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ABSTRACT 
Motivated by the application of private statistical analysis of 
large databases, we consider the problem of selective private 
function evaluation (SPFE). In this problem, a client inter- 
acts with one or more servers holding copies of a database 
z = z t , . . . , z ,  in order to compute f ( z~ t , . . . , z~ , , , )  , for 
some function f and indices i = i t , . . . , i , ~  chosen by the 
client. Ideally, the client must learn nothing more about the 
database than f ( z i t , . . . ,  zi,,~), and the servers should learn 
nothing. 

Generic solutions for this problem, based on standard 
techniques for secure function evaluation, incur communi- 
cation complexity that is at least linear in n, making them 
prohibitive for large databases even when f is relatively sim- 
ple and m is small. We present various approaches for con- 
structing sublinear-communication $PFE protocols, both for 
the general problem and for special cases of interest. Our so- 
lutions not only offer sublinear communication complexity, 
but  are also practical in many scenarios. 

1. INTRODUCTION 
Companies regularly use third-party databases in order to 

gain access to information used to guide their business de- 
cisions and product development. For example, it might be 
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important to the research and marketing decisions of a com- 
pany to know the fraction of people in a given zip code that  
are of a certain age, to find the number of related products 
that have been patented, or to find the number of similar 
characteristics between two given molecules. Clearly, the 
company does not want the owners of such databases to 
know what the actual query is, since the query may reveal 
crucial information about their future strategy. 

An obvious solution often employed in practice is for the 
company to buy the whole database, even if it actually 
needs only a small amount of information from the database. 
While this solution protects the company's proprietary in- 
terests, it is very expensive, both in terms of actual cost of 
buying the database and in terms of the required commu- 
nication complexity to transfer the data and keep it up to 
date. Furthermore, this solution is such that it does not al- 
low the database owners to keep their data private: instead 
of disclosing to their clients only the minimal amount of in- 
formation implied by the answers to the queries, they are 
required to reveal their entire data. 

A particularly appealing application is the private statis- 
tical analysis of large databases. Consider a scenario where 
the database contains information of two types: public in- 
formation (say, zip code), which can be freely accessed, and 
private information (say, salary or age) which may be valu- 
able and/or sensitive. A client, based on the public data, 
wishes to compute some statistics on a carefully selected 
subset of the private data, without revealing his selection 
criteria. The database owner, on the other hand, wants to 
reveal only the information that is requested and paid for 
by the client. One would expect that clients will be wl]llng 
to pay more for a larger sample size, which allows them to 
obtain more reliable statistics. 

Selective private function evaluation. Motivated by 
the above applications, we introduce and study the problem 
of selective private function evaluation (SPFE). An SPFE 
protocol enables a client to privately retrieve from a server 
(or multiple servers) holding a database z = (zx,... ,z,) 
the value f(z~t,... ,zi=), for some m-argument function .f 
and m indices it,... , i,~ of the client's choice. 

Ideally, the client should learn only the value of f on a se- 
lected sequence of m data items, while the server holding the 
database should learn nothing. Depending on the setting, 
however, it may be necessary or even desirable to allow the 
server to learn some partial information about f or the loca- 
tions accessed by the client. Without loss of generality, we 
concentrate in this work on the case where the server learns 
f and m but not the m locations in the database to which 
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f is applied. (Solutions where the servers should not learn 
even f can be obtained by lett ing f be a 'universal function' 
and allowing the client to specify the actual  function to be 
evaluated via some additional private input to f . )  [n the 
context of the private statistics application discussed above, 
SPFE protocols address the following privacy concerns: 

(1) Protect  clients from revealing what type of sample 
population, what type of specific da ta  about this sample, 
and possibly also what  function of the selected items, they 
are after; 

(2) Protect  database owners from revealing a large amount 
of information about their da t a  or providing a higher quality 
service than what  a client has paid for. 

1.1 Related work 

S e c u r e  c o m p u t a t i o n .  Secure mult i -par ty computat ion 
(MPC) [45, 28, 10, 14] is a powerful and general crypto- 
graphic primitive. It allows two or more parties to jointly 
compute some function of their inputs while hiding their in- 
puts from each other. SPFE may be cast as a special case 
of the general secure MPC problem. Thus, generic secure 
2-party protocols [45, 28, 26], whose communication com- 
plexity is linear in the size of a circuit being evaluated, are 
sufficient to obtain some solution to our problem. However, 
since a circuit computing the SPFE functionality must be at 
least of the size of the database, the communication com- 
plexity of these generic solutions will be (at least) linear in 
n, making them infeasible when the database is large. In 
contrast, our main goal is to obtain solutions for the SPFE 
problem whose communication complexity is sublinear in 
the database size when m <~<~ n. 

Private information retrieval. The study of sublinear- 
communication secure computation originated from the prob- 
lem of private information retrieval (PIR), introduced in [17]. 
A P[R protocol allows a client to retrieve a selected item 
from a database while hiding the identity of this item from 
the server holding the database. The main goal of P[R- 
related research has been to minimize the communication 
complexity of P|R, which is measured by default as the cost 
of retrieving one out of n bits. (Note that a P[R proto- 
col with n communication bits can be trivially realized by 
sending the entire database to the client.) Under specific 
number-theoretic intractability assumptions, it is possible 
to construct PIR protocols with a very low asymptotic com- 
munication complexity [32, 34, 43, 12], as low as polynomial 
in log n and the security paramete r  [12]. 

An alternative setting for PIR assumes that  the database 
is replicated among multiple servers, and only requires the 
client 's privacy to hold against restr icted collusions of servers 
[17, 4, 16, 31, 7]. In this setting, it  is possible to achieve 
information-theoretic privacy with sublinear communication. 
While the asymptotic communication complexity of the lat- 
ter multi-server protocols is generally worse than that of 
single-server protocols, they are significantly more efficient 
in computation, and even their communication complexity 
is typically lower for practical database sizes. 

PiR is not concerned with the privacy of the database. 
The problem of symmetrically private information retrieval 
(SPIR), introduced in [25], is an extension of PIR where the 
client is restr icted to learn no more than  a single da ta  item. 1 
Using constructions from [25, 43, 36, 37], SPIR protocols 

1SPIR is almost synonymous to the well-known notion of 

can be obtained from PIR protocols with a small complex- 
i ty overhead. We use SPIR(n, m, l )  to denote a more gen- 
eral version of the problem, in which m items are retrieved 
from the same database of n l -b i t  items. While this prim- 
itive can be implemented by m l  independent invocations 
of SPIR(n, 1,1), significantly more efficient implementations 
are possible [36, 37, 8]. Most of our constructions will utilize 
the SPIR primitive as a black box. Thus, we will generally 
not be concerned with the specifics of its implementation. 

