
Selective Private Function Evaluation
with Applications to Private Statistics

(E X T E N D E D A B S T R A C T)

Ran Canetti" Yuval Ishai, Ravi Kumar* Michael K. ReiterS
Ronitt Rubinfeld~ Rebecca N. Wright,

ABSTRACT
Motivated by the application of private statistical analysis of
large databases, we consider the problem of selective private
function evaluation (SPFE). In this problem, a client inter-
acts with one or more servers holding copies of a database
z = z t , . . . , z , in order to compute f (z~ t , . . . , z~ , , ,) , for
some function f and indices i = i t , . . . , i , ~ chosen by the
client. Ideally, the client must learn nothing more about the
database than f (z i t , . . . , zi,,~), and the servers should learn
nothing.

Generic solutions for this problem, based on standard
techniques for secure function evaluation, incur communi-
cation complexity that is at least linear in n, making them
prohibitive for large databases even when f is relatively sim-
ple and m is small. We present various approaches for con-
structing sublinear-communication $PFE protocols, both for
the general problem and for special cases of interest. Our so-
lutions not only offer sublinear communication complexity,
but are also practical in many scenarios.

1. INTRODUCTION
Companies regularly use third-party databases in order to

gain access to information used to guide their business de-
cisions and product development. For example, it might be

*IBM T. J. Watson Research Center, Hawthorne, NY. Part
of this work was done while the author was visiting IBM
Almaden Research Center. canetti@.atson, ibm. corn
tDIMACS Center, Piscataway, N J, and AT&T Labs - Re-
search, Florham Park, NJ. yuvaled£macs.rutgers, edu

tIBM Almaden Research Center, San Jose, CA.
ravi@almaden, ibm. com
gBe11 Laboratories, 700 Mountain Avenue Murray Hill, NJ.
reit er@researoh, bell-labs, com
INEC Research Institute, Princeton, NJ. Part of this work
was done while the author was visiting IBM Almaden Re-
search Center. r o n i t t @ r e s e a r c h . n j .nee. c o r n

IIATg~T Labs - Research, 180 Park Avenue, Florham Park,
NJ. rwright@research, att. oom

Permission to make digital or hard copies ofaU or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a Ice.
PODC O1 Newport Rhode Island USA
Copyright ACM 2001 1-58113-383-9/01/08...$5.00

important to the research and marketing decisions of a com-
pany to know the fraction of people in a given zip code that
are of a certain age, to find the number of related products
that have been patented, or to find the number of similar
characteristics between two given molecules. Clearly, the
company does not want the owners of such databases to
know what the actual query is, since the query may reveal
crucial information about their future strategy.

An obvious solution often employed in practice is for the
company to buy the whole database, even if it actually
needs only a small amount of information from the database.
While this solution protects the company's proprietary in-
terests, it is very expensive, both in terms of actual cost of
buying the database and in terms of the required commu-
nication complexity to transfer the data and keep it up to
date. Furthermore, this solution is such that it does not al-
low the database owners to keep their data private: instead
of disclosing to their clients only the minimal amount of in-
formation implied by the answers to the queries, they are
required to reveal their entire data.

A particularly appealing application is the private statis-
tical analysis of large databases. Consider a scenario where
the database contains information of two types: public in-
formation (say, zip code), which can be freely accessed, and
private information (say, salary or age) which may be valu-
able and/or sensitive. A client, based on the public data,
wishes to compute some statistics on a carefully selected
subset of the private data, without revealing his selection
criteria. The database owner, on the other hand, wants to
reveal only the information that is requested and paid for
by the client. One would expect that clients will be wl]llng
to pay more for a larger sample size, which allows them to
obtain more reliable statistics.

Selective private function evaluation. Motivated by
the above applications, we introduce and study the problem
of selective private function evaluation (SPFE). An SPFE
protocol enables a client to privately retrieve from a server
(or multiple servers) holding a database z = (zx,... ,z,)
the value f(z~t,... ,zi=), for some m-argument function .f
and m indices it,... , i,~ of the client's choice.

Ideally, the client should learn only the value of f on a se-
lected sequence of m data items, while the server holding the
database should learn nothing. Depending on the setting,
however, it may be necessary or even desirable to allow the
server to learn some partial information about f or the loca-
tions accessed by the client. Without loss of generality, we
concentrate in this work on the case where the server learns
f and m but not the m locations in the database to which

293

© ACM, 2001. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/383962.384047.

f is applied. (Solutions where the servers should not learn
even f can be obtained by lett ing f be a 'universal function'
and allowing the client to specify the actual function to be
evaluated via some additional private input to f .) [n the
context of the private statistics application discussed above,
SPFE protocols address the following privacy concerns:

(1) Protect clients from revealing what type of sample
population, what type of specific da ta about this sample,
and possibly also what function of the selected items, they
are after;

(2) Protect database owners from revealing a large amount
of information about their da t a or providing a higher quality
service than what a client has paid for.

1.1 Related work

S e c u r e c o m p u t a t i o n . Secure mult i -par ty computat ion
(MPC) [45, 28, 10, 14] is a powerful and general crypto-
graphic primitive. It allows two or more parties to jointly
compute some function of their inputs while hiding their in-
puts from each other. SPFE may be cast as a special case
of the general secure MPC problem. Thus, generic secure
2-party protocols [45, 28, 26], whose communication com-
plexity is linear in the size of a circuit being evaluated, are
sufficient to obtain some solution to our problem. However,
since a circuit computing the SPFE functionality must be at
least of the size of the database, the communication com-
plexity of these generic solutions will be (at least) linear in
n, making them infeasible when the database is large. In
contrast, our main goal is to obtain solutions for the SPFE
problem whose communication complexity is sublinear in
the database size when m <~<~ n.

Private information retrieval. The study of sublinear-
communication secure computation originated from the prob-
lem of private information retrieval (PIR), introduced in [17].
A P[R protocol allows a client to retrieve a selected item
from a database while hiding the identity of this item from
the server holding the database. The main goal of P[R-
related research has been to minimize the communication
complexity of P|R, which is measured by default as the cost
of retrieving one out of n bits. (Note that a P[R proto-
col with n communication bits can be trivially realized by
sending the entire database to the client.) Under specific
number-theoretic intractability assumptions, it is possible
to construct PIR protocols with a very low asymptotic com-
munication complexity [32, 34, 43, 12], as low as polynomial
in log n and the security paramete r [12].

An alternative setting for PIR assumes that the database
is replicated among multiple servers, and only requires the
client 's privacy to hold against restr icted collusions of servers
[17, 4, 16, 31, 7]. In this setting, it is possible to achieve
information-theoretic privacy with sublinear communication.
While the asymptotic communication complexity of the lat-
ter multi-server protocols is generally worse than that of
single-server protocols, they are significantly more efficient
in computation, and even their communication complexity
is typically lower for practical database sizes.

PiR is not concerned with the privacy of the database.
The problem of symmetrically private information retrieval
(SPIR), introduced in [25], is an extension of PIR where the
client is restr icted to learn no more than a single da ta item. 1
Using constructions from [25, 43, 36, 37], SPIR protocols

1SPIR is almost synonymous to the well-known notion of

can be obtained from PIR protocols with a small complex-
i ty overhead. We use SPIR(n, m, l) to denote a more gen-
eral version of the problem, in which m items are retrieved
from the same database of n l -b i t items. While this prim-
itive can be implemented by m l independent invocations
of SPIR(n, 1,1), significantly more efficient implementations
are possible [36, 37, 8]. Most of our constructions will utilize
the SPIR primitive as a black box. Thus, we will generally
not be concerned with the specifics of its implementation.

