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Abstract 

In this paper we investigate the k-set consensus problem in 
asynchronous, message-passing distributed systems. In this 
problem, each participating process begins the protocol with 
an input value and by the end of the protocol must decide on 
one value so that at most k different values are decided by 
all correct processes. We extend previous work by exploring 
several variations of the problem definition and model, in- 
cluding for the first time investigation of Byzantine failures. 
We show that the precise definition of the validity require- 
ment, which characterizes what decision values are allowed 
as a function of the input values and whether failures occur, 
is crucial to the solvability of the problem. For example, we 
show that allowing default decisions in case of failures makes 
the problem solvable for most values of k despite a minority 
of failures, even for the most severe type of failures (Byian- 
tine). We introduce six validity conditions for this problem 
(all considered in various contexts in the literature), and de- 
marcate the line between possible and impossible for each 
case. In many cases this line is different from the one of the 
originally studied k-set consensus problem. 

1 Introduction 

The k-set consensus problem is an abstraction of many co- 
ordination problems in a distributed system that can suffer 
process failures. Each process begins with an input value 
and must irrevocably decide on one output value, so that a 
total of at most k values are decided by correct processes. 
The set of allowed decision values are specified by a validity 
condition that constrains the decisions of correct processes 
as a function of the input values and whether failures occur 
during the run of the protocol. 

In this paper we explore the solvability of the k-set con- 
sensus problem in asynchronous message passing systems, in 
models in which processes fail by crashing or fail arbitrar- 
ily (Byzantine failures). The main theme in this paper is 
that the validity condition has a profound impact on when 
the problem is solvable. We consider six diierent validity 
conditions and use these conditions to demarcate when k-set 
consensus is solvable for each system model. In several cases 
we completely characterize solvability. In some we charac- 
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terize solvability with very little uncertainty (i.e., a small 
gap between computable and impossible) and in one case 
we leave a substantial gap. 

The k-set consensus problem was introduced by Chaud- 
huri [5], who studied the problem in asynchronous message 
passing systems in which processes fail by crashing. The 
validity condition adopted in [5] requires that each correct 
process decide on a value that is equal to some input value. 
In this context, Chaudhuri provided a protocol to solve the 
k-set consensus problem that tolerates up to t < k process 
failures. The condition t < k was later proved to be neces- 
sary in thii context [3, 7, 131 (see also [l)). The six validity 
conditions we study include the one originally used in [5] 
and others studied for k = 1 (consensus) with crash and 
Byzantine failures (e.g., see [ll]). For k = 1, the condition 

= 0 is known to be necessary for any nontrivial validity 
tondition (61. 

The rest of this abstract is structured as follows. In Sec- 
tion 2 we define the problem. We study the k-set consensus 
problem for message passing systems with crash-failures in 
Section 3, and for message passing systems with Byzantine 
failures in Section 4. Section 5 concludes and outlines direc- 
tions for future work. 

2 The problem 

We consider a distributed system consisting of n processes 
denoted by pl ,p2, . . . . pn. A process that follows its protocol 
specification throughout an execution is said to be correct, 
and a process that departs from its specification is said to 
be faulty. In the cmah model, faulty processes are allowed to 
prematurely halt execution only. In the Byzantine model, a 
faulty process can deviate from its specification arbitrarily. 
We sssume that at most t processes fail, where t 2 1 is a 
known, positive integer. 

Processes communicate by sending messages. We as- 
sume that the underlying communication network is com- 
plete, that is, there is a communication channel for each pair 
of processes. Communication is reliable and authenticated, 
in the sense that a correct process pi receives a message m 
from a correct process pj if and only if pj sent m to pi. Pro- 
cesses may take an arbitrary (but finite) time to execute a 
step and messages may incur an arbitrary (but finite) de- 
lay on the communication network. That is, the system is 
asynchronous. 

We denote a k-set consensus problem by SC(k) or simply 
SC when k is not relevant. For any k, 1 5 k 5 n, the SC(k) 
problem is defined as follows. Each process pi starts the 
computation with an input value vi. Each correct process 
has to irreversibly “decide” on a value in such a way that 
three conditions, called termination, agreement and validity, 
hold. These conditions are: 

Termination: Every correct process eventually de- 
cides. 

Agreement: The set of values decided by correct pro- 
cess- has size at most k. 
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Validity: One of the following conditions. 

svl 

sv2 

RVl 

RV2 

WV1 

WV2 

(strong ~1): The decision of any correct 
process is equal to the input of some cor- 
rect process. 
(strong v2): If all correct processes start 
with v then correct processes decide v. 
(regular vl): The decision of any correct 
process is equal to the input of some pro- 
CesS. 