Following the work on PIR, sublinear-communication se- 
cure MPC protocols were studied bo th  in other specific con- 
texts  (e.g., [33, 22]) and in more general contexts [35]. The 
la t te r  work aims at  transforming a general protocol in the 
communication complexity model into a secure protocol with 
a low communication overhead. While SPI=E can be viewed 
as a special case of the above problem, our solutions for this 
special case are more efficient than the ones in [35]. 

I n f e r e n c e  c o n t r o l  in s t a t i s t i c a l  d a t a b a s e s .  For com- 
pleteness, we briefly contrast  SPFE with the extensive body 
of literature on inference control (IC) in statistical databases 
(see, e.g., [2] for a survey). The goal of [C is to provide clients 
with access to a database for computing aggregate statistics 
about a collection of individuals while protecting the confi- 
dentiality of each individual in the database. The attacker is 
a client who attempts to infer some previously unknown data 
about an individual in the database by performing one or 
more allowed queries. SPFE differs from IC in several ways, 
most fundamentally in its different privacy goals: SPFE is 
concerned with hiding client queries and limiting database 
disclosure, rather than limiting inferences about individuals 
in the database. These contrasting sets of goals can lead to 
conflicting solutions. For example, inference controls in sta- 
tistical databases include query set restriction (see [2, Sec- 
tion 3] and [19, Chapter  6]), whereby the database monitors 
the query set of each query - -  i.e., the subset of records 
included in the computat ion of the response to the query 
- -  and limits the query set size, the overlap of query sets 
in successive queries by the same client, etc. In contrast,  
the query set is required to be hidden from the database in 
SPI=F. On the other hand, inference controls in which the 
database  itself is per turbed  to protect  the privacy of indi- 
viduals (see [2, Section 4]) could be applied to a database 
using SPI=F. 

1.2 Our results 
As in the PlR-related literature, we consider both  a single- 

server model and a model where the database  is replicated 
among several servers. The pr imary performance measures 
for an SPFF protocol are: 

(1) The number o£servers. We find the single-server set- 
ting generally more appealing, since servers are arguably the 
most crucial resource, and, as noted above, the multi-server 
model does not  protect  the client from large collusions of 
servers. (We note though that  our solutions for the single- 
server setting can be adapted  to the multi-server setting, 
allowing more efficiency in other parameters . )  

oblivious transfer (OT) [42, 44, 21]. We use the terminology 
of SPIR to indicate that:  (1) we are mostly interested in the 
case that  the number of i tems is large and the communi- 
cation is sublinear in the number of items; (2) we consider 
bo th  a single-server and a multi-server model; (3 ) l ike  in 
the PIR literature, we allow some relaxations to the most 
stringent security definitions of OT. 
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(2) Communication and computation costs. We treat the 
communication complexity as the most significant complex- 
ity measure (excluding the number of servers). However, 
some of our protocols will also be fine-tuned for optimizing 
the computation. We will usually specify the complexity of 
our solutions in terms of other primitives (SPIR, generic se- 
cure MPC, encryption) rather than in absolute terms. By 
substituting specific implementations of these primitives, 
one may get a concrete sense of the actual costs. Finally, 
while we still use big-O notation in our complexity analysis, 
the underlying constants will typically be very small. 

(3) The number of communication rounds. We define 
a round to consist of a message from the client to each 
server followed by a reply from each server to the client. 
To achieve provable security against malicious clients, our 
protocols may require an additional preprocessing phase or 
certified public keys (as in, e.g., [11]). 

Notions of security. In addition to the performance pa- 
rameters, we consider the following security characteristics 
of a solution. First, security can be either computational 
(i.e., based on cryptographic assumptions and computational 
limitations of the parties) or absolute (information-theoretic). 
Our solutions will guarantee that the client obtains the cor- 
rect values only when all servers follow their protocol. Still, 
our multi-server solutions can be easily generalized to pro- 
vide fault tolerance as well. The client's privacy is guar- 
anteed even when up to some threshold of servers, referred 
to as the privacy threshold, are malicious, i.e., deviate from 
their protocol in an arbi t rary  way. In bounding the amount 
of information gathered by a malicious client, we distinguish 
three levels of security. (1) Strong security guarantees that  
the client learns only the value of the public function / on 
some sequence of m da ta  items. (2) Weak security only 
guarantees that  the client learns the value of some function 
f '  on some sequence of rrt da t a  items, where the function f 
is determined by the client's actions; however, / '  is guaran- 
teed to have the same output  size as f .  The la t ter  ensures 
that  only a small amount of information about  the database 
is leaked. Thus, the weaker notion of security is sufficient 
to address most privacy concerns tha t  SPFE resolves. (3) 
Finally, some of our protocols provide no provable security 
against malicious clients. Yet, these are provably secure 
against a semi-honest  client, who follows the protocol but  
tries to learn additional information from its view, and may 
also be heuristically weakly secure against a malicious client. 

O u r  s o l u t i o n s .  We aim at obtaining SPFE protocols that  
are not only asymptotically efficient, but  are also feasible in 
practice. We present several protocols, where each is best  
suited to part icular  settings. 

In Section 3.1, we present a one-round multi-server infor- 
mation-theoretic SPFE protocol. Its construction is based 
on a reduction to multivariate polynomial evaluation. This 
protocol is most appealing when f is very simple (e.g., the 
sum function) and when a large number of servers are avail- 
able, as might be the case if da ta  replication is used for fault 
tolerance or as par t  of a content distribution mechanism. A 
significant advantage of this protocol is that  it  involves very 
short messages from the servers to the client. Thus, this 
protocol can be used to compute several statistics on the 
same da ta  set, or the same statist ic over different periods of 
time, with little additional cost. 

In Section 3.2, we present a one-round SPFE protocol for 

general functions, whose construction relies on private si- 
multaneous messages protocols (described therein). The ad- 
vantages of this protocol over subsequent single-server proto- 
cols are its optimal round complexity and its strong security 
against a malicious client. 

In Section 3.3, we present three reductions of SPFE to gen- 
eral secure MPC and SPIR. None of the three provides strong 
security against a malicious client. Moreover, even if used 
in conjunction with a round-optimal  secure MPC protocol, 
they all require at least one additional round in comparison 
to the previous protocol. However, one advantage of these 
solutions is that they all efficiently scale to the case where jr 
is represented by an arithmetic circuit over a large modulus 
(rather than a Boolean circuit). When / is viewed as an 
integer- or real-valued function, this often allows for smaller 
circuits and better efficiency. An important additional ad- 
vantage of the second and third reductions is that they only 
require a single invocation of SPIR(n, m, l )  (retrieving m 
out of n items) ra ther  than m invocations of SPIR(n, 1 , t )  
on ra different databases. This may result in significant ef- 
ficiency improvements. In particular,  the la t ter  provably 
requires f~(mn) computat ion on the server's part ,  whereas 
the server's computat ion in the former can be made aLmost 
linear in n (cf. [36, 37, 8]). The third reduction typicaJly in- 
volves more communication and less computat ion than the 
second, but  does not provide provable security against a 
malicious client. We complement the above reductions by 
presenting a light-weight protocol for secure MPC of gen- 
eral ari thmetic circuits; this protocol is compatible with our 
notion of weak security against a malicious client. 