Following the work on PIR, sublinear-communication se-
cure MPC protocols were studied bo th in other specific con-
texts (e.g., [33, 22]) and in more general contexts [35]. The
la t te r work aims at transforming a general protocol in the
communication complexity model into a secure protocol with
a low communication overhead. While SPI=E can be viewed
as a special case of the above problem, our solutions for this
special case are more efficient than the ones in [35].

I n f e r e n c e c o n t r o l in s t a t i s t i c a l d a t a b a s e s . For com-
pleteness, we briefly contrast SPFE with the extensive body
of literature on inference control (IC) in statistical databases
(see, e.g., [2] for a survey). The goal of [C is to provide clients
with access to a database for computing aggregate statistics
about a collection of individuals while protecting the confi-
dentiality of each individual in the database. The attacker is
a client who attempts to infer some previously unknown data
about an individual in the database by performing one or
more allowed queries. SPFE differs from IC in several ways,
most fundamentally in its different privacy goals: SPFE is
concerned with hiding client queries and limiting database
disclosure, rather than limiting inferences about individuals
in the database. These contrasting sets of goals can lead to
conflicting solutions. For example, inference controls in sta-
tistical databases include query set restriction (see [2, Sec-
tion 3] and [19, Chapter 6]), whereby the database monitors
the query set of each query - - i.e., the subset of records
included in the computat ion of the response to the query
- - and limits the query set size, the overlap of query sets
in successive queries by the same client, etc. In contrast,
the query set is required to be hidden from the database in
SPI=F. On the other hand, inference controls in which the
database itself is per turbed to protect the privacy of indi-
viduals (see [2, Section 4]) could be applied to a database
using SPI=F.

1.2 Our results
As in the PlR-related literature, we consider both a single-

server model and a model where the database is replicated
among several servers. The pr imary performance measures
for an SPFF protocol are:

(1) The number o£servers. We find the single-server set-
ting generally more appealing, since servers are arguably the
most crucial resource, and, as noted above, the multi-server
model does not protect the client from large collusions of
servers. (We note though that our solutions for the single-
server setting can be adapted to the multi-server setting,
allowing more efficiency in other parameters .)

oblivious transfer (OT) [42, 44, 21]. We use the terminology
of SPIR to indicate that: (1) we are mostly interested in the
case that the number of i tems is large and the communi-
cation is sublinear in the number of items; (2) we consider
bo th a single-server and a multi-server model; (3) l ike in
the PIR literature, we allow some relaxations to the most
stringent security definitions of OT.

294

(2) Communication and computation costs. We treat the
communication complexity as the most significant complex-
ity measure (excluding the number of servers). However,
some of our protocols will also be fine-tuned for optimizing
the computation. We will usually specify the complexity of
our solutions in terms of other primitives (SPIR, generic se-
cure MPC, encryption) rather than in absolute terms. By
substituting specific implementations of these primitives,
one may get a concrete sense of the actual costs. Finally,
while we still use big-O notation in our complexity analysis,
the underlying constants will typically be very small.

(3) The number of communication rounds. We define
a round to consist of a message from the client to each
server followed by a reply from each server to the client.
To achieve provable security against malicious clients, our
protocols may require an additional preprocessing phase or
certified public keys (as in, e.g., [11]).

Notions of security. In addition to the performance pa-
rameters, we consider the following security characteristics
of a solution. First, security can be either computational
(i.e., based on cryptographic assumptions and computational
limitations of the parties) or absolute (information-theoretic).
Our solutions will guarantee that the client obtains the cor-
rect values only when all servers follow their protocol. Still,
our multi-server solutions can be easily generalized to pro-
vide fault tolerance as well. The client's privacy is guar-
anteed even when up to some threshold of servers, referred
to as the privacy threshold, are malicious, i.e., deviate from
their protocol in an arbi t rary way. In bounding the amount
of information gathered by a malicious client, we distinguish
three levels of security. (1) Strong security guarantees that
the client learns only the value of the public function / on
some sequence of m da ta items. (2) Weak security only
guarantees that the client learns the value of some function
f ' on some sequence of rrt da t a items, where the function f
is determined by the client's actions; however, / ' is guaran-
teed to have the same output size as f . The la t ter ensures
that only a small amount of information about the database
is leaked. Thus, the weaker notion of security is sufficient
to address most privacy concerns tha t SPFE resolves. (3)
Finally, some of our protocols provide no provable security
against malicious clients. Yet, these are provably secure
against a semi-honest client, who follows the protocol but
tries to learn additional information from its view, and may
also be heuristically weakly secure against a malicious client.

O u r s o l u t i o n s . We aim at obtaining SPFE protocols that
are not only asymptotically efficient, but are also feasible in
practice. We present several protocols, where each is best
suited to part icular settings.

In Section 3.1, we present a one-round multi-server infor-
mation-theoretic SPFE protocol. Its construction is based
on a reduction to multivariate polynomial evaluation. This
protocol is most appealing when f is very simple (e.g., the
sum function) and when a large number of servers are avail-
able, as might be the case if da ta replication is used for fault
tolerance or as par t of a content distribution mechanism. A
significant advantage of this protocol is that it involves very
short messages from the servers to the client. Thus, this
protocol can be used to compute several statistics on the
same da ta set, or the same statist ic over different periods of
time, with little additional cost.

In Section 3.2, we present a one-round SPFE protocol for

general functions, whose construction relies on private si-
multaneous messages protocols (described therein). The ad-
vantages of this protocol over subsequent single-server proto-
cols are its optimal round complexity and its strong security
against a malicious client.

In Section 3.3, we present three reductions of SPFE to gen-
eral secure MPC and SPIR. None of the three provides strong
security against a malicious client. Moreover, even if used
in conjunction with a round-optimal secure MPC protocol,
they all require at least one additional round in comparison
to the previous protocol. However, one advantage of these
solutions is that they all efficiently scale to the case where jr
is represented by an arithmetic circuit over a large modulus
(rather than a Boolean circuit). When / is viewed as an
integer- or real-valued function, this often allows for smaller
circuits and better efficiency. An important additional ad-
vantage of the second and third reductions is that they only
require a single invocation of SPIR(n, m, l) (retrieving m
out of n items) ra ther than m invocations of SPIR(n, 1 , t)
on ra different databases. This may result in significant ef-
ficiency improvements. In particular, the la t ter provably
requires f~(mn) computat ion on the server's part , whereas
the server's computat ion in the former can be made aLmost
linear in n (cf. [36, 37, 8]). The third reduction typicaJly in-
volves more communication and less computat ion than the
second, but does not provide provable security against a
malicious client. We complement the above reductions by
presenting a light-weight protocol for secure MPC of gen-
eral ari thmetic circuits; this protocol is compatible with our
notion of weak security against a malicious client.

Finally, in Section 4, we specifically consider some useful
instances of privacy-protecting stat ist ical analysis, discuss
the application of our general solutions to these instances,
and present protocols that are tailored to these cases. In
particular, we obtain an efficient one-round protocol for the
special case where f is the sum function.

