rule must be present. Multiple rules
establishing ownership (resp. authority) on a given key correspond to shared
ownership (resp. authority).

Definition 6.3 (Authorization Rule). An authorization rule is a rule of the
form:

authorize(s, a, k)← L1 & · · ·& Ln.

where s, a, k are a subject term, an action term, and a key term, respectively,
and L1, . . . , Ln are literals.

Authorization rules determine the accesses that the system must grant or
deny according to the Access Control Policy (Policy 1). Two different kinds of
rules can be distinguished: those enforcing authority/ownership privileges and
those enforcing authorization rules. Rules of the first kind simply derive the
accesses to be warranted in virtue of the ownership/authority privileges. One
rule for ownership and one rule for authority are specified at the KMS; they
apply to every subject and key stored at the system (Figure 3). Rules of the
second kind are derived from authorizations stated by the subjects. One rule is
inserted for each authorization specified. The rule is simply a translation of the
authorization in logic form with an allowed and an owner predicate added to
the body, which enforce the restrictions demanded by the access control policy.
The owner predicate restricts the applicability of the authorizations to keys
that the grantor owns. The allowed predicate ensures that only actions allowed
by the service will be granted. As an example, Figure 4 illustrates the transla-
tion into authorize rules of the authorizations specified in Figure 2.

Given the ownership, authority, and authorization rules specified, the access
control policy can be easily expressed in terms of evaluation of the corresponding
logic program (Figure 3), as follows:

ALGORITHM 6.1 (Access Control Algorithm). Let PAS be the logic program
defined at the service according to the ownership/authority statements es-
tablished at registration and the authorizations granted by subjects. Let

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 475

Fig. 4. Representation of the authorizations in Figure 2 at the service.

〈subject,action,key〉 be a request by subject to execute action on key. The
following algorithm determines whether the request must be granted or denied.

If PAS |= authorize(subject, action, key) then grant request
else deny request.

Intuitively, the access control algorithm allows only those requests r =
〈subject,action,key〉 for which authorize(r) can be derived from the logic pro-
gram expressing the authorization state. As to how the logic program has been
defined, the access control algorithm trivially enforces the access control policy
stated in Section 4.2.

7. AUTHENTICATION OF SUBJECTS REQUESTING ACCESS

Actions requested by subjects on keys are granted or denied on the basis of the
subject’s possible ownership and authority privileges and on the authorizations
applicable to the request. The identity of a subject determines the authoriza-
tions applicable to the subject and possible ownership or authority privileges
the subject may have. The correctness of access control therefore rests on the
correctness of the requesting subject’s identity [Samarati and De Capitani di
Vimercati 2001]. Hence, authentication must be performed prior to checking
authorization.

7.1 Subject Authentication

We assume that the KMS can authenticate subjects without using any external
certification authority. Typically, subjects can be authenticated on the basis of
the keys registered at the service. In particular, a user can be authenticated by
requiring that the digital signature on the request be verifiable by the public
key registered for the user. Users in roles and conjuncted subjects can be au-
thenticated on the basis of the keys of the users and of the roles in the conjunct

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

476 • P. Samarati et al.

[Abadi et al. 1993]. For the escrow of the private key, the client’s ability to com-
plete the escrow successfully may be sufficient proof that the client knows the
private key, and thus a digital signature for the escrow request may be unnec-
essary. The signature might still be required, however, if the validity checks
on the escrowed key allow greater probability of a false positive than a digital
signature algorithm (Reiter et al. [1996]).

Note also that requiring that the KMS independently perform authentica-
tion does not necessarily imply that subjects not registered at the service will
not be allowed to execute actions. The use of variables and conditions in fact
allows specifying generally applicable authorizations. For instance, all subjects
not registered at the service can be considered special subjects (corresponding
to user identifier anonymous) and authorizations applicable to them are deter-
mined accordingly. In particular, authorizations specified with a variable as
subject and with subject condition equal to true are applicable.

By exploiting the keys associated with users and roles, the KMS is able to per-
form authentication independently. It is, however, worth noting that our access
control can be nicely complemented with approaches where a subject’s identity
or active roles are established via certificates signed by external authorities
(e.g., Park et al. [2001; Park and Sandhu [2000].)