(regular ~2): If all processes start with 
v then correct processes decide v. 
(weak vl): If there are no failures, then 
the decision of any process is equal to 
the input of some process. 
(weak ~2): If there are no failures and all 
processes start with v, then the decision 
of any process is equal to v. 

Given a validity condition C, we denote by SC(k,C) the 
SC(k) problem defined with validity C. We also use the 
notation SC(C) if k is not relevant. We use the notation 
SC(k,t) to denote a SC(k) consensus problem with at most 
t failures allowed. The notation SC(k,t,C) denotes SC(k,t) 
with validity C. 

We define a partial order on the SC problems based on 
the strength of the validity conditions. We say that SC(C) 
is weaker than SC(D) if any protocol for solving SC(D) can 
be used to solve SC(C) in the same model. Clearly SC(C) is 
weaker than SC(D) if any impossibility result that holds for 
SC(C) holds also for SC(D). Conversely, we say that SC(C) 
is stronger than SC(D) if SC(D) is weaker than SC(C). Fig- 
ure 1 shows the ‘weaker than” relation among the six valid- 
ity conditions considered in this paper. 

Figure 1: Validity conditions. An arrow from a validity condition 
C to a validity condition D means that SC(C) is weaker than 
SC(D) (and that SC(D) is stronger than SC(C)). 

SC(k,Rvl) is the consensus problem as considered by 
Chaudhuri [5]. SC(l,~vl) and SC(l,~v2) are classical con- 
sensus problems (see, e.g., [lo, Ch. 61). SC(l,sv2) has been 
considered in the Byzantine setting [9, 121. SC(l,wvZ) is 
weak Byzantine agreement [8]. 

It is well known that SC(l) cannot be solved for any 
nontrivial validity condition [6] and, in particular, for any 
of the validity conditions that we consider here. On the 

other hand, SC(n) is trivially solvable (each process decides 
its own value), even in the Byzantine setting, for any t and 
with the strongest validity condition we are considering, that 
is, validity SvI. Thus, we will henceforth be concerned only 
for the cases 2 5 k 5 n - 1. Since the problem is easily 
solvable for t = 0 we also assume that t 2 1. 

3 Crash failures 

In this section we consider the crash model. As noted in Set- 
tion 1, for these systems we already know the line between 
computable and impossible for SC(k, t,wl): 

Lemma 3.1 ([5]) Zn the crash model, there is a protowl 
for SC&,t,RVl), fort < k. 

Lemma 3.2 ([3, 7, 131) Zn the crash model, there is no 
protocol for SC(k,t,RVl), fort > k. 

By Lemma 3.1, we have that SC(k,t,RvZ), SC(k,t,wvl) 
and SC(k,t,wv2) are solvable for t < k because RV2, wvl 
and WV~ are weaker than RV~. By Lemma 3.2, SC(k,t,svl) 
cannot be solved for t > k because svl is stronger than Rvl. 

In Sections 3.1 and 3.2, we provide further impossibility 
results and protocols, respectively. Figure 2 shows a graph- 
ical representation of the results provided in this section. 

3.1 Impossibilities 

In this section we provide impossibility results for the crash 
model. An ingredient in most of our impossibility results is 
the fact that in any protocol tolerating t failures, a process 
must be able to decide after communicating with at most 
n - t processes (including itself). Indeed, if a process waited 
to communicate with more than n-t processes, termination 
could not be achieved: the runs in which there were exactly 
t faulty processes that do not send any messages, would not 
terminate. 

Lemma 3.3 Zn the crash model, there is no protocol for 
SC(k,t,Wvl), fort > v. 

Proof: For a contradiction, assume that such a protocol 
A exists. In the rest of the proof we use the notation 
SCp(k, t, C) to explicitly state the set P of processes among 
which k-set consensus is to be solved. Denoting by P the 
set of all processes, we have that A solves SCp(k, t, WV~). 

Since t 2 ((k - 1)n + 1)/k implies n 2 k(n -t) + 1, we 
can partition the n processes into k groups gi , gz, . . . , gk of 
disjoint processes with gi,, . . ..gk-1 containing exactly n-t 
processes and gk containing at least ?a - t + 1 processes. If 
t = 12 we let Ql,Q2,...,Qk-1 be singleton sets of processes 
and we let gk contain at least two processes (this iS possible 
because we only consider k < n). 