Table 1 summarizes the efficiency of our general single-
server solutions in terms of the SPIR and MPC primitives
they rely on. (The third row of the table describes two
variants of the same approach; addit ional variants are dis-
cussed in Section 3.3.) The complexity coblmn refers to the
case of a Boolean function f: {0, 1}" --~ {0, 11, where C!
is the size of a Boolean circuit computing f. This cob~mn
describes both the communication and computation costs
(omitting insignificant factors). 2 SPIR(n, n ; , t) denotes the
cost of retrieving m out of n &bit items using a 1-roundSPIR
protocol, MPC(m, s) denotes the cost of a 1-round secure 9..
party computation of an m-input, s-gate Boolean circuit,
and s denotes a security parameter. (In practice, ~; can be
instantiated by the length of an encryption key; see Section 2
for a more formal treatment.) Using Yao's technique [46],
the cost of MPC(ra, s) is m x SPIR(2, 1, ~) -t- OQ¢. s). s

The main advantages of each protocol are summarized
above. When comparing their complexity, it is helpfnl to
keep the following qualitative facts in mind: (1) SPIR(n, m, l)
can be implemented more efficiently than m invocations of
SPIR(n, 1, l); (2) The best known PIR protocol [19.] is not
well adapted to retrieving multi-bit items; consequently, the

2The computat ion in the two protocols from Section 3.3.2 in-
2 volves O(m log n) additional modular multiplications. This

overhead can be asymptotically reduced, see Section 3.3.2.
SThis applies to some relaxation of the definition of secure
MPC, discussed in Section 2.

295

section [rounds [

§3.2 1
§3.3.1 2
§3.3.2 2/2.5
§3.3.3 2

complexity security against efficient scalability to
malicious client arithmetic circuits?

Strong No m x SPIR(n, 1,~;) +O(~ .C I)
m x SPIR(n, I ,1)+ MPC(m, CI)

SPIR(mm, log~ n) + MPC(m,C/) + ,~m ~ / +,~m
SPIR(n,m, ~) + MPC(m, Of)

Weak Yes, more rounds
Weak/None* Yes, more rounds

None* Yes, more rounds

Tab le 1: C o m p a r i s o n of ge ne r a l s i ng l e - se rve r s o l u t i o n s .

best known implementation of SPIR(n, 1,1) is significantly
more efficient than SPIR(n, 1, ~), even when ~; is as small as
the si~.e of a key. 4

Finally, in the security column, "None*" indicates prov-
able security against a semi-honest client, that also appears
(but is not proven to be) weakly secure against a malicious
client. For our protocols to be provably secure against a
malicious client with the specified round complexity, one
should either assume an idealized '%lack-box" implementa-
tion of the SPIR primitive, or make some additional require-
ments which are satisfied by known implementations of this
primitive. This applies to all protocols described in Table 1.
Additional security-related issues are discussed in Section 2.

2. PRELIMINAI~WS
We define secure schemes for selective private function

evaluation (SPFE). The problem is a special case of the gen-
eral problem of secure function evaluation. Thus, in princi-
ple, the general definitions (as in, say, [26, 13]) apply here
as well. Nonetheless, here we provide an explicit, simpli-
fied and relaxed definition for the special case of SPFE. The
definition deals with the case of multiple servers. The single-
server case is obtained as a special case.

Let k,n, ~;,t E N, let D be some finite domain (called the
data domain), and let [n] denote the set { 1 , . . . , n } . There
are k + 1 parties, the client C and k servers $1 , . . . , Sk. The
servers have a common input z E D ~' representing the data,
and the client has a (deterministic) function f : D '~ -+
D where nt _< n, and a list I E [n] "~ of m indices. The
function is given using some standard representation, e.g.
via a circuit that evaluates it. In addition, all parties have
a security parameter ~. The servers also have a common
random input, which can be regarded as an extension of the

d e f database. The client wishes to learn f (z l) , where zx :
(z i l , . . . ,zi,,,), while making sure that any collusion of up
to t servers learns nothing. Sometimes it will be allowed, or
even required, that the servers learn f or I or some partial
information about them. The servers wish to make sure that
the value learned by the client is a 'qegitimate" one, where
legitimacy may be interpreted in a number of ways.

All parties are assumed to be polynomial in ~.s For the
sake of nnlformity, we formulate our security requirements
only against polynomial-time adversaries. Nonetheless, in
the case where there are multiple servers, security will hold
even ag~nst computationally unbounded adversaries.

4In contrast, SPIR(2,1, ~) can be implemented in practice
with the same cost as SPIR(2, 1, 1) when ~ is small.
SThis implies that n, the length of the database, must be
at most polynomial in ~. When security is desired even
against adversaries that are sub-exponential in the security
parameter, one can allow n and ~ to vary more (see, e.g.,
[12]).

A bit more specifically (but still informally), we make
three requirements. The first is Correctness, which states
that as long as the client and the servers follow the protocol
then the client's output will be the correct value f(zz). The
second is Client Privacy, which states that no adversary (that
controls up to t servers) will learn anything from the inter-
action, except possibly some pre-defined information, even
if the corrupted servers deviate from the protocol in an ar-
bitrary way. We model the information that the servers are
allowed to learn about the client's input in a way described
below. By default, this information will include the function
f and the list size m but not the actual list I. The third is
Database Secrecy, which states that the client learns only a
predefmed amount of information about the data, even if it
arbitrarily deviates from its protocol.

While correctness is quite straightforward to formulate,
formalizing the other two is a bit more problematic. Client
Privacy is formalized by requiring that there exists an al-
gorithm (a simulator) that generates a distribution that is
indistinguishable from the view of the servers corrupted by
the adversary. This view includes their inputs, random in-
puts, and messages they receive. By default we require
computationalindisting~dshability between the two distribu-
tions, parameterized by the security parameter ~. However,
our multi-server protocols will provide information-theoretic
client privacy, where the simulator's output is identical to
the servers' view. The simulator is given the data z and the
value of some pre-defmed function h applied to the client's
input. (Again, by default h(f, I) = f where (f, I) is the
client's input.)

Database Secrecy is captured as follows. Fix some subset
A of all functions from D '~ to D. We think of A as the
set of "allowable functions", or in other words the set of
functions that the client is allowed to apply to the database.
We require that for any adversary J4 controlling the client
there exists a simulator M with the following characteristics.
The goal of M is to generate an output that is distributed
indistinguishably from the output of .A. However, M does
not interact with the servers; instead it interacts with a
"trusted party" T that has the following functionality. T
receives from M a description of a function g E A. In return,
T outputs g(z). It is stressed that M can invoke T only
once. Intuitively, this requirement captures the property
that a malicious client can learn the value of any function
g E A of its choice, applied to the data x.

In the case of a malicious client, our protocols (except
where noted previously) satisfy the database secrecy require-
ment with respect to one of the following two possible sets
A of allowable functions. Weak security refers to the case
where A is the set of all functions that depend on at most
m locations in the database and output a value from D.
Strong security refers to the case where A = {g(x) : f (xz) I
z c [n], IZl = ~}, and f is the function that appears in

296

the client's input. Our basic protocols do not guarantee
correctness against malicious servers (indeed, in the single-
server case such a requirement is quite meaningless). Client
Privacy and, in some cases, Database Secrecy will be guar-
anteed even against malicious adversaries. For lack of space,
we omit more formal definitions from this extended abstract.

On the definition of SPIR. Most of our constructions use
symmetrically private information retrieval (SPIR) as a sub-
routine. SPIR can be defined as a special case of SPFE,
where the input of the client is restricted so that f is the
identity function and I is a singleton (i.e., m = 1). We
use SPIR(n,m,£) to denote a generalization of this primi-
tive allowing the client to select m out of n items of length
£. Sometimes the parameter l will be replaced by the data
domain D, or by * when it is clear from context. By default,
SPIR will refer to 1-round SPIR.