7.2 First-Time Registration and Recovery

The assumption that the KMS authenticates subjects without the need for any
external certification authority requires special consideration on the register
and revoke action on keys.

Register is the action by which a principal (user/role) becomes known to the
service by introducing its public key. Prior to this action, the service cannot
authenticate the principal. First-time registration therefore requires special
treatment, such as out-of-band communication between the principal to be reg-
istered and the KMS. Subsequent registrations, in which a principal essentially
requires reregistration, that is, modification of its registered key, can instead
be done by authenticating the principal (more precisely, the owner of the prin-
cipal’s key), depending on the key being modified. First-time registration can
be done, for instance, with a manual procedure in which the identity of the
user being registered is controlled on the basis of some proofs checked by the
administrators of the service (similar to handling login assignments in a com-
puter system). An alternative approach consists in some out-of-band negotia-
tion between the principal and the administrator(s) of the service, resulting
in a message digest of the principal’s public key, which is then stored as the
key of the principal. The principal, which can now be authenticated on the
basis of the computed digest, can then register its real public key. This solu-
tion, adopted by Reiter et al. [1996], supports a registration scenario in which
a principal generates its (potentially large) private key and public key in isola-
tion. It then computes a short message digest of the public key and communi-
cates this digest to the service’s administrator(s) who authenticate the principal
(through some external proofs of identity) and record the digest as the key of
the principal.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 477

A similar problem arises for recovery. The recover action is the one that al-
lows subjects to retrieve the private key of a principal. Although the owner of
a key can grant others the authorization to recover its key, we can imagine
that such delegation will be rare (as any subject allowed to recover K−1

p will
then be able to impersonate p). For instance, it may be used in cases where
different principals correspond to the same human user. To illustrate, suppose
that Alice is registered at the service as two principals (corresponding to two
different user identifiers for Alice): alice at work and alice at home. Since the
person behind them is actually the same one, it may be completely legitimate
for either to specify that the other is allowed to recover its key. Apart from
this, however, recovery is primarily offered in order to give principals who lost
their keys the possibility of retrieving them. In this case, since the private key
is unavailable to the principal, the principal (or the subject corresponding to
it) will not be able to digitally sign the request, and therefore the KMS will
not be able to authenticate it. To solve this problem, we require a principal
that has lost its key to undergo another registration. Given that the principal
cannot be authenticated, this registration must be considered as a first-time
registration and hence treated with a special procedure, as illustrated above.
Since a principal can have at most one valid key, the registration will auto-
matically revoke the old key. At this point the principal, who can be authen-
ticated with the new key, can request recovery of the old key at the service.
The ability of the principal to do so is guaranteed by the access control policy
(Section 4).

8. GROUP MANAGEMENT AND ROLE ACTIVATION

In presenting our model we assumed that the sets of user, role, and group names
are known at the key management service. We also considered that principals
can be composed by users with some roles active, and we have introduced a
predicate memberof to evaluate membership of users in groups. However, man-
agement of roles and groups is not required to be, and generally will not be,
performed at the KMS. Although the KMS must know if a user has activated
certain roles or s/he belongs to a group, it is not task of the KMS to control role
activation or maintain group membership.

As for roles, we believe role activation and deactivation to be completely
outside the key management service and carried out at the “domain” where
roles are defined. The basic reason is that activation and deactivation of roles,
like any action, must be regulated by policies and authorizations whose control
should rest completely with those who defined the roles [Sandhu 1996; Winslett
et al. 1997]. It would be improper and impractical to require that activation of
roles be controlled at the KMS itself. Activation of roles by users is therefore
carried out outside the KMS, and subjects can present themselves to the KMS
as users in some roles. As already discussed, the KMS will authenticate these
composite principals on the basis of the users keys and roles in them. Note that
the fact that role activation is outside the key management service, together
with the fact that roles are identified though their keys and that these keys
should not be disclosed to users, requires the existence of a trusted process at

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

478 • P. Samarati et al.

the domain where the role is managed.4 The task of this trusted process is
to digitally sign requests by users in given role(s) with the key of the role(s)
before submitting it to the KMS. For instance, consider organization acme
where a role acme-manager has been defined which users can assume to per-
form some tasks. A principal acting for acme will register the key of the role at
the KMS. Moreover, it will specify authorizations and policies regulating acti-
vation and deactivation of acme-manager at acme. (Note that this request will be
signed with the key of acme-manager.) Every request by users in acme-manager
will be digitally signed with the key of acme-manager before being sent to
the KMS.