Finally, in Section 4, we specifically consider some useful 
instances of privacy-protecting stat ist ical  analysis, discuss 
the application of our general solutions to these instances, 
and present protocols that  are tailored to these cases. In 
particular,  we obtain an efficient one-round protocol for the 
special case where f is the sum function. 

Table 1 summarizes the efficiency of our general single- 
server solutions in terms of the SPIR and MPC primitives 
they rely on. (The third row of the table describes two 
variants of the same approach; addit ional variants are dis- 
cussed in Section 3.3.) The complexity coblmn refers to the 
case of a Boolean function f: {0, 1}" --~ {0, 11, where C! 
is the size of a Boolean circuit computing f. This cob~mn 
describes both the communication and computation costs 
(omitting insignificant factors). 2 SPIR(n, n ; , t )  denotes the 
cost of retrieving m out of n &bit items using a 1-roundSPIR 
protocol, MPC(m, s) denotes the cost of a 1-round secure 9.. 
party computation of an m-input, s-gate Boolean circuit, 
and s denotes a security parameter. (In practice, ~; can be 
instantiated by the length of an encryption key; see Section 2 
for a more formal treatment.) Using Yao's technique [46], 
the cost of MPC(ra, s) is m x SPIR(2, 1, ~) -t- OQ¢. s). s 

The main advantages of each protocol are summarized 
above. When comparing their complexity, it  is helpfnl to 
keep the following qualitative facts in mind: (1) SPIR(n, m, l )  
can be implemented more efficiently than m invocations of 
SPIR(n, 1, l);  (2) The best  known PIR protocol [19.] is not 
well adapted to retrieving multi-bit  items; consequently, the 

2The computat ion in the two protocols from Section 3.3.2 in- 
2 volves O(m log n) additional modular  multiplications. This 

overhead can be asymptotically reduced, see Section 3.3.2. 
SThis applies to some relaxation of the definition of secure 
MPC, discussed in Section 2. 
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section [ rounds [ 

§3.2 1 
§3.3.1 2 
§3.3.2 2/2.5 
§3.3.3 2 

complexity security against efficient scalability to 
malicious client arithmetic circuits? 

Strong No m x SPIR(n, 1,~;) +O(~ .C I )  
m x SPIR(n, I ,1)+ MPC(m, CI) 

SPIR(mm, log~ n) + MPC(m,C/)  + ,~m ~ / +,~m 
SPIR(n,m, ~) + MPC(m, Of) 

Weak Yes, more rounds 
Weak/None* Yes, more rounds 

None* Yes, more rounds 

Tab le  1: C o m p a r i s o n  of  ge ne r a l  s i ng l e - se rve r  s o l u t i o n s .  

best known implementation of SPIR(n, 1,1) is significantly 
more efficient than SPIR(n, 1, ~), even when ~; is as small as 
the si~.e of a key. 4 

Finally, in the security column, "None*" indicates prov- 
able security against a semi-honest client, that also appears 
(but is not proven to be) weakly secure against a malicious 
client. For our protocols to be provably secure against a 
malicious client with the specified round complexity, one 
should either assume an idealized '%lack-box" implementa- 
tion of the SPIR primitive, or make some additional require- 
ments which are satisfied by known implementations of this 
primitive. This applies to all protocols described in Table 1. 
Additional security-related issues are discussed in Section 2. 

2. PRELIMINAI~WS 
We define secure schemes for selective private function 

evaluation (SPFE). The problem is a special case of the gen- 
eral problem of secure function evaluation. Thus, in princi- 
ple, the general definitions (as in, say, [26, 13]) apply here 
as well. Nonetheless, here we provide an explicit, simpli- 
fied and relaxed definition for the special case of SPFE. The 
definition deals with the case of multiple servers. The single- 
server case is obtained as a special case. 

Let k,n, ~;,t E N, let D be some finite domain (called the 
data domain), and let [n] denote the set { 1 , . . . , n } .  There 
are k + 1 parties, the client C and k servers $1 , . . .  , Sk. The 
servers have a common input  z E D ~' representing the data, 
and the client has a (deterministic) function f : D '~ -+ 
D where nt  _< n,  and a list I E [n] "~ of m indices. The 
function is given using some standard representation, e.g. 
via a circuit that  evaluates it. In addition, all parties have 
a security parameter ~. The servers also have a common 
random input, which can be regarded as an extension of the 

d e f  database. The client wishes to learn f ( z l ) ,  where zx : 
( z i l , . . .  ,zi,,,), while making sure that any collusion of up 
to t servers learns nothing. Sometimes it will be allowed, or 
even required, that  the servers learn f or I or some partial 
information about them. The servers wish to make sure that  
the value learned by the client is a 'qegitimate" one, where 
legitimacy may be interpreted in a number of ways. 

All parties are assumed to be polynomial in ~.s For the 
sake of nnlformity, we formulate our security requirements 
only against polynomial-time adversaries. Nonetheless, in 
the case where there are multiple servers, security will hold 
even ag~nst  computationally unbounded adversaries. 

4In contrast, SPIR(2,1, ~) can be implemented in practice 
with the same cost as SPIR(2, 1, 1) when ~ is small. 
SThis implies that n, the length of the database, must be 
at most polynomial in ~. When security is desired even 
against adversaries that are sub-exponential in the security 
parameter, one can allow n and ~ to vary more (see, e.g., 
[12]). 

A bit more specifically (but still informally), we make 
three requirements. The first is Correctness, which states 
that as long as the client and the servers follow the protocol 
then the client's output will be the correct value f(zz). The 
second is Client Privacy, which states that no adversary (that 
controls up to t servers) will learn anything from the inter- 
action, except possibly some pre-defined information, even 
if the corrupted servers deviate from the protocol in an ar- 
bitrary way. We model the information that the servers are 
allowed to learn about the client's input in a way described 
below. By default, this information will include the function 
f and the list size m but not the actual list I. The third is 
Database Secrecy, which states that the client learns only a 
predefmed amount of information about the data, even if it 
arbitrarily deviates from its protocol. 

While correctness is quite straightforward to formulate, 
formalizing the other two is a bit more problematic. Client 
Privacy is formalized by requiring that there exists an al- 
gorithm (a simulator) that generates a distribution that is 
indistinguishable from the view of the servers corrupted by 
the adversary. This view includes their inputs, random in- 
puts, and messages they receive. By default we require 
computationalindisting~dshability between the two distribu- 
tions, parameterized by the security parameter ~. However, 
our multi-server protocols will provide information-theoretic 
client privacy, where the simulator's output is identical to 
the servers' view. The simulator is given the data z and the 
value of some pre-defmed function h applied to the client's 
input. (Again, by default h(f, I) = f where (f, I) is the 
client's input.) 