First we claim that there is a run of A where only pro- 
cesses in gk take steps and such that two values are decided. 
To see why, assume that all the runs involving only processes 
of gk are such that only one value is decided. Then we could 
use A tosolveSC,,(l,l,Wv2): gk contains at least n-t+1 
processes, so that even if one of them is faulty we still have 
at least ra - t correct processes in gk and hence the proto- 
col has to terminate. However, this contradicts [6], since no 
such protocol exists. Hence there is a run ok in which only 
processes in gk take steps and they decide on at least two 
different values, say Vk, Vk+I. Let VI, . . ..vk-1 be k-1 values 
different from Vk, Vk+l. 
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Figure 2: Crash model. Regions filled in brick pattern indicate impossibility. Regions filled in honeycomb pattern indicate solvability. 
Unfilled regions indicate open problems. Figures are drawn to scale n = 64. 
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Fix i, i E {1,2, . . . . k - 1) and consider the following run 
oi: all processes are correct, all start with ui and all mes- 
sages sent to processes in gj, j = 1,2, . . . . . k by processes not 
in gj are delayed until all processes in gj make a decision. 
We can use A to solve SCp(k, t, wv2) and by validity wv2 
we have that all processes, in particular those in group gi, 
decide vi. 

Now consider the following run a. All processes are cor- 
rect, for each i, i = 1,2, . . . . k - 1, each process in gi starts 
with vi and processes in gk start with the same values they 
start in ok. Moreover for each i, i = 1,2, . . . . k, all messages 
sent to processes in group gi by processes not in gi are de- 
layed until all processes in gi have decided. We can use A to 
solve SCp(k, t, WV~) in a. However, for each i, i = 1,2, . . . . k, 
processes in gi cannot distinguish between run Qi and run (2. 
Indeed in both runs they only communicate with processes 
in gi before making a decision and in both runs processes in 
gi start with the same value. Since, for i = 1,2, . . . . k - 1, in 
run oi processes in gi decide vi, they must decide vi also in 
cr. Since in run ok PrOCesSeS in gk decide on Vk and ?&+I, 
they must decide Vk and Vk+l also in a. Hence we have that 
k + 1 values are decided in a. Thus the agreement condition 
is violated and this contradicts the hypothesis that A solves 
SCP(k, t, wv2). 0 

Lemma 3.4 In the crash model, there is no protocol for 
SC(k,t,wvl), fort 1 k. 

Proof: For a contradiction sssume that there exists such a 
protocol A. We claim that A can be used to solve SC(k,t,nvl) 
for t 2 k. To see why, consider any run a in which f 5 t pro 
ceases are faulty and let g be the set of correct processes and 
g’ be the set of faulty processes. Now consider a run cu’ that 
is identical to a except that all processes are correct and any 
message sent by any p E g’ in a’ after the time that p failed 
in Q is delayed until after all processes in g decide. That is, 
for each pi E g and each pj E g’, pi receives a message from 
pj at time T in o’ iff pi receives the same message at time T 
from pj in a. By the validity condition WV~, each process 
decides on some process’ input in Q’. Clearly, processes in 
g cannot distinguish between o and Q’. Hence, processes 
in g decide the same value in Q as they decide in a’, and 
so validity ~1 is satisfied in a. In other words, protocol A 
solves SC(k,t,RVl) for t >_ k, contradicting Lemma 3.2. 0 

Lemma 3.5 In the crash model, there is no protocol for 
SC(k,t,svl). 

Proof: For a contradiction sssume that there exists such a 
protocol A. Let Q be an execution of A in which all pro- 
cesses are correct and they all start with different values. 
Let v a decision made by at Iesst two processes (there is al- 
ways such a decision since k < n). Because of validity svl, 
v is the input of some process pi and since all inputs are 
different only pi has v as input. Now consider the run a’ 
that is the same as Q except that process pi fails right after 
sending its last message. Clearly a and a’ are indistinguish- 
able and thus each process (maybe with the exception of pi) 
makes the same decision in both runs. Hence in o’ value v 
is decided by at least one process pj, j # i. But only pi has 
v as input and p; is not correct in cr’, and so validity ~1 is 
violated. II 

Lemma 3.6 In the crash model, there is no protocol for 
SC(k,t,sV2), fort 2 7&n. 

Proof: For a contradiction sssume that there exists such 
a protocol A. Consider first the case t 1 %. Partition the 
system into two non-intersecting sets of processes, g, g’, each 
containing at least n - t processes (e.g., 191 = /g’/ = n/2). 
This is always possible because t 2 n/2. Let a be a run of 
A in which all processes are correct, all start with different 
initial values denoted vi, 7~2, . . . . vn, and all communication 
between g and g’ is delayed until after the decisions are 
made. We claim that n values are decided in o. To see this, 
fix any process pi E g, and consider the following run oi. 
The processes in g start with the same values as in Q, and all 
except pi crash after pi reaches a decision. All the processes 
in g’ start with vi but communication between g and g’ is 
delayed until after pi makes a decision. By ~2, pi must 
decide vi in oi, and by indistinguishability of a from oi , pi 
must decide vi in cr. Similarly, runs ai can be constructed 
for every process pi E g’, and hence all processes must decide 
their own values in o. This contradicts the hypothesis that 
A solves the problem (for k < n). 