In a similar way, we assume group membership information will generally be
managed locally at the domain where groups have been defined. This does not
mean that no group information will be maintained at the KMS. If needed, some
groups can be maintained at the KMS. As an example, a group new-users could
be maintained at the KMS, grouping all users that have registered their keys
for the first time in the current year. In general, however, groups will be defined
and maintained outside the control of the KMS. The reason is that requiring
groups to be maintained at the key management service is too impractical and
cumbersome for both the entity managing the group (which would have to prop-
agate group membership updates to the KMS) and the key management service
(which would have to store and maintain group membership information). This
assumption has been made in previous models dealing with groups in a decen-
tralized distributed systems [Abadi et al. 1993; Lampson et al. 1992]. There are
two different approaches that can be taken to collect membership information
at the KMS. The first consists in requiring principals presenting requests to
provide membership certificates. The second approach consists in having the
KMS itself explicitly request group membership certificates for users from some
external authorities. The model proposed in this article is completely indepen-
dent of the approach used to provide membership information, and either of
these two alternatives can be applied. We note that the drawback of assuming
group management outside the KMS is that the KMS can evaluate membership
or nonmembership of a user in a group only with respect to the information it
has available at a specific time. Hence, the alternative adopted affects the en-
forcement of predicate memberof. As noted by Abadi et al. [1993], remote group
management implies that only group membership can be proved with certainty;
in contrast, it is not possible to prove nonmembership. In terms of the model, if
memberof(u,g) evaluates true, it means that user u is a member of group g. The
contrary is not necessarily true, and the fact that memberof(u,g) evaluates false
does not necessarily imply that user u is not a member of group g. Membership
information can simply not be provided or be unavailable. Note that this has an
effect on the evaluation of conditional expressions in authorizations. A user will
be allowed to use authorizations granted to members of some groups only if the

4An alternative approach consists in disclosing the key of a role to all users allowed to activate the
role (knowledge of the key would in this case be equivalent to authorization to activate the role).
This approach however, has the drawback of requiring changing the key of the role every time the
authorization for a user has to be revoked [Lampson et al. 1992].

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 479

necessary membership certificates are presented to the KMS. Also, a user will
be allowed to use authorizations granted to nonmembers (negated memberof
literals) of some groups if there are no membership certificates proving his or
her membership in these groups. Hence, negative memberof literals, although
useful at times, must be used with care. Having noticed that evaluation of neg-
ative memberof literal suffers from this limitation, we do not forbid their use
in the model. Note also that nonmembership can be proved in case of groups
managed at the KMS or for which the KMS can explicitly require membership
certificates to a trusted third party [Winslett et al. 1997].

A possible alternative approach to manage groups is to associate keys with
groups [Lampson et al. 1992]. However, all members of a group will in this
case be able to obtain the private key of the group. An important drawback of
this approach is that removing a user from a group requires modification of
the key associated with the group. Moreover in this approach, when presenting
a request users should explicitly state the groups that must be considered in
evaluating a given request. This last aspect, while proper for roles, may be
limiting for groups.

9. RELATED WORK

To our knowledge, no authorization model has been proposed to date for regu-
lating access to keys at a key management system, and this is the first article
to address the problem. Hence, related work has to be found either in the con-
text of PKI management or in the context of general authorizations and access
control models. Most of the work in key management has focused on the prob-
lems of key storage and escrow [ACM 1996], on binding identities to keys, and
on trust management, possibly in the absence of certification authorities (e.g.,
Maurer [1996]; Ellison [200]). Also, attention has mostly been focused on cer-
tificate management rather that key management. All these approaches are
complementary to our proposal.