Database Secrecy is captured as follows. Fix some subset 
A of all functions from D '~ to D. We think of A as the 
set of "allowable functions", or in other words the set of 
functions that the client is allowed to apply to the database. 
We require that for any adversary J4 controlling the client 
there exists a simulator M with the following characteristics. 
The goal of M is to generate an output that is distributed 
indistinguishably from the output of .A. However, M does 
not interact with the servers; instead it interacts with a 
"trusted party" T that has the following functionality. T 
receives from M a description of a function g E A. In return, 
T outputs g(z). It is stressed that M can invoke T only 
once. Intuitively, this requirement captures the property 
that a malicious client can learn the value of any function 
g E A of its choice, applied to the data x. 

In the case of a malicious client, our protocols (except 
where noted previously) satisfy the database secrecy require- 
ment with respect to one of the following two possible sets 
A of allowable functions. Weak security refers to the case 
where A is the set of all functions that depend on at most 
m locations in the database and output a value from D. 
Strong security refers to the case where A = {g(x) : f (xz)  I 
z c [n], IZl = ~}, and f is the function that appears in 
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the client's input. Our basic protocols do not guarantee 
correctness against malicious servers (indeed, in the single- 
server case such a requirement is quite meaningless). Client 
Privacy and, in some cases, Database Secrecy will be guar- 
anteed even against malicious adversaries. For lack of space, 
we omit more formal definitions from this extended abstract. 

On the definition of SPIR. Most of our constructions use 
symmetrically private information retrieval (SPIR) as a sub- 
routine. SPIR can be defined as a special case of SPFE, 
where the input of the client is restricted so that f is the 
identity function and I is a singleton (i.e., m = 1). We 
use SPIR(n,m,£) to denote a generalization of this primi- 
tive allowing the client to select m out of n items of length 
£. Sometimes the parameter l will be replaced by the data 
domain D, or by * when it is clear from context. By default, 
SPIR will refer to 1-round SPIR. 

O n  t h e  d e f i n i t i o n  of  s ecu re  MPC. Another subroutine 
that win be used by our constructions is general secure MPC. 
Similarly to the SPFF defmition, our definition for secure 
MPC relaxes the standard ones from [13, 26] in that it does 
not require correctness if a server is malicious, s Also, sim- 
ilarly to SPFF it is possible to define a notion of general 
secure 2-party computation with a weak security against a 
malicious client. These relaxations allow for more efficient 
implementations of secure 2-party computation, which do 
not require the server to prove the validity of its actions. 

Homomorphic encryption. Some of our protocols rely 
on the standard tool of homomorphic encryption. A ho- 
momorphic encryption scheme is an encryption scheme in 
which the plaintexts are taken from a group G, and given 
encryptions of two group elements one can efficiently com- 
pute a (randomized) encryption of their sum. Since this 
computation usually involves a modular multiplication of 
the encryptious, we write E(a) . E(b) = E(a + b). It follows 
that  E(a )  ° = E ( c - a )  for c e N.  The  O o l d w a s s e r - ~ c ~  
scheme [29] satisfies this property with G = g2. For more a 
more detailed definition of this primitive, as well as exam- 
ples of such schemes with larger homomorphism groups g,,, 
the reader may refer to [9, 39, 40, 41]. 

3. GENERAL SOLUTIONS 

3.1 Multi-server protocols based on multivari- 
ate polynomial evaluation 

In this section we present an information-theoretically se- 
cure solution to SPFF when the database z is replicated 
at multiple servers. For simplicity of presentation, here we 
assume a semi-honest client (but allow up to t malicious 
servers); this solution can be extended to address a mali- 
cious client at a moderate additional cost using techniques 
from [25]. 

Our solution builds from the following lemma, which fol- 
lows immediately from work in instance hiding [5]: 

LEMMA 1. [5] Consider a system of k servers, and let P 
be an 5-variate polynomial over a field F of total degree d. 
Suppose that P is known to all servers but is unknown to 

°Technically, in the Client Privacy requirement we only com- 
pare the view of the simulator to the view of the servers, 
whereas in the analogous requirement from [13, 26] these 
distributions are concatenated to the client's output. 

the client. If  k > dt and [FI > k, then there is a 1-round 
protocol by which a client can obtain the value of P on inputs 
of its choice, and such that any t servers gain no information 
about those inputs. In this protocol the client sends 6 field 
elements to each server, each server replies with a single field 
element obtained by evaluating P on the elements sent by the 
client, and the client computes its output using polynomial 
interpolation. 

In the protocol of Lemma 1, the values returned by the 
servers lie on a degree-dr polynomial ]5 such that/b(0) is the 
client's desired answer. Specifically, the answer of server h is 
equal to P(~h), where ~i,..., ~ are some (f=ed) distinct, 
non-zero elements of F. Following [25], we can thus extend 
this protocol to achieve symmetric privacy if server h instead 
returns P(rvh)-t-R(cth) for a random degree-dr polynomial R 
where R(0) = 0. R must be shared by the servers in advance; 
though inconvenient, some form of correlated random values 
is necessary to achieve symmetric privacy in the information- 
theoretic setting [25]. 

The solution of this section is thus to express f as a multi- 
variate polynomial P over F that depends on z, and whose 
value at indices Q , . . . ,  i,n encoded in F is Y ( z i l , - - . ,  zi~). 
Then, we can apply Lemma 1 to obtain the construction. 
Here we outline how to construct P from a Boolean for- 
mula ¢ computing f ,  where ¢ consists of binary (2-input,I- 
output) gates. The size of ~b, denoted s, is the total number 
of leaves in its tree representation. Let l = [log 2 n], and let 
F be a finite field containing at least Is -k 2 elements. Let 
j(k) denote the k-th leftmost bit in the l-bit binary repre- 
sentation of j. Define the polynomial P0 G F[yl,... , yz] as 
follows: 

yk if j(k) = 1 
e o ( y , , . . . ,  y,) = ~# I - y,, i f  j ( k )  = o 

j = l  \ k=l 

Note that P0(i(1),... ,i(£)) = xi, and that P0 is a poly- 
nomial of total degree L For each gate g in ~, recursively 
define a polynomial Pg = Qg(Pg.loft, Pg.r;sht), where Qg is 
the natural (degree-2) polynomial implementing g. (For 
example, if g is an AND gate, then Q~(~a, ¢) -- ~ • ¢.) 
If g's left input is some zi, then Pg.ioft is the polynomial 
P0(i(1),... , i(1)), and if g's left input is the output of some 
gate g', then P~.loft ---- Pg,. Pg.r;sht is defined similarly. Thus, 
if .~ is the gate that produces the output of the formula, then 
P = P~ E F [ y t , . . .  , Y,~z] satisfies 

P(i~ ( 1 ) , . . . ,  i ,  ( t) ,  i~ ( 1 ) , . . . ,  i~ (t)  . . . .  , i ~ , ( 1 ) , . . . ,  i~ , ( t ) )  
= f(xix . . . . .  xi,,~) 

Note that since deg(Pg) ~ deg(Pg.,,ft) + deg(Pg.~;sht), the 
total degree of P satisfies deg(P) < ls,  and so applying 
Lemma 1 yields a construction with k = tls + 1 servers. 