O n t h e d e f i n i t i o n of s ecu re MPC. Another subroutine
that win be used by our constructions is general secure MPC.
Similarly to the SPFF defmition, our definition for secure
MPC relaxes the standard ones from [13, 26] in that it does
not require correctness if a server is malicious, s Also, sim-
ilarly to SPFF it is possible to define a notion of general
secure 2-party computation with a weak security against a
malicious client. These relaxations allow for more efficient
implementations of secure 2-party computation, which do
not require the server to prove the validity of its actions.

Homomorphic encryption. Some of our protocols rely
on the standard tool of homomorphic encryption. A ho-
momorphic encryption scheme is an encryption scheme in
which the plaintexts are taken from a group G, and given
encryptions of two group elements one can efficiently com-
pute a (randomized) encryption of their sum. Since this
computation usually involves a modular multiplication of
the encryptious, we write E(a) . E(b) = E(a + b). It follows
that E(a) ° = E (c - a) for c e N. The O o l d w a s s e r - ~ c ~
scheme [29] satisfies this property with G = g2. For more a
more detailed definition of this primitive, as well as exam-
ples of such schemes with larger homomorphism groups g,,,
the reader may refer to [9, 39, 40, 41].

3. GENERAL SOLUTIONS

3.1 Multi-server protocols based on multivari-
ate polynomial evaluation

In this section we present an information-theoretically se-
cure solution to SPFF when the database z is replicated
at multiple servers. For simplicity of presentation, here we
assume a semi-honest client (but allow up to t malicious
servers); this solution can be extended to address a mali-
cious client at a moderate additional cost using techniques
from [25].

Our solution builds from the following lemma, which fol-
lows immediately from work in instance hiding [5]:

LEMMA 1. [5] Consider a system of k servers, and let P
be an 5-variate polynomial over a field F of total degree d.
Suppose that P is known to all servers but is unknown to

°Technically, in the Client Privacy requirement we only com-
pare the view of the simulator to the view of the servers,
whereas in the analogous requirement from [13, 26] these
distributions are concatenated to the client's output.

the client. If k > dt and [FI > k, then there is a 1-round
protocol by which a client can obtain the value of P on inputs
of its choice, and such that any t servers gain no information
about those inputs. In this protocol the client sends 6 field
elements to each server, each server replies with a single field
element obtained by evaluating P on the elements sent by the
client, and the client computes its output using polynomial
interpolation.

In the protocol of Lemma 1, the values returned by the
servers lie on a degree-dr polynomial]5 such that/b(0) is the
client's desired answer. Specifically, the answer of server h is
equal to P(~h), where ~i,..., ~ are some (f=ed) distinct,
non-zero elements of F. Following [25], we can thus extend
this protocol to achieve symmetric privacy if server h instead
returns P(rvh)-t-R(cth) for a random degree-dr polynomial R
where R(0) = 0. R must be shared by the servers in advance;
though inconvenient, some form of correlated random values
is necessary to achieve symmetric privacy in the information-
theoretic setting [25].

The solution of this section is thus to express f as a multi-
variate polynomial P over F that depends on z, and whose
value at indices Q , . . . , i,n encoded in F is Y (z i l , - - . , zi~).
Then, we can apply Lemma 1 to obtain the construction.
Here we outline how to construct P from a Boolean for-
mula ¢ computing f , where ¢ consists of binary (2-input,I-
output) gates. The size of ~b, denoted s, is the total number
of leaves in its tree representation. Let l = [log 2 n], and let
F be a finite field containing at least Is -k 2 elements. Let
j(k) denote the k-th leftmost bit in the l-bit binary repre-
sentation of j. Define the polynomial P0 G F[yl,... , yz] as
follows:

yk if j(k) = 1
e o (y , , . . . , y,) = ~# I - y,, i f j (k) = o

j = l \ k=l

Note that P0(i(1),... ,i(£)) = xi, and that P0 is a poly-
nomial of total degree L For each gate g in ~, recursively
define a polynomial Pg = Qg(Pg.loft, Pg.r;sht), where Qg is
the natural (degree-2) polynomial implementing g. (For
example, if g is an AND gate, then Q~(~a, ¢) -- ~ • ¢.)
If g's left input is some zi, then Pg.ioft is the polynomial
P0(i(1),... , i(1)), and if g's left input is the output of some
gate g', then P~.loft ---- Pg,. Pg.r;sht is defined similarly. Thus,
if .~ is the gate that produces the output of the formula, then
P = P~ E F [y t , . . . , Y,~z] satisfies

P(i~ (1) , . . . , i , (t) , i~ (1) , . . . , i~ (t) , i ~ , (1) , . . . , i~ , (t))
= f(xix xi,,~)

Note that since deg(Pg) ~ deg(Pg.,,ft) + deg(Pg.~;sht), the
total degree of P satisfies deg(P) < ls, and so applying
Lemma 1 yields a construction with k = tls + 1 servers.

TItBORBM 2. If f can be computed by a formula of size s,
the above protocol is a 1-round SPFE protocol secure against
a semi-honest chent and t mahcious servers, where the total
number of servers is k = ts log n + 1. Its communication
complexity is k log k(mlog n + 1).

This theorem is most interesting in the ease when f E N C t
where we get an SPFE protocol with m°(1)tlogn servers.
Note that the above construction actually applies to any
function f which can be efficiently computed 7 by a degree-s

7If computational efficiency is not a requirement, then s =
m is sufficient for any Boolean function f .

297

polynomial over F , where IFI > t s l o g n + 1. Hence, if f is
the sum function (outputt ing the sum of i ts m inputs over
F) , Theorem 2 applies with s = 1.

Finally, we remark that s tandard techniques allow a trade-
off between the number of servers for efficiency and fault tol-
erance. Specifically, a savings of a factor of c in the number
of servers can be obtained by increasing the communication
by roughly a factor of 2 ¢, and t' malicious servers can be
tolerated by adding 2t ' additional servers.

3.2 Solutions based on private simultaneous
messages protocols

In this section, we construct protocols for SPFE by ap-
plying a SPIR protocol on top of a protocol for f in the so-
called private simultaneous messages (PSM) model [23, 30].
We start by describing the PSM model, and then discuss its
application to our problem.

In the PSM model, there are m players PI,--- , P,,~ and an
external referee. Each player P# holds an input Yi, and all
of them share access to a common random input r, which
is lmknown to the referee. The players ' goal is to securely
evaluate a given function f of their inputs by having each
player Pi send a single message pj to the referee, where
p~ is determined by yj and r alone. Tha t is, the referee
should be able to reconstruct the value f (y l , . . . , ym) from
the m messages i t receives, but should learn no additional
information about the inputs y l , . . . , y,,,.

Motivated by efficiency considerations, we slightly refine
the above setting. In addition to the m players P1 , . . - , pro,
our variant of the model includes an addit ional player P0
who holds no input. The message p0 computed by P0 is
determined only by the random input r. In the usual PSM
scenario this extension of the model seems useless, since the
extra player P0 can be simulated by the other players at
no additional cost. However, in our context it is beneficial
to shift as much communication as possible to the extra
message po. We say that a PSM protocol has communication
complexity (a,/3) if the length of each message p~, j > 0,
is bounded by a , and the length of the extra message p0
is bounded by /3 . Due to space considerations, we omit a
detailed formalization of this definition.