Within the trust management context, Blaze et al. [1997] present an ap-
proach to formulate security policies. With respect to policy (authorization)
specification, the proposal by Blaze et al. [1997] takes the approach of speci-
fying authorizations with respect to keys (as subjects), rather than identities.
The motivation behind this decision is that with this approach the application
does not then need to manage the mapping between personal identities and
authorities, thus also allowing support for anonymity. As we have already dis-
cussed in Section 5, the approach may be limiting, in that it does not allow the
enforcement of expressive and flexible access control policies that take group
membership and roles into account. Second, unlike identities, keys are subject
to modifications that would result in the automatic invalidation of all the key’s
privileges and in the corresponding principal being unable to exercise them any
longer. Also, the motivations of anonymity and of avoiding maintenance of iden-
tity mappings do not seem to be relevant or applicable in our context, where
the KMS system stores the keys and is assumed to enforce authentication.

Other related work is in authorization-based access control models where
recent proposals have been devoted to enhancing the expressiveness and

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

480 • P. Samarati et al.

flexibility of authorizations [Jajodia et al. 2001; Li et al. 1999; Woo and Lam
1993]. However, these approaches have not been examined for key manage-
ment services, and they do not address the peculiarities of such a context.
The focus of these proposals is mainly the combined support of positive and
negative authorizations together with authorization derivation/implication to
provide multiple policies and support for exceptions. To this purpose, various
logic-based languages are investigated which, in some cases, almost provide the
expressive power of first-order logic [Woo and Lam 1993; Li et al. 1999]. But
these languages bear a computational complexity, and consequent loss of effi-
ciency, which is often not balanced by a gain in expressiveness. The expressive-
ness of such languages in some cases allows the specification of models which
may not even be decidable [Woo and Lam 1993], and therefore implementable.
Even in the case of more restricted and therefore efficiently computable models,
the focus remains on the combination of positive and negative authorizations
coupled with the derivation of authorizations along different subject or object
hierarchies [Jajodia et al. 2001]. These aspects however, appear, to be of little
applicability in our context, where objects are keys and group and role man-
agement is carried out remotely. So the expressiveness of such models would be
of little applicability. And such models do not provide support for conditional
predicates based on key-subject relationships, which are needed in our context.
They also provide very limited or no support for roles and conjuncted subjects.

Explicit support for users in roles and conjuncted subjects is provided by
Abadi et al. [1993] in their proposal for a calculus for distributed access control.
However, the concept of roles in Abadi et al. [1993] and in our model is different,
and consequently requires different, reasoning about authorizations. In partic-
ular, in Abadi et al. [1993], roles are means for users to restrict their set of
privileges for particular executions. Consequently, the authorizations specified
for a user in a role are applicable to the user when operating as an individual;
by contrast, authorizations specified for a user are not applicable when the user
operates in certain roles. Moreover, in Abadi et al. [1993], all authorizations are
ground, and it is not possible to specify authorizations applicable to different
objects (keys) or subjects that depend on certain conditions.

10. CONCLUSIONS

We investigated the problem of regulating access to keys stored at a key man-
agement service. We proposed a basic policy based on principal, ownership,
and authority relationships on keys, together with an authorization language
by which owners can grant and revoke privileges to execute different actions
on their keys. The language is flexible, and gives owners the ability to specify,
while granting an authorization, whether an authorization applies to a spe-
cific key or to the key registered for a principal (regardless of its digest), and
whether the privileges should still hold upon expiration/revocation of the key.
The authorization language, although very simple, is sufficiently expressive to
enable the specification of authorizations for composite and conjuncted sub-
jects that can be fully specified (grounded) or partially specified, thus making
the authorizations applicable to all subjects satisfying certain conditions. We

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

An Authorization Model • 481

have also illustrated how the access control policy and authorizations can eas-
ily be expressed through a simple restricted form of logic language. Finally, we
discussed the problems of first-time registration and of group management.

Future issues that can be investigated include the extension of the model
to keys other than user keys; the possible inclusion in the authorization of
time intervals or expiration dates, upon which authorizations are automati-
cally revoked; the interaction with other certification authorities and support
of credential-based authorizations; and extending the idea to enable various
parties to collaborate in the PKI, with consequent support for expressing and
reasoning about trust and recommendations.

REFERENCES

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A calculus for access control in dis-
tributed systems. ACM Trans. Program. Lang. Syst. 15, 4 (Sept.), 706–734.

