
On k-set Consensus Problems in Asynchronous Systems

Roberto De Prisco* Dahlia Malkhit Michael K. Reited

Abstract

In this paper we investigate the k-set consensus problem in
asynchronous, message-passing distributed systems. In this
problem, each participating process begins the protocol with
an input value and by the end of the protocol must decide on
one value so that at most k different values are decided by
all correct processes. We extend previous work by exploring
several variations of the problem definition and model, in-
cluding for the first time investigation of Byzantine failures.
We show that the precise definition of the validity require-
ment, which characterizes what decision values are allowed
as a function of the input values and whether failures occur,
is crucial to the solvability of the problem. For example, we
show that allowing default decisions in case of failures makes
the problem solvable for most values of k despite a minority
of failures, even for the most severe type of failures (Byian-
tine). We introduce six validity conditions for this problem
(all considered in various contexts in the literature), and de-
marcate the line between possible and impossible for each
case. In many cases this line is different from the one of the
originally studied k-set consensus problem.

1 Introduction

The k-set consensus problem is an abstraction of many co-
ordination problems in a distributed system that can suffer
process failures. Each process begins with an input value
and must irrevocably decide on one output value, so that a
total of at most k values are decided by correct processes.
The set of allowed decision values are specified by a validity
condition that constrains the decisions of correct processes
as a function of the input values and whether failures occur
during the run of the protocol.

In this paper we explore the solvability of the k-set con-
sensus problem in asynchronous message passing systems, in
models in which processes fail by crashing or fail arbitrar-
ily (Byzantine failures). The main theme in this paper is
that the validity condition has a profound impact on when
the problem is solvable. We consider six diierent validity
conditions and use these conditions to demarcate when k-set
consensus is solvable for each system model. In several cases
we completely characterize solvability. In some we charac-

‘MIT Lab for Computer Science, 545 Technology Sq. NE43-368,
Cambridge MA, 02139, and Dip. di Informatica ed Applicasioni, Uni-
versit& di Salerno, Italy. Email: roMepQtheory . lcs .mit . l du. Work
done while at AT&T Labs-Research.

‘AT&T Labs-Research, 180 Park Ave., Florham Park, NJ 07932.
Email: daliaQreseuch.att.co.

*Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Mur-
ray Hill, NJ 07974. Email: tsiter0research.bell-labs. con.

t’ermission to nyake digital or hard copies of all or part of this work for
personal or classroom ue is granted without fee prwidect that copies
are not nya& or tlistributd for prolit or commercial ad\a~ltagc d that
topics bear this notice and the full citation on the first page. To copy
otherwise. to republish. to post on servers or to redistribute to lists.
requires prior specific permibsion an&or a fee.

PODC ‘99 Atlanta GA L;S.A
Copyright ACM 1999 l-581 13-099-6/99/05...$5.00

terize solvability with very little uncertainty (i.e., a small
gap between computable and impossible) and in one case
we leave a substantial gap.

The k-set consensus problem was introduced by Chaud-
huri [5], who studied the problem in asynchronous message
passing systems in which processes fail by crashing. The
validity condition adopted in [5] requires that each correct
process decide on a value that is equal to some input value.
In this context, Chaudhuri provided a protocol to solve the
k-set consensus problem that tolerates up to t < k process
failures. The condition t < k was later proved to be neces-
sary in thii context [3, 7, 131 (see also [l)). The six validity
conditions we study include the one originally used in [5]
and others studied for k = 1 (consensus) with crash and
Byzantine failures (e.g., see [ll]). For k = 1, the condition

= 0 is known to be necessary for any nontrivial validity
tondition (61.

The rest of this abstract is structured as follows. In Sec-
tion 2 we define the problem. We study the k-set consensus
problem for message passing systems with crash-failures in
Section 3, and for message passing systems with Byzantine
failures in Section 4. Section 5 concludes and outlines direc-
tions for future work.