The following example describes a simple and useful PSM
protocol for the modular sum function.

EXAMPLE I . Let Z , denote the additive group of residues
modulo u, where u is an l-bit integer. Consider the func-
tion f : Z ~ --r T~ outputting the sum of its m inputs. A
PSM protocol for f with communication complexity (£, 0)
proceeds as follows. The common random input contains
independent random group elements rl , . . . , rm-1. The mes-
sages are defined by p# = y# + r#, I <_ j <_ m, where
r , , = -(ra + . . . + rm-a). It is clear that the referee can
reconstruct the output by adding all m messages, and it is
not hard to verify that the messages are random subject to
the restriction that they add up to the sum of the inputs.

To construct an SPFE protocol from a PSM protocol for
f , the servers will simulate the rn q- 1 players of the PSM
protocol, and the client will simulate the referee. Our goal
is to allow the client to efficiently obtain the m + 1 PSM
messages corresponding to its selected inputs x ix , . . . , xi,~.

We formulate the protocol for the general t-private k-
server case. When k > 1, this allows us to obtain in_formation-
theoretic security for the client. The building blocks are: (1)

a (1-round) t-secure k-server SPIR protocol and (2) a PSM
protocol 7) computing f.

The SPFE protocol proceeds as follows: (1) If k ---- 1, the
server picks a random input r for the PSM protocol 7); oth-
erwise, such an r is taken from the servers' common random-
ness. (2) For each j , 1 <_ j _< m, each server computes an
n-i tem virtual database in which the i - th i tem is the message
which player Pj would send in 7) on input zi and random
input r; the client retrieves the i#-th i tem from the virtual
database using the SPIR protocol. (3) The first server com-
putes the extra message p0 from r, and sends it to the client
in the clear. (4) By simulating the referee in 7), the client
computes the value of f from the m + 1 PSM-messages it
obtained.

Note that all m + I messages sent in steps 2,3 can be
simultaneously sent to the client. Letting SPIR(n, 1, c~) de-
note the communication complexity of the SPIR protocol,
we have:

THEOREM 3. The above protocol is a 1-round SPFE pro-
tocol with communication complexity m • SPIR(n, 1, a) -t-/3,
where (a,/3) is the communication complexity of 7). It pro-
vides strong security against a malicious client. Perfect (info-
rmation-theoretic) security is achievable for both sides using
perfectly secure PSM and SPIR protocols.

We conclude this section by substi tuting known upper
bounds on the complexity of PSM protocols in bo th the com-
putat ional and information-theoretic setting. Let C! (resp.,
B!) be the size of a circuit (resp., branching program) com-
puting f . In [23, 46], a computat ionally secure PSM protocol
with communication complexity (to, O(~- C1)) is given and
in [30], a perfectly secure PSM protocol with communication
complexity (O(B~), 0) is given. We denote the cost of a one-
round SPIR protocol using k servers by SPIRk and the cost
of a one-one perfectly secure SPIR protocol using k servers
by PSPIRh. Using these protocols, we obtain the following
reductions from SPFE to SPIR:

COROLLARY 4. (1) If k >_ 1, then there exists a t-private
k-server computationally-secure 1-round SPFE protocol with
m. SPlRk(n, 1, ~) + 0(~ . CI) communication; and (2) I f
k > 1, then there exists a perfectly secure t-private k-server
SPFE protocol with m . PSPIRk(n, 1, O(B~)) communication.

3.3 Solutions based on general secure multi-
party computation

In this section we present several reductions of the SPFE
problem to SPIR and general secure MPC. We focus on the
single-server case, and assume that the da ta domain D is
some additive group 7/.~, (where u = 2 in the default Boolean
case).

We break down the problem into two phases. In the first
phase, called input selection, the server and the client obtain
a simple (additive) secret-sharing of the m selected i tems
Xl. (That is, for 1 ~ j ~ m, the client and the server
each obtain a random element from D, such that the pair of
elements add to xi j .) This should be done without revealing
any information to either party. In the second phase, the
part ies may invoke any secure MPC protocol for computing
the value of f (x i) from their shares.

This two-phase approach does not support strong security
against a malicious client. Indeed, a malicious client may
arbitrari ly change its shares of x l before passing them as

298

inputs to the MPC phase. Nonetheless, most of the protocols
obtained in this section can be proved to satisfy our notion
of weak security against a malicious client. Note that if
the only type of cheating by a malicious client is the one
described above, then this is intuitively clear: in such a case,
the function f' computed by the client will be of the form
f(zx Jr A), where A is the difference between the received
vector of shares and the one passed to the MPC protocol.
In general, however, one must also guarantee that both the
input selection protocol and the MPC protocol support this
notion of security.

The remainder of this section is organized as follows. In
subsections 3.3.1, 3.3.2, and 3.3.3 we describe three different
approaches for implementing the input-selection phase. We
refer the reader to Section 1.2 (and in particular to Table
1) for a comparison of these approaches. Finally, in Sec-
tion 3.3.4 we present a light-weight protocol for computing
a general arithmetic circuit. This protocol may be used for
implementing the MPC phase of our protocols, namely se-
curely computing f on the shared selected items, in the case
where f is represented by an arithmetic circuit over a (pos-
sibly large) ring.

3.3.1 The first protocol for input selection
Let share-z~ denote a primitive which achieves a sharing

of a single selected item. That is, share -x , has the following
functionality: suppose that initially the server knows x and
the client knows i; share - z i is a secure protocol which results
in the server knowing a value a E D and the client knowing
a value b 6 D such that a and b are random subject to the
restriction that they add up to xi. To implement share-z i ,
the server picks a random a 6 D and prepares a "virtual
database" l / = (zl - a z , - a). The client then uses
SPIR to find the value b = zi - a of the i th location.

Then to accomplish our input selection task, perform rrL

invocations of share-x i , one for each i 6 I. The above pro-
tocol requires one round to complete. Together with a 1-
round secure MPC protocol, it yields a 2-round SPFE pro-
tocol whose cost (both in communication and computation)
is dominated by that of the ra invocations of SPIR(n, 1, D)
plus the cost of MPC.

3.3.2 T h e second protocol for input selection
The previous input selection protocol, as well as the proto-

col from Section 3.2, requires m retrievals of I out of n items,
from m different databases. For reasons of communication
and computational efficiency, it may be highly desirable to
replace this by a s ingle retrieval of m out of n items.

To achieve this, we rely on ~n-wise independence. Let
{Ps : [n] -~ D } s e s be an rn-wise independent function fam-
ily; that is, if s is chosen uniformly at random from S, then
for any i~ , . . . ,i,~ the random variable (P , (i l) , . . . , P~(i,,))
is uniformly distributed over Din. s Then, a generic version
of the second input selection protocol may proceed as fol-
lows. (1) The server picks a random s E S and computes
a virtual database x ' such that x~ = zi + P,(i) ; (2) The
client uses a SPIR(n, re, D) protocol to learn x~; (3) The
parties engage in a secure MPC protocol outputting an ad-

ditive sharing of P~(I) d__.___, (P , (i z) P , (i ,=)) . That is, the
server's input is s, the client's input is I, and the server and

sit suffices for our purposes that the latter distribution
be cornputat ional l l l ind i s t ingu ishable f r o m uniform; however,
our solutions do not utilize this relaxation.

the client output (respectively) random vectors c, d E D ~
such tha t c -Fd = P=(/) ; (4) The server ou tpu ts a = - c (i.e.,
uses --c as its share of zz) and the client outputs b = x~ - d.