TItBORBM 2. If  f can be computed by a formula of size s, 
the above protocol is a 1-round SPFE protocol secure against 
a semi-honest chent and t mahcious servers, where the total 
number of servers is k = ts log n + 1. Its communication 
complexity is k log k(mlog n + 1). 

This theorem is most interesting in the ease when f E N C  t 
where we get an SPFE protocol with m°(1)tlogn servers. 
Note that the above construction actually applies to any 
function f which can be efficiently computed 7 by a degree-s 

7If computational efficiency is not a requirement, then s = 
m is sufficient for any Boolean function f .  
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polynomial over F ,  where IFI > t s l o g n  + 1. Hence, if f is 
the sum function (outputt ing the sum of i ts m inputs over 
F) ,  Theorem 2 applies with s = 1. 

Finally, we remark that  s tandard techniques allow a trade- 
off between the number of servers for efficiency and fault tol- 
erance. Specifically, a savings of a factor of c in the number 
of servers can be obtained by increasing the communication 
by roughly a factor of 2 ¢, and t' malicious servers can be 
tolerated by adding 2t '  additional servers. 

3.2 Solutions based on private simultaneous 
messages protocols 

In this section, we construct protocols for SPFE by ap- 
plying a SPIR protocol on top of a protocol for f in the so- 
called private simultaneous messages (PSM) model [23, 30]. 
We start by describing the PSM model, and then discuss its 
application to our problem. 

In the PSM model, there are m players PI,--- , P,,~ and an 
external referee. Each player P# holds an input  Yi, and all 
of them share access to a common random input r,  which 
is lmknown to the referee. The players '  goal is to securely 
evaluate a given function f of their inputs  by having each 
player Pi  send a single message pj  to the referee, where 
p~ is determined by yj and r alone. Tha t  is, the referee 
should be able to reconstruct the value f ( y l , . . .  , ym) from 
the m messages i t  receives, but  should learn no additional 
information about  the inputs y l , . . .  , y,,,. 

Motivated by efficiency considerations, we slightly refine 
the above setting. In addition to the m players P1 , . . -  , pro, 
our variant of the model includes an addit ional player P0 
who holds no input. The message p0 computed by P0 is 
determined only by the random input r.  In the usual PSM 
scenario this extension of the model seems useless, since the 
extra  player P0 can be simulated by the other players at  
no additional cost. However, in our context it  is beneficial 
to shift as much communication as possible to the extra  
message po. We say that  a PSM protocol has communication 
complexity (a,/3) if the length of each message p~, j > 0, 
is bounded by a ,  and the length of the extra  message p0 
is bounded by /3 .  Due to space considerations, we omit a 
detailed formalization of this definition. 

The following example describes a simple and useful PSM 
protocol for the modular  sum function. 

EXAMPLE I .  Let Z ,  denote the additive group of residues 
modulo u, where u is an l-bit integer. Consider the func- 
tion f : Z ~  --r T~ outputting the sum of its m inputs. A 
PSM protocol for f with communication complexity (£, 0) 
proceeds as follows. The common random input contains 
independent random group elements rl , . . . , rm-1.  The mes- 
sages are defined by p# = y# + r#, I <_ j <_ m, where 
r , ,  = -(ra + . . .  + rm-a). It is clear that the referee can 
reconstruct the output by adding all m messages, and it is 
not hard to verify that the messages are random subject to 
the restriction that they add up to the sum of the inputs. 

To construct  an SPFE protocol from a PSM protocol for 
f ,  the servers will simulate the rn q- 1 players of the PSM 
protocol, and the client will simulate the referee. Our goal 
is to allow the client to efficiently obtain the m + 1 PSM 
messages corresponding to its selected inputs  x ix , . . .  , xi,~. 

We formulate the protocol for the general t-private k- 
server case. When k > 1, this allows us to obtain in_formation- 
theoretic security for the client. The building blocks are: (1) 

a (1-round) t-secure k-server SPIR protocol and (2) a PSM 
protocol 7 ) computing f. 

The SPFE protocol proceeds as follows: (1) If k ---- 1, the 
server picks a random input r for the PSM protocol 7); oth- 
erwise, such an r is taken from the servers' common random- 
ness. (2) For each j ,  1 <_ j _< m, each server computes an 
n-i tem virtual database in which the i - th  i tem is the message 
which player Pj would send in 7) on input zi  and random 
input r; the client retrieves the i#-th i tem from the virtual 
database using the SPIR protocol. (3) The first server com- 
putes the extra  message p0 from r, and sends it to the client 
in the clear. (4) By simulating the referee in 7), the client 
computes the value of f from the m + 1 PSM-messages it 
obtained. 

Note that all m + I messages sent in steps 2,3 can be 
simultaneously sent to the client. Letting SPIR(n, 1, c~) de- 
note the communication complexity of the SPIR protocol, 
we have: 

THEOREM 3. The above protocol is a 1-round SPFE pro- 
tocol with communication complexity m • SPIR(n, 1, a) -t-/3, 
where (a,/3) is the communication complexity of 7). It pro- 
vides strong security against a malicious client. Perfect (info- 
rmation-theoretic) security is achievable for both sides using 
perfectly secure PSM and SPIR protocols. 

We conclude this section by substi tuting known upper  
bounds on the complexity of PSM protocols in bo th  the com- 
putat ional  and information-theoretic setting. Let C!  (resp., 
B!)  be the size of a circuit (resp., branching program) com- 
puting f .  In [23, 46], a computat ionally secure PSM protocol 
with communication complexity (to, O(~-  C1)) is given and 
in [30], a perfectly secure PSM protocol with communication 
complexity (O(B~), 0) is given. We denote the cost of a one- 
round SPIR protocol using k servers by SPIRk and the cost 
of a one-one perfectly secure SPIR protocol using k servers 
by PSPIRh. Using these protocols, we obtain the following 
reductions from SPFE to SPIR: 

COROLLARY 4. (1) If  k >_ 1, then there exists a t-private 
k-server computationally-secure 1-round SPFE protocol with 
m. SPlRk(n, 1, ~) + 0(~ .  CI) communication; and (2) I f  
k > 1, then there exists a perfectly secure t-private k-server 
SPFE protocol with m .  PSPIRk(n, 1, O( B~) ) communication. 

3.3 Solutions based on general secure multi- 
party computation 

In this section we present several reductions of the SPFE 
problem to SPIR and general secure MPC. We focus on the 
single-server case, and assume that  the da ta  domain D is 
some additive group 7/.~, (where u = 2 in the default Boolean 
case). 