Now consider the case t < t. In this case, n - 2t x r! 
and the condition t 2 n& is equivalent to k 5 2 - 1. 
Let g be a subset of the system containing n - t processes, 
and let gi , . . . . gl%, be a partition of g into disjoint sets of 

size at least n -“St each. Let (I be a run of A in which all 
the processes are correct, communication between g and the 
rest of the system is delayed until after all processes have 
decided and, for each i, processes in gi start with a distinct 
value vi. Fix i, and let pi E gi be some process. Consider 
a run oi of A as follows: Processes in gi are correct, all 
processes in g \ gi are faulty, and crash after pi decides. 
All communication between g and the rest of the system is 
delayed until after pi decides. By SV~, pi must decide vi, but 
since a is indistinguishable to pi from oi, pi must decide vi 
in a. Therefore, in a, at least 1s J different values are 
decided on. This contradicts the hypothesis that A solves 
the problem since k 5 5 - 1 < 151. Cl 

3.2 Protocols 

In this section we provide two protocols for the crash model. 

PROTOCOL A: Each process broadcasts its input 
and waits for n - t messages. If all n - t mes- 
sages contain the same value v, then the process 
decides v, else it decides a default value vc. 

Lemma 3.7 PROTOCOL A solves SC(k,t,RV2) in the crash 
model fort < yn. 

Proof: We start by proving termination. The number of 
actual failures is less or equal to t. Hence there are at least 
n-t correct processes. Thus each correct process eventually 
receives at least n-t messages and is able to make a decision. 

Now we prove agreement. By the sake of contradiction 
assume that k + 1 values are decided. One of them could be 
the default value, but at least k values, diierent from the 
default value, are decided. By the protocol it is necessary 
that there be k disjoint sets gi, gs, . . . . gk, each consisting of 
at least n - t processes such that each process in gi sends a 
value vi (with vi # uj for i # j). Hence there must be at 
least k(n - t) processes. However since t < k$n we have 
that n - t > n/k and that k(n - t) > n, which implies that 
there must be more than n processes. This is impossible 
since we have n processes. 
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Finally we prove validity. Assume that all processes start 
with value u. Clearly a process cannot receive two different 
values since v is the only value being sent. Hence by the 
protocol each process that makes a decision, decides v. 
0 

PROTOCOL B: Each process broadcasts its input 
and waits for n - t messages. One of these n - t 
messages is the process’ own message. If n - 2t 
messages contain the same value as its own, say 
v, the process decides v, else it decides a default 
value VO. 

Lemma 3.8 PROTOCOL B solves SC(k,t,sv2) in the cmsh 
model fort < +a. 

Proof: We start by proving termination. The number of 
actual failures is less or equal to t. Hence there are at least 
n-t correct processes. Thus each correct process eventually 
receives at least n-t messages and is able to make a decision. 

Now we prove agreement. By the sake of contradiction 
assume that k + 1 values are decided. One of them could be 
the default value, but at least k values, different from the 
default value, are decided. By the protocol it is necessary 
that there be k disjoint sets gi, gs, . . . . gk, each consisting of 
at least n - 2t processes such that each process in gi sends 
a value vi (with v; # uj for i # j). Hence there must be 
at least k(n - 2t) processes. However since t < %n we 
have that k(n - 2t) > n, which implies that there must be 
more than n processes. This is impossible since we have n 
processes. 

Finally we prove validity. Assume that all correct pro- 
cesses start with value v. We have to prove that a correct 
process decides v. Let p be a correct process. First we ob- 
serve that since p starts with v it decides v or ve. Hence 
it suffices to prove that p receives at least n - 2t messages 
with v. Among the n - t messages p receives at least n - 2t 
are from correct processes. Hence process p receives at least 
n - 2t messages with v. II 

3.3 Remarks 

For SC(FLVS) and SC(WVS), there is a very tiny gap be- 
tween our possibility and impossibility results (Lemmas 3.3 
and 3.7), formed by the cases where n is a multiple of k. 
These are isolated points on the line that separates possi- 
ble from impossible. Since for all other points on this line 
the problem is not solvable it would be very surprising if for 
those isolated points the problem is solvable. For SC(sv2) 
there is also small gap between our possibility and impossi- 
bility results (Lemmas 3.6 and 3.8). 