It is easy to verify that the sum of the outputs a, b is indeed
equal to xr. Note that since z~ is uniformly distributed
over D '~, step 2 reveals nothing to the client. Since step 3
does not rely on step 2, both can be executed in parallel,
and so the entire input selection protocol can potentially be
implemented in one round.

We turn to the question of efficiency. The above proto-
col leaves two parameters unspecified: the function family
{Ps} and the secure MPC protocol of step 3. Our efficient
solutions will be obtained by letting {P,} be the family of
degree-~ polynomials over a prime field F, where IF[> n.
That is, each s = (so,... , s,,-1) E F "~ naturally defines a
degree-m polynomial Ps(Y) = so + sly +... + s,,-i Y "~-I.
We assume here that D = F and view the indices i# as
dements of F.

We present two variants for the secure MPC protocol re-
quired in step 3. The first requires a single round, but incurs
an ~n2~ additive communication overhead. The second re-
duces this communication overhead to m~, but does this at
the cost of increasing the round complexity and weakening
the (provable) security of the resultant protocol. Both vari-
ants utilize homomorphic encryption (see Section 2), which
allows us to efficiently compute linear functions on a vector
of encrypted values.

First variant. (1) The client picks keys to a homomorphic
encryption scheme over the plalntext group (F, +). It sends

2 the public key E to the server along with the m encryptions
E(i~), 1 < j _< ,~, 0 _< k < m; (2) The server picks random
blinding elements rz,... ,r,~ E F, and for :~ = 1,... ,m it
sends m-1 ski~ E(>-~k= o -- r j) = E(P,(4#) - r i) ; (3) The server
outputs (r l , . . . , r,~) and the client outputs the decryptions
of the m encryptious sent by the server.

S e c o n d v a r i a n t . (1) The server picks keys to a homomor-
phic encryption scheme as above, and sends the public key E
to the client along with the m encryptions E(s0) , . . . , E(s ,~-I).
(2) The client picks a random mask r = (r l , . . . , r , ,) , and
computes E (Ps (i t) - r t) , . . . , E (P= (i,n) - r ,~) . (This can be
done, since each encrypted value is a fixed linear combina-
tion, depending on I, of the m coefficients sj and an entry
from r.) It sends the m encryptions to the server. (3) The
server outputs the decryptions of the rrt encryptions sent by
the client, and the client outputs r.

The above two variants can viewed as two dual approaches
for computing a matrix-vector product, where the first con-
siders the product as a linear function of the matrix defined
by the vector, and the second as a linear function of the
vector defined by the matrix.

Efficiency. While the two variants significantly differ in
their communication complexity, their computational com-
plexity is similar: Step 2 in both requires one of the parties
to perform O(m 2) modular exponentiations. Vvrhen rr~ is
large, this is very expensive. However, since F can be cho-
sen to be roughly of size r=, the exponents can be made small
(by using small-modulus homomorphic encryption [9]). The
computational overhead will be thus dominated by O(rc= 2
log r=) modular multiplications. Finally, while both variants
seem to require one round, the communication pat tern in
the second is incompatible with that of the SPIR protocol.
Consequently, the second input selection protocol requires

299

1.5 rounds to complete: a message from the server followed
by a standard round.

Secur i ty . In contrast to the first protocol, the second can-
not even be proved to be weakly secure against a malicious
client. In fact, it is easy to construct a contrived (yet secure)
encryption scheme which, when used in an SPFE protocol
computing a simple function f , allows a malicious client to
obtain the decryption key D. Consequently, in this protocol
the client will be able to learn all ~ items zz. We note,
however, that when using the above with natural homomor-
phic encryption candidates, it is plausible that the resultant
SPFF protocol enjoys (heuristic) weak security against a ma-
licious client. The protocol can be made provably secure by
requiring the client to prove in zero-knowledge that it knows
the function it applies to the encrypted values. However,
this would result in a significant overhead to the efficiency
of the protocol.

T h e B o o l e a n case. As is, the SPFF protocol based on ei-
ther of the above variants seems to require secure MPC over
a field of size ~ n even in the default Boolean case. Since the
best known 1-round secure MPC protocols do not generalize
efficiently to arithmetic circuits, this may result in a consid-
erable overhead. One approach for solving this problem is
to compose the Boolean circuit for f with a Boolean circuit
of size O(mlogn) computing the bit-vector zz from the bi-
nary representations of the share vectors a, b. However, this
overhead can be completely eliminated in most implemen-
tations of Yao's 1-round MPC protocol. Details are omitted
from this version.

Asymptotic improvements. By choosing ~P~} to be a
family of cryptographic pseudorandom functions (and rely-
ing on generic secure MPC in step 3 of the general input
selection protocol), it is possible to improve both the com-
munication and computation overhead of the first variant to
t~°(x)m. An even further improvement is possible if one uses
the polynomial family ~p,) as in the original protocols, but
relies on a nearly-linear FFT-based algorithm for evaluating
the polynomial P, on the points (ix,... , i,~). Unfortunately,
both improvements do not seem to apply to practical choices
of the parameters.

3.3.3 The third protocol f o r input selection
We present a third alternative to the implementation of

the input selection phase. In comparison to the first variant
of the previous protocol, its relative disadvantages are that it
fails to give provable security against a malicious client and
that it uses SPlR(n, vr~, ~), where ~ is of the length of a homo-
morphic encryption, instead of SPIR(n, m, log n). However,
similarly to the second variant, its communication overhead
is only linear in m, and its computational complexity is su-
perior to both variants of the previous protocol.

The protocol, which is similar in spirit to a protocol from
[20], proceeds as follows. First, the server chooses keys for
a homomorphic encryption scheme over D, sends the public
key E to the client, and prepares (but does not send) encryp-
tions E(z t) , E (~ ,) . Next, the client uses SPlR(n, m, D)
to retrieve E(zi t) , E(~:i,,,). It picks random blinding el-
ements rx , . . . ,r ,n E D, computes E(xiy - r j) , and sends
these values back to the server. Finally, the server decrypts
and outputs a i = ziy - ry, and the client outputs bj = ry.

The $PFE protocol obtained from this input selection pro-
tocol can be implemented in 2 rounds, by letting the client

send its MPC message together with its second message of
the input selection protocol. The complexity of the input
selection protocol is dominated by that of SPIR(n, m, D).

3.3.4 Secure protocol for arithmetic circuits
In the second phase, called function evaluation, any secure

MPC protocol can be used for evaluating f on the input
shares. Yao's protocol, which is the best known protocol for
the Boolean case, does not scale well to compute arithmetic
circuits.

We present a light-weight secure MPC protocol for arith-
metic circuits over a ring D = 7/.u. Its round complexity is
proportional to the circuit (multiplicative) depth, and it re-
quires a constant number of exponentiations per gate. While
not providing fifll security (hence its efficiency), it can be
proved to satisfy our notion of weak security against a ma-
licions client, and can therefore be naturally combined with
any of the input selection protocols in this section. The
protocol is reminiscent of protocols described in [15, 1, 18,
24].