We break down the problem into two phases. In the first 
phase, called input selection, the server and the client obtain 
a simple (additive) secret-sharing of the m selected i tems 
Xl. (That  is, for 1 ~ j ~ m, the client and the server 
each obtain a random element from D, such that  the pair of 
elements add to xi j . )  This should be done without revealing 
any information to either party. In the second phase, the 
part ies may invoke any secure MPC protocol for computing 
the value of f ( x i )  from their shares. 

This two-phase approach does not support  strong security 
against a malicious client. Indeed, a malicious client may 
arbitrari ly change its shares of x l  before passing them as 
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inputs to the MPC phase. Nonetheless, most of the protocols 
obtained in this section can be proved to satisfy our notion 
of weak security against a malicious client. Note that if 
the only type of cheating by a malicious client is the one 
described above, then this is intuitively clear: in such a case, 
the function f' computed by the client will be of the form 
f(zx Jr A), where A is the difference between the received 
vector of shares and the one passed to the MPC protocol. 
In general, however, one must also guarantee that both the 
input selection protocol and the MPC protocol support this 
notion of security. 

The remainder of this section is organized as follows. In 
subsections 3.3.1, 3.3.2, and 3.3.3 we describe three different 
approaches for implementing the input-selection phase. We 
refer the reader to Section 1.2 (and in particular to Table 
1) for a comparison of these approaches. Finally, in Sec- 
tion 3.3.4 we present a light-weight protocol for computing 
a general arithmetic circuit. This protocol may be used for 
implementing the MPC phase of our protocols, namely se- 
curely computing f on the shared selected items, in the case 
where f is represented by an arithmetic circuit over a (pos- 
sibly large) ring. 

3.3.1 The first protocol for input selection 
Let share-z~ denote a primitive which achieves a sharing 

of a single selected item. That  is, share -x ,  has the following 
functionality: suppose that initially the server knows x and 
the client knows i; share - z i  is a secure protocol which results 
in the server knowing a value a E D and the client knowing 
a value b 6 D such that a and b are random subject to the 
restriction that they add up to xi. To implement share-z i ,  
the server picks a random a 6 D and prepares a "virtual 
database" l / =  (zl - a . . . . .  z ,  - a). The client then uses 
SPIR to find the value b = zi - a of the i th  location. 

Then to accomplish our input selection task, perform rrL 

invocations of share-x i ,  one for each i 6 I.  The above pro- 
tocol requires one round to complete. Together with a 1- 
round secure MPC protocol, it yields a 2-round SPFE pro- 
tocol whose cost (both in communication and computation) 
is dominated by that of the ra invocations of SPIR(n, 1, D) 
plus the cost of MPC. 

3.3.2 T h e  second protocol for input selection 
The previous input selection protocol, as well as the proto- 

col from Section 3.2, requires m retrievals of I out of n items, 
from m different databases. For reasons of communication 
and computational efficiency, it may be highly desirable to 
replace this by a s ingle  retrieval of m out of n items. 

To achieve this, we rely on ~n-wise independence. Let 
{Ps : [n] -~ D } s e s  be an rn-wise independent function fam- 
ily; that  is, if s is chosen uniformly at random from S, then 
for any i~ , . . .  ,i,~ the random variable ( P , ( i l ) , . . .  , P~(i,,)) 
is uniformly distributed over Din.  s Then, a generic version 
of the second input selection protocol may proceed as fol- 
lows. (1) The server picks a random s E S and computes 
a virtual database x '  such that x~ = zi + P,( i) ;  (2) The 
client uses a SPIR(n, re, D )  protocol to learn x~; (3) The  
parties engage in a secure MPC protocol outputting an ad- 

ditive sharing of P~( I )  d__.___, ( P , ( i z )  . . . . .  P , ( i ,=) ) .  That  is, the 
server's input is s, the client's input is I,  and the server and 

sit  suffices for our purposes that the latter distribution 
be cornputat ional l l l  ind i s t ingu ishable  f r o m  uniform; however, 
our solutions do not utilize this relaxation. 

the client output (respectively) random vectors c, d E D ~ 
such tha t  c -Fd = P=( / ) ;  (4) The  server ou tpu ts  a = - c  (i.e., 
uses --c as its share of zz) and the client outputs b = x~ - d. 

It is easy to verify that the sum of the outputs a, b is indeed 
equal to xr. Note that since z~ is uniformly distributed 
over D '~, step 2 reveals nothing to the client. Since step 3 
does not rely on step 2, both can be executed in parallel, 
and so the entire input selection protocol can potentially be 
implemented in one round. 

We turn to the question of efficiency. The above proto- 
col leaves two parameters unspecified: the function family 
{Ps} and the secure MPC protocol of step 3. Our efficient 
solutions will be obtained by letting {P,} be the family of 
degree-~ polynomials over a prime field F,  where IF[ > n. 
That is, each s = (so,... , s,,-1) E F "~ naturally defines a 
degree-m polynomial Ps(Y) = so + sly +... + s,,-i Y "~-I. 
We assume here that D = F and view the indices i# as 
dements of F. 

We present two variants for the secure MPC protocol re- 
quired in step 3. The first requires a single round, but incurs 
an ~n2~ additive communication overhead. The second re- 
duces this communication overhead to m~, but does this at 
the cost of increasing the round complexity and weakening 
the (provable) security of the resultant protocol. Both vari- 
ants utilize homomorphic encryption (see Section 2), which 
allows us to efficiently compute linear functions on a vector 
of encrypted values. 

First variant. (1) The client picks keys to a homomorphic 
encryption scheme over the plalntext group (F, +). It sends 

2 the public key E to the server along with the m encryptions 
E(i~), 1 < j _< ,~, 0 _< k < m; (2) The server picks random 
blinding elements rz,... ,r,~ E F, and for :~ = 1,... ,m it 
sends m-1  ski~ E(>-~k= o -- r j )  = E(P,(4#)  - r i ) ;  (3) The  server 
outputs ( r l , . . .  , r,~) and the client outputs the decryptions 
of the m encryptious sent by the server. 

S e c o n d  v a r i a n t .  (1) The server picks keys to a homomor- 
phic encryption scheme as above, and sends the public key E 
to the client along with the m encryptions E( s0 ) , . . .  , E(s ,~-I  ). 
(2) The client picks a random mask r = ( r l , . . .  , r , , ) ,  and 
computes E ( Ps ( i t )  - r t ) , . . .  , E ( P= ( i,n ) - r ,~ ) . (This can be 
done, since each encrypted value is a fixed linear combina- 
tion, depending on I,  of the m coefficients sj and an entry 
from r.) It sends the m encryptions to the server. (3) The 
server outputs the decryptions of the rrt encryptions sent by 
the client, and the client outputs r. 

The above two variants can viewed as two dual approaches 
for computing a matrix-vector product, where the first con- 
siders the product as a linear function of the matrix defined 
by the vector, and the second as a linear function of the 
vector defined by the matrix. 