2 The problem

We consider a distributed system consisting of n processes
denoted by pl ,p2, pn. A process that follows its protocol
specification throughout an execution is said to be correct,
and a process that departs from its specification is said to
be faulty. In the cmah model, faulty processes are allowed to
prematurely halt execution only. In the Byzantine model, a
faulty process can deviate from its specification arbitrarily.
We sssume that at most t processes fail, where t 2 1 is a
known, positive integer.

Processes communicate by sending messages. We as-
sume that the underlying communication network is com-
plete, that is, there is a communication channel for each pair
of processes. Communication is reliable and authenticated,
in the sense that a correct process pi receives a message m
from a correct process pj if and only if pj sent m to pi. Pro-
cesses may take an arbitrary (but finite) time to execute a
step and messages may incur an arbitrary (but finite) de-
lay on the communication network. That is, the system is
asynchronous.

We denote a k-set consensus problem by SC(k) or simply
SC when k is not relevant. For any k, 1 5 k 5 n, the SC(k)
problem is defined as follows. Each process pi starts the
computation with an input value vi. Each correct process
has to irreversibly “decide” on a value in such a way that
three conditions, called termination, agreement and validity,
hold. These conditions are:

Termination: Every correct process eventually de-
cides.

Agreement: The set of values decided by correct pro-
cess- has size at most k.

257

© ACM, 1999. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/301308.301368.

Validity: One of the following conditions.

svl

sv2

RVl

RV2

WV1

WV2

(strong ~1): The decision of any correct
process is equal to the input of some cor-
rect process.
(strong v2): If all correct processes start
with v then correct processes decide v.
(regular vl): The decision of any correct
process is equal to the input of some pro-
CesS.

(regular ~2): If all processes start with
v then correct processes decide v.
(weak vl): If there are no failures, then
the decision of any process is equal to
the input of some process.
(weak ~2): If there are no failures and all
processes start with v, then the decision
of any process is equal to v.

Given a validity condition C, we denote by SC(k,C) the
SC(k) problem defined with validity C. We also use the
notation SC(C) if k is not relevant. We use the notation
SC(k,t) to denote a SC(k) consensus problem with at most
t failures allowed. The notation SC(k,t,C) denotes SC(k,t)
with validity C.

We define a partial order on the SC problems based on
the strength of the validity conditions. We say that SC(C)
is weaker than SC(D) if any protocol for solving SC(D) can
be used to solve SC(C) in the same model. Clearly SC(C) is
weaker than SC(D) if any impossibility result that holds for
SC(C) holds also for SC(D). Conversely, we say that SC(C)
is stronger than SC(D) if SC(D) is weaker than SC(C). Fig-
ure 1 shows the ‘weaker than” relation among the six valid-
ity conditions considered in this paper.

Figure 1: Validity conditions. An arrow from a validity condition
C to a validity condition D means that SC(C) is weaker than
SC(D) (and that SC(D) is stronger than SC(C)).

SC(k,Rvl) is the consensus problem as considered by
Chaudhuri [5]. SC(l,~vl) and SC(l,~v2) are classical con-
sensus problems (see, e.g., [lo, Ch. 61). SC(l,sv2) has been
considered in the Byzantine setting [9, 121. SC(l,wvZ) is
weak Byzantine agreement [8].

It is well known that SC(l) cannot be solved for any
nontrivial validity condition [6] and, in particular, for any
of the validity conditions that we consider here. On the

other hand, SC(n) is trivially solvable (each process decides
its own value), even in the Byzantine setting, for any t and
with the strongest validity condition we are considering, that
is, validity SvI. Thus, we will henceforth be concerned only
for the cases 2 5 k 5 n - 1. Since the problem is easily
solvable for t = 0 we also assume that t 2 1.

3 Crash failures

In this section we consider the crash model. As noted in Set-
tion 1, for these systems we already know the line between
computable and impossible for SC(k, t,wl):

Lemma 3.1 ([5]) Zn the crash model, there is a protowl
for SC&,t,RVl), fort < k.

Lemma 3.2 ([3, 7, 131) Zn the crash model, there is no
protocol for SC(k,t,RVl), fort > k.