The arithmetic circuit is evaluated gate by gate. Before
evaluating each gate, the server holds a homomorphic en-
cryption of the input values for the gate (where the encryp-
tion is under the client's key). At the end of the evaluation
of the gate the server holds an encryption of the output value
of the gate. The encrypted values are computationally hid-
den from the server. Furthermore, the protocol guarantees
that both the client and the server learn nothing during the
evaluation process. At the end of the protocol the server
reveals the encryption of the output of the circuit. The
client decrypts the value and outputs the result. We pro-
vide efficient constant round implementations for addition
and multiplication gates.

The protocol begins with the client picking keys to a ho-
momorphic encryption scheme over D = 7L~,, and sending
the public key E to the server along with an encryption
of its inputs. We describe procedures for evaluating mod-
ular addition and multiplication gates on encrypted values.
Tha t is, consider the following problem: The server holds
an encryption of values vx, v2 E [0, . . . , u - 1]. The parties
wish to provide the server with an encryption of the value
c = vl + v2 mod u or c = ~t x v2 rood u. The client should
learn nothing from participating in the protocol. In the fol-
lowing, assume that all operations are performed rood u.

E v a l u a t i n g a n a d d i t i o n ga te . Given E(~t) ,E(v~), the
server computes the encoding of vl + v2 on its own by com-
puting E(vl + ~2) = E(vl) . E(~2).

E v a l u a t i n g a ga te w h i c h m u l t i p l i e s by a va lue k n o w n
to t h e se rver . Given E(v) ,a , the server computes the
encoding of ~. a, by computing E(a. ~) = E(~) ~.

E v a l u a t i n g a ga te w h i c h m u l t i p l i e s by a va lue u n -
k n o w n to t h e server . Given E(vt) ,E(v~) , we describe
how the server uses the help of the client in order to ob-
tain E (v l - v 2) . (1) The server chooses r l , r~ uniformly
from [0, . . . , r - 1]. (2) The server computes E(vl + r t) ,
E(v2 + r2) and sends them to the client. (3) The client
decrypts to obtain vl + rl and v2 -{-r2, and sends e ----
E((vl + rl). (v2 + r2)) to the server. (4) The server computes
E(r~ • r~), E (~ • r=), S (~2" r l) and divides them from e to
obtain E(vl • v2).

300

4 . S T A T I S T I C A L F U N C T I O N S
In this section, we consider specific instances of the SPFE

problem which are geared towards privately computing stan-
dard statistics on a selected data set. Wc discuss the appli-
cability of our general solutions from previous sections to
several statistical computation functions, and also present
some direct constructions. Throughout most of this section
we view the data items as integer-valued.

Average and variance. The sum ftmction is particularly
important for statistical applications since it can capture
several interesting statistical quantities. Indeed, learning
the sum of m values is equivalent to learning their average.
The variance of m values is a linear combination of their sum
and the sum of their squares. Thus, given a 1-round SPFF
protocol for the sum function, one can efficiently implement
a 1-round SPFE protocol for a "package" combination of
average and variance. The server stores x ' = (x~, . . . ,z~)
in addition to the original database. Upon receiving the
client's queries, generated according to the sum protocol,
it replies twice: once with the original database, and once
with the database x'. Note that if the SPFE protocol is
strongly secure against a malicious client, then so is the
above protocol (since learning both the average and variance
of the same set of items is equivalent to learning both their
sum and the sum of their squares).

Eff ic iency of p r e v i o u s c o n s t r u c t i o n s . To efficiently solve
the special case of SPFE where the function f is the sum
function, we view the items as elements of a field F = g~,
where u is an upper bound on the sum. Applying the
generic approach of Section 3.1 (and utilizing the fact that
f admits a degree-1 representation over F) , we may get a
(t l ogn q- 1)-server 1-round protocol (where t is the client
privacy threshold), in which the communication consists of
roughly tmlog 2 n field elements. The main disadvantages of
this approach is the number of servers and the computation
time of O(mn).

We turn to the single-server setting. The PSM-based con-
struction of Section 3.2, while not efficiently scalable to gen-
eral arithmetic circuits, can provide a fairly efficient solu-
tion in our special case of the sum function, as described
in Example 1. However, this solution still requires m in-
vocations of SPIR on m different databases, which is pro-
hibitive when rn is large. To gain better efficiency, it is
desirable to reduce the problem to a single invocation of a
SPIR(n, m, *) primitive. This is achieved by the technique of
Sections 3.3.2, 3.3.3. However, the round complexity of the
resultant protocols will not be optimal, and they either incur
a high computational overhead or require the application of
SPIR on relatively long strings.

A n eff icient s o l u t i o n for t h e w e i g h t e d s u m f u n c t i o n .
We now show a 1-round solution which avoids the above
weaknesses of our general solutions. First, we relax the
problem and allow the client to compute any selected linear
combination of m items. We refer to this as the toeighted
sum problem. Note that a useful feature of this relaxation
is that it allows us to compute the weighted average and
variance of the selected data set, where the weights can be
freely chosen by the client.

Our protocol is similar to the first variant of the input se-
lection protocol from Section 3.3.2. However, it relies on the
linearity of the weighted sum function to achieve greater ef-
ficiency. As in the input selection protocol, the server picks

a random degree-(rn - 1) polynomial Ps over F with co-
efficients so , . . . , s ,~-l , prepares a virtual database x' such
that z~ = zi + Ps(i), and lets the client use SPIR(n, m, F)
to learn x~. These alone are uniform and independent field
elements. The next observation is that learning z~ together
with the sum P~(il) + . . . + P=(i,~) is equivalent to learning
xi 1 + . - - + xi,,,. Finally, note that this sum is a linear combi-
nat ion of s o , . . . , s,,~-x, whose coefficients co, . . . ,c,,~-x are

• k W e known to the client. Specifically, cA = i~ + .-- + h~.
can thus complete the protocol by letting the client send
E(c0) , . . . , S (c ~ _ ,) to the server and get E(s0c0 + SlC~ +
• " Jr s m - z c m - z) ---- E (P , (i ,) -k P , (i 2) - b " " q- P s (i m)) in re-
turn. The client outputs x ; , - t - - ' ' - I - x;,~ - (P , (i l) -b P , (i 2) j r
• . . + P=(i, ,~)). Note that since the]/near combination proto-
col can be done in parallel to the SPIR protocol, the entire
protocol requires only one round.

The generalization to weighted sum is straightforward: by
choosing different coefficients cA the client can learn an ar-
bitrary linear combination of xix,... , xi.~. Moreover, by
a counting argument every choice of co,... ,c,n-1 induces
some valid linear combination of the selected items. This
implies that even a malicious client cannot learn more than
some linear combination of the selected items.

Efficiency. As noted above, the protocol can be imple-
mented in one round. Its communication complexity is dom-
inated by that of SPIR(n, m, F) , where IF I should be larger
than the maximum of n and (an upper bound on) the sum of
the m largest items. Its computational complexity includes
an additional overhead of O(m) modular exponentiations.

Counting frequencies. We end this section by briefly dis-
cussing an additional useful special case of private statistics:
counting the number of occurrences, or frequency, of a cho-
sen value or keyword in the selected data set. Let ~n be a
keyword, taken from the data domain D. We embed D in
a finite field F ---- Z~ where u > ID]. Our function may
be formally defined as f (y l , Y-~) = ~"~#'n_-I X~,(V#), where
X~(Y) is 1 if w = y and is 0 otherwise.