Efficiency.  While the two variants significantly differ in 
their communication complexity, their computational com- 
plexity is similar: Step 2 in both requires one of the parties 
to perform O(m 2) modular exponentiations. Vvrhen rr~ is 
large, this is very expensive. However, since F can be cho- 
sen to be roughly of size r=, the exponents can be made small 
(by using small-modulus homomorphic encryption [9]). The 
computational overhead will be thus dominated by O(rc= 2 
log r=) modular multiplications. Finally, while both variants 
seem to require one round, the communication pat tern in 
the second is incompatible with that of the SPIR protocol. 
Consequently, the second input selection protocol requires 
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1.5 rounds to complete: a message from the server followed 
by a standard round. 

Secur i ty .  In contrast to the first protocol, the second can- 
not even be proved to be weakly secure against a malicious 
client. In fact, it is easy to construct a contrived (yet secure) 
encryption scheme which, when used in an SPFE protocol 
computing a simple function f ,  allows a malicious client to 
obtain the decryption key D. Consequently, in this protocol 
the client will be able to learn all ~ items zz. We note, 
however, that when using the above with natural  homomor- 
phic encryption candidates, it is plausible that the resultant 
SPFF protocol enjoys (heuristic) weak security against a ma- 
licious client. The protocol can be made provably secure by 
requiring the client to prove in zero-knowledge that it knows 
the function it applies to the encrypted values. However, 
this would result in a significant overhead to the efficiency 
of the protocol. 

T h e  B o o l e a n  case.  As is, the SPFF protocol based on ei- 
ther of the above variants seems to require secure MPC over 
a field of size ~ n even in the default Boolean case. Since the 
best known 1-round secure MPC protocols do not generalize 
efficiently to arithmetic circuits, this may result in a consid- 
erable overhead. One approach for solving this problem is 
to compose the Boolean circuit for f with a Boolean circuit 
of size O(mlogn)  computing the bit-vector zz from the bi- 
nary representations of the share vectors a, b. However, this 
overhead can be completely eliminated in most implemen- 
tations of Yao's 1-round MPC protocol. Details are omitted 
from this version. 

Asymptotic improvements. By choosing ~P~} to be a 
family of cryptographic pseudorandom functions (and rely- 
ing on generic secure MPC in step 3 of the general input 
selection protocol), it is possible to improve both the com- 
munication and computation overhead of the first variant to 
t~°(x)m. An even further improvement is possible if one uses 
the polynomial family ~p,) as in the original protocols, but 
relies on a nearly-linear FFT-based algorithm for evaluating 
the polynomial P, on the points (ix,... , i,~). Unfortunately, 
both improvements do not seem to apply to practical choices 
of the parameters. 

3.3.3 The third protocol  f o r  input selection 
We present a third alternative to the implementation of 

the input selection phase. In comparison to the first variant 
of the previous protocol, its relative disadvantages are that it 
fails to give provable security against a malicious client and 
that it uses SPlR(n, vr~, ~), where ~ is of the length of a homo- 
morphic encryption, instead of SPIR(n, m, log n). However, 
similarly to the second variant, its communication overhead 
is only linear in m, and its computational complexity is su- 
perior to both variants of the previous protocol. 

The protocol, which is similar in spirit to a protocol from 
[20], proceeds as follows. First, the server chooses keys for 
a homomorphic encryption scheme over D, sends the public 
key E to the client, and prepares (but does not send) encryp- 
tions E(z t )  . . . .  , E (~ , ) .  Next, the client uses SPlR(n, m, D) 
to retrieve E(zi t )  . . . .  , E(~:i,,,). It picks random blinding el- 
ements rx , . . .  ,r ,n E D, computes E(xiy - r j ) ,  and sends 
these values back to the server. Finally, the server decrypts 
and outputs a i = ziy - ry, and the client outputs bj = ry. 

The $PFE protocol obtained from this input selection pro- 
tocol can be implemented in 2 rounds, by letting the client 

send its MPC message together with its second message of 
the input selection protocol. The complexity of the input 
selection protocol is dominated by that of SPIR(n, m, D). 

3.3.4 Secure protocol for arithmetic circuits 
In the second phase, called function evaluation, any secure 

MPC protocol can be used for evaluating f on the input 
shares. Yao's protocol, which is the best known protocol for 
the Boolean case, does not scale well to compute arithmetic 
circuits. 

We present a light-weight secure MPC protocol for arith- 
metic circuits over a ring D = 7/.u. Its round complexity is 
proportional to the circuit (multiplicative) depth, and it re- 
quires a constant number of exponentiations per gate. While 
not providing fifll security (hence its efficiency), it can be 
proved to satisfy our notion of weak security against a ma- 
licions client, and can therefore be naturally combined with 
any of the input selection protocols in this section. The 
protocol is reminiscent of protocols described in [15, 1, 18, 
24]. 

The arithmetic circuit is evaluated gate by gate. Before 
evaluating each gate, the server holds a homomorphic en- 
cryption of the input values for the gate (where the encryp- 
tion is under the client's key). At the end of the evaluation 
of the gate the server holds an encryption of the output value 
of the gate. The encrypted values are computationally hid- 
den from the server. Furthermore, the protocol guarantees 
that  both the client and the server learn nothing during the 
evaluation process. At the end of the protocol the server 
reveals the encryption of the output of the circuit. The 
client decrypts the value and outputs the result. We pro- 
vide efficient constant round implementations for addition 
and multiplication gates. 

The protocol begins with the client picking keys to a ho- 
momorphic encryption scheme over D = 7L~,, and sending 
the public key E to the server along with an encryption 
of its inputs. We describe procedures for evaluating mod- 
ular addition and multiplication gates on encrypted values. 
Tha t  is, consider the following problem: The server holds 
an encryption of values vx, v2 E [0, . . .  , u - 1]. The parties 
wish to provide the server with an encryption of the value 
c = vl + v2 mod u or c = ~t x v2 rood u. The client should 
learn nothing from participating in the protocol. In the fol- 
lowing, assume that all operations are performed rood u. 

E v a l u a t i n g  a n  a d d i t i o n  ga te .  Given E(~t) ,E(v~),  the 
server computes the encoding of vl + v2 on its own by com- 
puting E(vl + ~2) = E(vl ) .  E(~2). 

E v a l u a t i n g  a ga te  w h i c h  m u l t i p l i e s  by  a va lue  k n o w n  
to  t h e  se rver .  Given E(v) ,a ,  the server computes the 
encoding of ~.  a, by computing E(a.  ~) = E(~) ~. 