ACM. 1996. Special section: How to use key escrow. Commun. ACM 39, 3, 32–60.
BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1997. Decentralized trust management. In Proceedings

of the 1996 IEEE Symposium on Security and Privacy (Oakland, CA, May), 164–173.
ELLISON, C. 2000. SPKI certificate documentation. http://www.pobox.com/cme/html/spki.html.
GANESAN, R. 1995. Yaksha: Augmenting Kerberos with public key cryptography. In Proceedings

of the 1995 Internet Society Symposium on Network and Distributed System Security (Feb.), 132–
143.

JAJODIA, S., SAMARATI, P., SAPINO, M. L., AND SUBRAHMANIAN, V. S. 1992. Flexible support for multiple
access control policies. ACM Trans. Database Syst. 26, 2 (June), 214–260.

LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E. 1992. Authentication in distributed systems:
Theory and practice. ACM Trans. Comput. Syst. 10, 4 (Nov.), 265–310.

LI, N., FEIGENBAUM, J., AND GROSOF, B. 1999. A logic-based knowledge representation for autho-
rization with delegation. In Proceedings of the 12th Computer Security Foundations Workshop
(Mordano, Italy, June), 162–174.

MAURER, U. 1996. Modeling a public key infrastructure. In Proceedings of the Fourth European
Symposium on Research in Security and Privacy, LNCS 1146 (Rome, Sept.), 325–350.

MCMAHON, P. 1995. SESAME V2 public key and authorisation extensions to Kerberos. In Pro-
ceedings of the 1995 Internet Society Symposium on Network and Distributed System Security
(Feb.), 114–131.

MICALI, S. 1992. Fair public-key cryptosystems. In Advances in Cryptology—Proceedings of
CRYPTO ’92, E. Brickell Ed., LNCS 740, 113–138. Springer-Verlag.

PARK, J. S., SANDHU, R., AND AHN, G.-J. 2001. Role-based access control on the Web. ACM Trans.
Inf. Syst. Secur. 4, 1 (Feb.).

PARK, J. AND SANDHU, R. 2000. Binding identities and attributes using digitally signed certificates.
In Proceedings of the 16th Annual Computer Security Applications Conference (New Orleans, LA,
Dec.), 120–127.

REITER, M. K., FRANKLIN, M. K., LACY, J. B., AND WRIGHT, R. N. 1996. The Ä key management
service. J. Comput. Secur. 4, 4, 267–287.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer systems.
Proc. IEEE 63, 9 (Sept.), 1278–1308.

SAMARATI, P. AND DE CAPITANI DI VIMERCATI, S. 2001. Access control: Policies, models, and mech-
anisms. In Foundations of Security Analysis and Design. R. Focardi and R. Gorrieri Eds.,
LNCS 2171. Springer-Verlag.

SAMARATI, P. AND JAJODIA, S. 1999. Data security. In Wiley Encyclopedia of Electrical and Elec-
tronics Engineering. J. Webster Ed., John Wiley.

SANDHU, R., COYNE, E., FEINSTEIN, H., YOUMAN, C. 1996. Role-based access control models. IEEE
Computer 29, 2 (Feb.), 38–47.

SANDHU, R. AND SAMARATI, P. 1997. Authentication, access control, and intrusion detection. In The
Computer Science and Engineering Handbook. A. Tucker Ed., CRC Press.

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

482 • P. Samarati et al.

FERRAIOLO, D., SANDHU, R., GAVRILA, S., KUHN, R., AND CHANDRAMOULI, R. 2001. Proposed NIST
standard for role-based access control ACM Trans. Inf. Syst. Secur. 4, 3 (Aug.).

WINSLETT, M., CHING, N., JONES, V., AND SLEPCHIN, I. 1997. Using digital credentials on the World
Wide Web. J. Comput. Secur. 5, 3, 255–267.

WOO, T. Y. C. AND LAM, S. S. 1993. Authorizations in distributed systems: A new approach. J.
Comput. Secur. 2 (2,3), 107–136.

Received February 2000; revised October 2001; accepted October 2001

ACM Transactions on Information and System Security, Vol. 4, No. 4, November 2001.