Suppose that the client and the server already share the
selected items xz in an additive way. This can be achieved
in one round using our input selection protocols. Let a and
b be the two shares of zx, held by the server and the client
respectively. The protocol requires one additional round,
and proceeds as follows: (1) The client sends m encryptious
E(b, - ,.), where ~ is the keyword to be searched; (2) For
each 1 _< 3" _< m, the server picks a random blinding element
rj from the field, computes an encryption E(rj • (aj + bj -
w)) = E(r j . (zi i - ~)), and sends a random permutation of
the m encryptions to the client. (3) The client decrypts the
m encryptions and counts the number of zeros.

Note that a malicious client can alter the m encrypted
values it sends. However, this only has the effect of allowing
it to compute a more general function, in which a different
keyword is specified for each selected item.

A c k n o w l e d g e m e n t s
We are grateful to Prabhakar Raghavan for suggesting this
line of research, and to Rosario Gennaro and Eyal Kushile-
vitz for helpful discussions.

301

5. REFERENCES
[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation. J.

Crtjptologt/2(1): 1-12 (1990).
[2] N. R. Adam and J. C. Wortmann. Security-control

methods for statistical databases: A comparative study.
ACM Computing Surveys 21(4), 1989.

[3] W. Aiello, V. Ishai and O. Reingold. Priced oblivious
transfer: How to sell digital goods. Peoc. EUROCRYPT,
2001.

[4] A. Ambalnis. An upper bound on the communication
complexity of private information retrieval. Prec. ~ t h
ICALP, Springer LNCS, 1256:401--407, 1997.

[5] D. Beaver and J. Feigenbaum. Hiding instances in
multioracle queries. Proc. STAGS, Springer LNCS,
415:37-48, 1990.

[6] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway.
Locally random reductions: Improvements and
applications. J. Ceyptolog~l 1O(1): 17-36 (1997). A
preliminaxy version appeared in CRYPTO '90.

[7] A. Beimel and Y. Ishai. Information-Theoretic Private
Information Retrieval: A Unified Construction. Peoc.
ICALP, 2001.

[8] A. Beimel, Y. Ishal, and T. Malkin. Reducing the servers'
computation in private information retrieval: P]~ with
preprocessing. Proc. CRYPTO, Springer LNCS,
1880:56-74, 2000.

[9] J. Benaloh. Verifiable Secret Ballot Elections. Ph. D.
Thesis, Yale University, 1996.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation. Proc. ~Oth S TOC,
pp. 1-10, 1988.

[11] C. Cachin, J. Camenisch, J. Kilian, and J. Muller.
One-round secure computation and secure autonomous
mobile agents. Proc. ICALP, 2000.

[12] C. Cachin, S. Micali, and M. Sta~ller. Computationally
private information retrieval with polylogarithmic
communication. Proc. EUROCRYPT, 1999.

[13] R. Canetti, Security and composition of multiparty
cryptographic protocols, J. Cryptology, 13(1), Winter 2000.

[14] D. Chaum, C. Crdpeau, and I. Darnggrd. Multiparty
unconditionally secure protocols (extended abstract). Proc.
~Oth STOG, pp. 11-19, 1988.

[15] D. Chaum, I. Damg;Lrd, and J. van de Granf. Multiparty
computations ensuring privacy of each party's input and
correctness of the result. Proc. CRYPTO, Springer LNCS,
293:87-119, 1989.

[16] B. Chor and N. Gilboa. Computationally private
information retrieved. Proc. ~gth STOG, pp. 304-313, 1997.

[17] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. Proc. 36th FOCS, pp. 41-50,
1995.

[18] R. Cramer, I. Damggrd, and J. Nielsen, Multiparty
computation from threshold homomorphic encryption,
Prec. EUROCRYPT, 2001.

[19] D. E. Denning. Cryptographt/ and Data Security.
Addison-Wesley, 1982.

[20] Y. Dodis, S. Halevi, and T. Rabin A Cryptographic
Solution to a Game Theoretic Problem. Proc. CRYPTO,
2000.

[21] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. C. ACM, 28:637--647, 1985.

[22] J. Peigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss,
and R. Wright. Secure Multiparty Computation of
Approximations. Proc. ICALP, 2001.

[23] U. Feige, I. Kilian, and M. Naor. A minimal model for
secure computation. Proc. ~6th STOC, pp. 554-563, 1994.

[24] M. Franklin and S. Haber, Joint encryption and
message-efficient secure multiparty computation, J.
CrIjptology, 9(4):217-232, Autumn 1996.

[25] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.

Protecting data privacy in private information retrieval
schemes. Proc. 30th STOC, pp. 151-160, 1998.

[26] O. Goldreich, Secure multi-party computation, (working
draft, Version 1.1), 1998. Available from
ht tp : / /ph i lby .ucsd. edu/cryptolib/B00KS/oded-sc, html.

[27] O. Goldreich and A. Kahan. How to construct
constant-round zero-knowledge proof systems for NP. J.
Uryptology. 9(3):167-189, 1996.

[28] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game - A completeness theorem for protocols
with honest majority. Proc. 19th STOC, pp. 218-229, 1987.

[29] S. Goldwasser and S. Micali. Probabilistic encryption.
JCSS, 28(21):270-299, 1984.

[30] Y. Ishal and E. Kushilevitm Private simultaneous messages
protocols with applications. Proc. 5th ISTCS, pp. 174-183,
1997.

[31] Y. Ishai and E. Kushilevit=. Improved upper bounds on
information theoretic private information retrieval. Prec.
81st STOC, pp. 79--88, 1999.

[32] E. Kushilevitz and R. Ostrovsky. Replication is not needed:
Single database computationa~ly-private information
retrieval. Proc. 38th FOCS, pp. 364-373, 1997.

[33] Y. Lindell and B. Pinkas, Privacy preserving data mining.
Proc. GRYPTO, Springer LNCS, 1880:36-54, 2000.

[34] E. Mann. Private access to distributed information.
Master's thesis, Technion - Israel Institute of Technology,
Halfa, 1998.

[35] M. Naor, and K. Nissim. Communication preserving
protocols for secure function evaluation. Proc. 33rd STOC,
2001.

[36] M. Naor and B. Pinkas. Oblivious transfer and polynomiM
evaluation. Prec. 31st STOC, pp. 245-254, 1999.

[37] M. Naor and B. Pinkas. Oblivious transfer with adaptive
queries. Proc. CRYPTO, Springer LNCS, 1666:573-590,
1999.

[38] M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. Proc. 11th SODA, 2001.

[39] D. Naccache and J. Stern. A new public key cryptosystem.
Proc. BUROGRYPT, pp. 27-36, 1997.

[40] T. Okamoto and S. Uchiyama. A new public key
cryptosystem as secure as factoring. Proc. EUROCRYPT,
Springer LNCS, 1403:308-318, 1998.

[41] P. Palllier. Public-key cryptosystems based on composite
degree residuosity classes. Proc. EUROCRYPT, Springer
LNCS, 1592:223-238, 1999.

[42] M. O. Rabin. Hotu to ezchange secrets b!/ oblivious
trans/er. Technical report TR-81, Harvard Aiken
Computation Laboratory, 1981.

[43] J. P. Stern. A new and efficient all-or-nothing disclosure of
secrets protocol. Prec. ASIACRYPT, Springer LNCS,
1514:357-371, 1998.

[44] S. Wiesner. Conjugate coding. SIGACT News 15:78-88,
1983.

[45] A. C-C. Yao. Protocols for secure computation. Proc. ~ard
FOCS, pp. 160-164, 1982.

[46] A. C-C. Yao. How to generate and exchange secrets. Proc.
~Tth FOCS, pp. 162-167, 1986.

302