E v a l u a t i n g  a ga te  w h i c h  m u l t i p l i e s  by  a va lue  u n -  
k n o w n  to  t h e  server .  Given E(vt) ,E(v~) ,  we describe 
how the server uses the help of the client in order to ob- 
tain E ( v l - v 2 ) .  (1) The server chooses r l , r~  uniformly 
from [0, . . .  , r  - 1]. (2) The server computes E(vl + r t) ,  
E(v2 + r2) and sends them to the client. (3) The client 
decrypts to obtain vl + rl and v2 -{-r2, and sends e ---- 
E((vl + rl ). (v2 + r2)) to the server. (4) The server computes 
E(r~ • r~), E ( ~  • r=), S (~2"  r l )  and  divides them from e to 
obtain E(vl • v2). 
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4 .  S T A T I S T I C A L  F U N C T I O N S  
In this section, we consider specific instances of the SPFE 

problem which are geared towards privately computing stan- 
dard statistics on a selected data set. Wc discuss the appli- 
cability of our general solutions from previous sections to 
several statistical computation functions, and also present 
some direct constructions. Throughout most of this section 
we view the data items as integer-valued. 

Average and variance. The sum ftmction is particularly 
important for statistical applications since it can capture 
several interesting statistical quantities. Indeed, learning 
the sum of m values is equivalent to learning their average. 
The variance of m values is a linear combination of their sum 
and the sum of their squares. Thus, given a 1-round SPFF 
protocol for the sum function, one can efficiently implement 
a 1-round SPFE protocol for a "package" combination of 
average and variance. The server stores x '  = (x~, . . .  ,z~) 
in addition to the original database. Upon receiving the 
client's queries, generated according to the sum protocol, 
it replies twice: once with the original database, and once 
with the database x'. Note that if the SPFE protocol is 
strongly secure against a malicious client, then so is the 
above protocol (since learning both the average and variance 
of the same set of items is equivalent to learning both their 
sum and the sum of their squares). 

Eff ic iency of  p r e v i o u s  c o n s t r u c t i o n s .  To efficiently solve 
the special case of SPFE where the function f is the sum 
function, we view the items as elements of a field F = g~, 
where u is an upper bound on the sum. Applying the 
generic approach of Section 3.1 (and utilizing the fact that 
f admits a degree-1 representation over F) ,  we may get a 
( t l ogn  q- 1)-server 1-round protocol (where t is the client 
privacy threshold), in which the communication consists of 
roughly tmlog 2 n field elements. The main disadvantages of 
this approach is the number of servers and the computation 
time of O(mn).  

We turn to the single-server setting. The PSM-based con- 
struction of Section 3.2, while not efficiently scalable to gen- 
eral arithmetic circuits, can provide a fairly efficient solu- 
tion in our special case of the sum function, as described 
in Example 1. However, this solution still requires m in- 
vocations of SPIR on m different databases, which is pro- 
hibitive when rn is large. To gain better  efficiency, it is 
desirable to reduce the problem to a single invocation of a 
SPIR(n, m, *) primitive. This is achieved by the technique of 
Sections 3.3.2, 3.3.3. However, the round complexity of the 
resultant protocols will not be optimal, and they either incur 
a high computational overhead or require the application of 
SPIR on relatively long strings. 

A n  eff icient  s o l u t i o n  for  t h e  w e i g h t e d  s u m  f u n c t i o n .  
We now show a 1-round solution which avoids the above 
weaknesses of our general solutions. First, we relax the 
problem and allow the client to compute any selected linear 
combination of m items. We refer to this as the toeighted 
sum problem. Note that a useful feature of this relaxation 
is that it allows us to compute the weighted average and 
variance of the selected data set, where the weights can be 
freely chosen by the client. 

Our protocol is similar to the first variant of the input se- 
lection protocol from Section 3.3.2. However, it relies on the 
linearity of the weighted sum function to achieve greater ef- 
ficiency. As in the input selection protocol, the server picks 

a random degree-(rn - 1) polynomial Ps over F with co- 
efficients so , . . .  , s ,~-l ,  prepares a virtual database x'  such 
that z~ = zi + Ps(i), and lets the client use SPIR(n, m, F)  
to learn x~. These alone are uniform and independent field 
elements. The next observation is that  learning z~ together 
with the sum P~(il) + . . .  + P=(i,~) is equivalent to learning 
xi 1 + . - - +  xi,,,. Finally, note that  this sum is a linear combi- 
nat ion of s o , . . . ,  s,,~-x, whose coefficients co, . . .  ,c,,~-x are 

• k W e  known to the client. Specifically, cA = i~ + .-- + h~. 
can thus complete the protocol by letting the client send 
E(c0) , . . .  , S ( c ~ _ , )  to the server and get E(s0c0 + SlC~ + 
• " Jr s m - z c m - z )  ---- E ( P , ( i , )  -k P , ( i 2 )  - b " "  q- P s ( i m ) )  in  re- 
turn.  The client outputs x ; ,  - t - - ' ' - I -  x;,~ - ( P , ( i l )  -b P , ( i 2 )  j r  
• . .  + P=(i, ,~)). Note that  since the ]/near combination proto- 
col can be done in parallel to the SPIR protocol, the entire 
protocol requires only one round. 

The generalization to weighted sum is straightforward: by 
choosing different coefficients cA the client can learn an ar- 
bitrary linear combination of xix,... , xi.~. Moreover, by 
a counting argument every choice of co,... ,c,n-1 induces 
some valid linear combination of the selected items. This 
implies that even a malicious client cannot learn more than 
some linear combination of the selected items. 

Efficiency. As noted above, the protocol can be imple- 
mented in one round. Its communication complexity is dom- 
inated by that of SPIR(n, m, F) ,  where IF I should be larger 
than the maximum of n and (an upper bound on) the sum of 
the m largest items. Its computational complexity includes 
an additional overhead of O(m)  modular exponentiations. 

Counting frequencies. We end this section by briefly dis- 
cussing an additional useful special case of private statistics: 
counting the number of occurrences, or frequency, of a cho- 
sen value or keyword in the selected data set. Let ~n be a 
keyword, taken from the data domain D. We embed D in 
a finite field F ---- Z~ where u > ID]. Our function may 
be formally defined as f (y l  . . . .  , Y-~) = ~"~#'n_-I X~,(V#), where 
X~(Y) is 1 if w = y and is 0 otherwise. 

Suppose that the client and the server already share the 
selected items xz in an additive way. This can be achieved 
in one round using our input selection protocols. Let a and 
b be the two shares of zx, held by the server and the client 
respectively. The protocol requires one additional round, 
and proceeds as follows: (1) The client sends m encryptious 
E(b,  - ,.), where ~ is the keyword to be searched; (2) For 
each 1 _< 3" _< m, the server picks a random blinding element 
rj  from the field, computes an encryption E(rj  • (aj + bj - 
w)) = E( r j .  (zi i - ~)),  and sends a random permutation of 
the m encryptions to the client. (3) The client decrypts the 
m encryptions and counts the number  of zeros. 

Note that a malicious client can alter the m encrypted 
values it sends. However, this only has the effect of allowing 
it to compute a more general function, in which a different 
keyword is specified for each selected item. 
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