4 Byzantine failures 

In thii section we consider the Byzantine model. In Sec- 
tion 4.1 we are concerned with impossibilities and in Sec- 
tion 4.2 we provide protocols. Figure 3 shows a graphical 
representation of the results. 

4.1 Impossibilities 

In this section we provide impossibility results for the Byzan- 
tine model. Clearly the impossibilities proved for the crash 
model still hold. In particular the impossibilities for SC(svl) 
and SC(wv1) are directly derived from the corresponding 
ones for the crash model. Next we provide additional im- 
possibilities. 

Lemma 4.1 Zn the Byzantine model, there is no protocol 
that solves SC(k,t,w2), fort 3 &n and t >_ k. 

Proof: For a contradiction assume that such a protocol A 
exists. We distinguish two cases: (i) t >_ n/2 and (ii) t < 
n/2. 

Consider case (i). Let vi, us, . . . . vt+i be t + 1 different 
values. Let (L be the following run of A. The number of ac- 
tual failures in (Y is f = n-t - 1. Let F be the set of faulty 
processes and let p1 , . ..pt+l be the correct processes. Pro- 
CESS pi has input vi, for i = 1,2, . . . . t + 1. Messages between 
any two correct processes are delayed until all correct pro- 
cesses decide, that is, correct processes communicate only 
with processes in F. 

We now show that at least k + 1 values are decided in CY, 
which contradicts the hypothesis that A solves the problem. 
For each i = 1,2, . . . . t + 1 consider the following run Qi. All 
processes are correct, all have input vi, messages between 
processes not beIonging to F are delayed until all processes 
not in F decide. By validity WV~, we have that in oi all 
processes must decide vi. Process pi, for i = 1,2, . . . . t + 1, 
cannot distinguish between cr and ~i, if in Q, the members of 
F behave as if they were correct and had vi initially. Hence 
pi has to decide the same value in both runs. We have 
that process Pi decides vi also in cr. Since vr, us, . . . . vt+i are 
different, we have that t + 1 values are decided in Q. But 
t 1 k, hence at least k + 1 values are decided in o. 

Consider case (ii). Since t < n/2 we have that n- 2t > 0 
and thus the condition t > _ &n is equivalent to s > 
k+l. Then, we can partition the processes into k+2 groups, 
the 6rst k+l of which, denoted gi,gs, . . ..gk+i. each consists 
of at least n - 2t processes, and the last of which, denoted 
F, consists oft processes. Let Q be the following run of A. 
Let v1,v2,..., vk+l be k + 1 d&rent values. Processes in gi 
start with vi, for i = 1,2,..., k + 1, and processes in F are 
faulty. Processes in group gi communicate only within g; 
and with processes in F. For each group gi processes in F 
behave as correct processes with input vi. 

We now show that at least k + 1 values are decided in o, 
which contradicts the hypothesis that A solves the problem. 
For each i = 1,2, . . . . k + 1 consider the following run oi. All 
processes are correct, all have input vi, processes in group 
gi communicate only within gi and with processes in F. By 
validity WV~, we have that in oi all processes must decide 
vi. Processes in gi, for i = 1,2, . . . . k + 1, cannot distinguish 
between Q and ai. Hence they have to decide the same 
value in both runs, and so processes in gi decide vi also in 
a. she Vl,V2 ,..., Vk+l are different, we have that k + 1 
values are decided in CY. u 

Lemma 4.2 Zn the Byzantine model, there is no protocol 
that solves SC(lc,t,RVl). 

ProoE For a contradiction assume that such a protocol A 
exists. Let ~1 be a run of A in which all processes are correct 
and each start with a different input value. Let vi, . . . . vZ be 
the set of values decided by correct processes. Because A 
satisfies validity ~vl, each of the vi is the input of some 
process. Since z < k < n, we have that there exists a value 
vi, 1 < i < z, decTded by at least two processes, say pl and 
P2. 

Let process q be the process whose input in (~1 is vi for 
some i E (1, . . . . z}. Use A in the run a2 in which q is faulty 
but behaves as in al, claiming that vi is its input, but it 
has vi as its input, with vi different from vi and also from 
any other input. Since correct processes cannot distinguish 
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Figure 3: Byzantine model. Regions filled in brick pattern indicate impossibility. Regions filled in honeycomb pattern indicate solvability. 
Unfilled regions indicate open problems. Figures are drawn to scale n = 64. 
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between (~1 and (~2 they have to decide on the same value. 
We now distinguish three possible cases: (1) q is different 
frombothplandpz,(2)qispland(3)qispz. Ifqisdifferent 
from both pl and p2 then both pl and p2 are correct and 
thus they decide on V; in ~2. However vi is not an input 
value in ~2. Hence validity is violated. If q is p1 (rwp. 
pz) then pz (resp. pl) is correct and thus decides vi in 02. 
However vi is not an input value in ~2. Hence validity RV~ 
is violated. Thii contradicts the hypothesis that A solves 
SC(k,t,RVl). Cl 

Lemma 4.3 In the Byzantine model, there is no protocol 
forSC(k,t,RV2), fort 1 &?a. 

Proof: The proof is similar to that for Lemma 3.6. For 
a contradiction assume that such a protocol A exists. We 
distinguish two cases: (i) t < n/2 and (ii) t 2 n/2. Consider 
case (i). Since t < n/2 we have that n - 2t > 0 and thus 
the condition t > _ &n is equivalent to A 2 k + 1. 
Then, we can partition the processes in k + 1 groups each 
consisting of at least n - 2t processes. Consider case (ii). 
In this case we partition the processes in k + 1 groups each 
consisting of at least one process. 

In both cases, let 91, g2 , -, gk:r Qk+l be the k + 1 groups 
of processes. Let VI , . ..vk+l be k + 1 different values and 
consider the following run a. All processes are correct, pro- 
CXSS~S in group gi start with Vi. For each group g+, there is 
a set of t processes not belonging to gi, call it Fi, such that, 
for each i, communication is allowed only among processes 
in gi and Fi until all processes have decided. Notice that 
the cardinality of gi U Fi is at least n - t in both cases. 

We now show that k + 1 values are decided in CY, which 
contradicts the hypothesis that A solves the problem. Fix 
i, 1 5 i 5 k + 1, and consider run Oi. There are exactly t 

faulty processes and these processes are those in Fi. Pro- 
cesses in gi are correct. All processes start with vi. Faulty 
processes behave exactly as they do in run CY. Processes in 
gi communicate only with other processes in gi and Fi. We 
can use A to solve SC(k,t,Rv2), and by the validity RV2 we 
have that all correct processes, and in particular those in gi 
decide vi. Processes in gi cannot distinguish run Q and run 
ai. Hence, since they decide tli in ai they have to decide vi 
also in a. It follows that k + 1 values are decided in cr. 0 

4.2 Protocols 

In this section we provide protocols for the Byzantine model. 
We start by observing that PROTOCOL A, used for the crash 
model, solves SC(WV~) also in the Byzantine model, though 
only for a restricted range of values of k and t. 

Lemma 4.4 PROTOCOL A solves SC(k,t,WP) in the Byzan- 
tine model for t < n/2 and k 2 2 + 1. 

Proof: We start by proving termination. Since there are at 
most t failures, correct processes are guaranteed to receive 
at least n - t messages and thus they decide. 

Next we prove agreement. To have a bound on the num- 
ber of possible decisions we look at how many values dif- 
ferent from the default value can be decided. Let f be 
the number of actual failures. We have that any group of 
n - t - f correct processes that start with the same value 
can be forced by the f faulty processes to decide that value. 
Notice that since f 5 t < n/2 we have that n - t - f 2 1. 
Hence the number of decisions can be as big as the number 

of possible disjoint groups of n - t - f correct processes, 
plus one to take into account the default value. There can 
be at most (n - f)/(n - t - f) such groups. This func- 
tion is an increasing function of f and thus it achieves its 
maximum value for f = t. Hence the number of different 
fec$;t r,(can have is at most (n - t)/(n - 2t) + 1. Since 

n - 2t) + 1 agreement is satisfied. 
-Finally we prove validity. Assume that all processes are 

correct and start with v. Then clearly v is the only decision. 
Cl 

Lemma 4.5 PROTOCOL A solves SC(k,t,wv2) in the Byzan- 
tine model for t > n/2 and k 1 t + 1. 

Proof: Termination and validity are as in the previous lemma. 
Next we prove agreement. Let f be the number of actual 
failures. We distinguish two cases: (i) f 2 n - t - 2 and 
(ii) f > n - t - 2. In case (i) we have that for any n - t 

messages received by a process, at least two of them are sent 
by correct processes. Hence for each different value v # vo 
decided by some process at least two correct processes have 
sent that value. Hence no more than n/2 values different 
from the default value vo can be decided. Hence at most 
n/2 + 1 difkrent values can be decided in case (i). In case 
(ii) the number of correct processes is strictly less than t +2. 
Hence we cannot have more than t + 1 different decisions. 
Putting together the two cases, we have that the number of 
different decisions is at most max{n/2+ 1, t + 1) = t + 1 5 k. 
Cl 

Next we provide a generalized version of the “echo” protocol 
of Bra&a and Toueg 141, which we call &echo, where e 2 2. 
(The l-echo protocol is Bra&a and Toueg’s echo protocol.) 
The &echo protocols will be used to provide a family of 
protocols for SC(SV2). 

e-echo protocol: To .&echo broadcast a mes- 
sage m, the sender s sends the message (init,s,m) 
to all other processes. When a process p receives 
the first (init,s,m) from s, it sends the message 
(echo,s,m) to all other processes. Subsequent 
init messages from 9 are ignored. If process 
p receives message (echo,s,m) from more than 
(n -t .tt)/(t + 1) processes, then process p accepts 
message m as sent by the sender process s. 

Lemma 4.6 In a system with t < ln/(2.! + l), if a sender 
s uses the .&echo protocol to send a message m then: 

(i) Correct processes accept at most e different messages. 

(ii) If 8 is correct, every correct process accepts m. 

Proof: Fit we prove (i). By sake of contradiction as- 
sume that correct processes accept e + 1 different messages 
ml, ma, . . . . rnt+l. Then there must be L+l correct processes, 
say pl,p2, . . ..pt+l. such that process pi receives more than 
(n+et)/(e+l) ethos with mi, for each i = 1,2, . . . . .!+l. Thus 
there must be a total of more than n + et ethos sent for the 
messages ml, m2, . . . . rnl+l. Let f be the actual number of 
faulty processes. Since a faulty process can send e+ 1 differ- 
ent ethos (it can echo ml to pl, m2 to p2 and SO on) we have 
that strictly more than n+&-(e+l)f 1 n+ef -(e+l)f = 
n - f ethos are sent, by correct processes. This implies that 
at least one correct process sent two different ethos, which 
is not possible. 
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Now we prove (ii). If the sender is correct. then it sends 
an init message for. m to all other processes. Any correct 
process will receive this and broadcast an echo message for 
m. Because there are at most t < (n + &)/(e + 1) faldty 
processes, no correct process accepts any message other than 
m. Since there are at least n - t correct processes, it is 
sufficient that n-t be strictly greater than (n+Lt)/(e+l) in 
order to guarantee that any correct process receives enough 
echo messages to be able to accept m. Since t < &/(2[ + 1) 
we have that n - t > (n + et)/(e + 1). Cl 
The t&ho protocol is used to define a family of protocols 
for SC(k, t,sv2) as follows. 

PROTOCOL c(e): Each process broadcasts its in- 
put using the f-echo protocol and waits for n - t 

messages to be accepted, where one of these n-t 
messages is the process’ own message. If n - 2t 
messages contain the same value u, then the pro- 
cess decides v, else it decides a default value we. 

Lemma 4.7 PROTOCOL c(e) solves SC(k,t,sv2) in the Byzan- 
tine model for t < an and t < &pa. 

Proof: We start by proving termination. Since there are at 
least n - t correct processes, each correct process eventually 
accepts at least n - t messages broadcast by e-echo and is 
able to make a decision. 

Now we prove agreement. For a contradiction assume 
that k + 1 values are decided. One of them could be the 
default value, but at least k values, different from the de- 
fault value, are decided. By the protocol it is necessary that 
there be k sets gi, gz, . . . . gk, each consisting of at least n - 2t 
processes, such that some correct process accepts a value vi 
from each process in gi (with vi # vj for i # j). Hence 
correct processes accept at least k(n - 2t) values broadcast 
by e-echo. Each faulty process can contribute L different 
values, and so the number of different senders is at least 
k(n - 2t) - (L - 1)t. However since t < &&n, we have 

that k > w and thus k(n - 2t) - (e - 1)t > n, which 
implies that there must be more than n processes, a contra- 
diction. 

Finally we prove validity. Assume that all correct pro- 
cesses start with value v. We have to prove that a correct 
process decides v. Let p be a correct process. First we ob- 
serve that since p starts with v it either decides v or vo. 
Hence it suffices to prove that p receives at least n - 2t mes- 
sages with v. Among the n - t messages p receives at least 
n - 2t are from correct processes. Hence process p receives 
at least n - 2t messages with v. Ll 

Finally we provide a protocol for SC(wv1). 

PROTOCOL D: Processespl,p2, . . ..pt+l each broad- 
casts its input value. A process that receives a 
value vi from pi, i E { 1,2, . . . . t + l}, broadcasts 
an (echo,vi,pi) message and never ~&OS a value 
for pi again. Processes pl,pg, . . . . pk each decides 
on its own value. Every other process decides 
the first value vi, i E (1,. . . , t + l}, for which 
it receives identical ethos (echo,v; ,p;) from n - t 
processes. 

In PROTOCOL D, we say that a process accepts a value vi 
from p; if it receives identical ethos for v; from at least n - t 
processes. We define the following functions 

v(n9t9f)= y;f_f+f[“-fJ ifn-t-f >0 
{ 

ifn-t-f 50 

Lemma 4.8 PROTOCOL D solves SC(k,t,wvl) in the Byzan- 
tine model for k 2 Z(n, t). 

Proof: We start by proving termination. At least one pro- 
cess among pl, . . . ,p:+l is correct, and at least n - t receive 
its value and echo it. Hence it is guaranteed that each cor- 
rect process receives at least one set of identical n - t echo 
messages and thus is able to decide. 

Next we prove validity. Assume that there are no fail- 
ures. Then all processes are correct and thus the values 
accepted by any process are input values. All decisions are 
one of the accepted values. Hence validity wvl is satisfied. 

Finally we prove agreement. We compute au upper bound 
on the number of different decisions for each possible value 
of f, that is the number of actual failures. By definition, 
0 5 f 2 t. We distinguish two cases: (i) n - t - f 5 0 
and (ii) n - t - f > 0. In case (i) a correct process may 
be forced to communicate only with faulty processes. In 
this case we simply bound the number of decisions with the 
number of correct processes, that is n - f. In case (ii) the 
total number of values that correct processes accept from 
one faulty process is bounded by [*I. Indeed, a cor- 
rect process accepts a value when receiving at least n - t 
ethos, at least n - t - f of which are from correct processes. 
Thus the total number of values from pl, . . ..pt+l accepted 
by correct processes is at most (t + 1- f) + f [$$I, that 
is the number of values sent by correct processes plus the 
number of values that correct processes may be forced to ac- 
cept because of the Byzantine behavior of faulty processes. 
Hence the number of different decisions that we can have is 
t + 1 - f + f [SJ. It is possible that this bound is bigger 
than n - f. In such a case, we can bound the number of 
different decisions by n - f. Summarizing the two cases we 
have that for any f, we bound the number of decisions by 
n-fifn-t-f <Oandbymin{t+l-f+fL$&j,n-f} 
ifn-t - f > 0. The maximum over all possible values of 
f is given by Z(n, t). Hence we have that the number of 
decisions is always at most .Z(n, t), as required. cl 

We note that when t < f, [*I = 1 for all 0 5 f 5 t, 
and therefore, the protocol above guarantees agreement for 
any k > t (see Figure 3). 

4.3 Remarks 

For the Byzantine model, the impossibility results and pro- 
tocols we have provided in this section leave a small gap for 
the SC problem defined with validities WV~, RV2 and sv2 
and a substantial gap for SC(wvl). 

5 Conclusions and Future Work 

We have considered several variations of the k-set consen- 
sus problem. The variations were obtained by considering 
six different validity conditions. One of these variations is 
the k-set consensus problem introduced by Chaudhuri [5] 
and considered by several papers in the literature. Several 
of the other variations have been considered for the classi- 
cal, i.e., k = 1, consensus problem. We showed that the 
exact definition of the validity condition is crucial in or- 
der to discern solvable from impossible. Known results had 

264 



demarcated this line for the problem considered by Chaud- 
huri. In this paper we have provided this line for the other 
variations of the problem. The results show that this line 
changes depending on the exact definition of the validity 
condition. We have considered each of the variations in the 
message-passing model with either crash-failures or Byzan- 
tine failures. In most of the cases we were able to exactly 
demarcate the line between solvable and impossible; in a few 
cases there is still a gap to be filled in. 

One area of ongoing work is to perform a similar analy- 
sis for k-set consensus problems in shared-memory systems. 
Many of the techniques we developed here are useful for pro- 
viding protocols and proving impossibilities in this case. In 
some cases, translations between the shared memory model 
and the message passing model are possible [2], allowing 
us to use the protocols developed for the message passing 
model. However, these do not always provide solutions with 
the highest fault tolerance possible, and do not hold when 
Byzantine failures are possible. In these cases, protocols 
designed specifically for thii context are required. The im- 
possibility result of [3,7,13, l] (i.e., Lemma 3.2) also applies 
to the shared memory model. Future work will provide full 
analysis of this context. 

A second natural direction is to consider synchrorious 
systems. For synchronous settings, we note that any proto- 
col that works in asynchronous systems works also in syn- 
chronous systems. There are protocols to solve SC(IE, t,~vl) 
for any t in the synchronous crash setting (see, e.g., [lo, Ch. 
71). Some of the impossibility proofs provided in this p* 
per still work in the synchronous setting. Putting together 
these results we can almost demarcate the line between pos- 
sible and impossible for the synchronous message-passing 
crash model. However for the other models, especially with 
Byzantine failures, nothing is known (except, of course, for 
the known results on l-consensus, e.g., (8, 9, 121). 
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