By Lemma 3.1, we have that SC(k,t,RvZ), SC(k,t,wvl)
and SC(k,t,wv2) are solvable for t < k because RV2, wvl
and WV~ are weaker than RV~. By Lemma 3.2, SC(k,t,svl)
cannot be solved for t > k because svl is stronger than Rvl.

In Sections 3.1 and 3.2, we provide further impossibility
results and protocols, respectively. Figure 2 shows a graph-
ical representation of the results provided in this section.

3.1 Impossibilities

In this section we provide impossibility results for the crash
model. An ingredient in most of our impossibility results is
the fact that in any protocol tolerating t failures, a process
must be able to decide after communicating with at most
n - t processes (including itself). Indeed, if a process waited
to communicate with more than n-t processes, termination
could not be achieved: the runs in which there were exactly
t faulty processes that do not send any messages, would not
terminate.

Lemma 3.3 Zn the crash model, there is no protocol for
SC(k,t,Wvl), fort > v.

Proof: For a contradiction, assume that such a protocol
A exists. In the rest of the proof we use the notation
SCp(k, t, C) to explicitly state the set P of processes among
which k-set consensus is to be solved. Denoting by P the
set of all processes, we have that A solves SCp(k, t, WV~).

Since t 2 ((k - 1)n + 1)/k implies n 2 k(n -t) + 1, we
can partition the n processes into k groups gi , gz, . . . , gk of
disjoint processes with gi,,gk-1 containing exactly n-t
processes and gk containing at least ?a - t + 1 processes. If
t = 12 we let Ql,Q2,...,Qk-1 be singleton sets of processes
and we let gk contain at least two processes (this iS possible
because we only consider k < n).

First we claim that there is a run of A where only pro-
cesses in gk take steps and such that two values are decided.
To see why, assume that all the runs involving only processes
of gk are such that only one value is decided. Then we could
use A tosolveSC,,(l,l,Wv2): gk contains at least n-t+1
processes, so that even if one of them is faulty we still have
at least ra - t correct processes in gk and hence the proto-
col has to terminate. However, this contradicts [6], since no
such protocol exists. Hence there is a run ok in which only
processes in gk take steps and they decide on at least two
different values, say Vk, Vk+I. Let VI,vk-1 be k-1 values
different from Vk, Vk+l.

258

k

i

n

I
2 n-l

n

1
2 n-1

-2

n

44

I
2 n-1

0 RVl

2 w2 n-l

k

k
C

k
t

Figure 2: Crash model. Regions filled in brick pattern indicate impossibility. Regions filled in honeycomb pattern indicate solvability.
Unfilled regions indicate open problems. Figures are drawn to scale n = 64.

259

Fix i, i E {1,2, k - 1) and consider the following run
oi: all processes are correct, all start with ui and all mes-
sages sent to processes in gj, j = 1,2, k by processes not
in gj are delayed until all processes in gj make a decision.
We can use A to solve SCp(k, t, wv2) and by validity wv2
we have that all processes, in particular those in group gi,
decide vi.

Now consider the following run a. All processes are cor-
rect, for each i, i = 1,2, k - 1, each process in gi starts
with vi and processes in gk start with the same values they
start in ok. Moreover for each i, i = 1,2, k, all messages
sent to processes in group gi by processes not in gi are de-
layed until all processes in gi have decided. We can use A to
solve SCp(k, t, WV~) in a. However, for each i, i = 1,2, k,
processes in gi cannot distinguish between run Qi and run (2.
Indeed in both runs they only communicate with processes
in gi before making a decision and in both runs processes in
gi start with the same value. Since, for i = 1,2, k - 1, in
run oi processes in gi decide vi, they must decide vi also in
cr. Since in run ok PrOCesSeS in gk decide on Vk and ?&+I,
they must decide Vk and Vk+l also in a. Hence we have that
k + 1 values are decided in a. Thus the agreement condition
is violated and this contradicts the hypothesis that A solves
SCP(k, t, wv2). 0

Lemma 3.4 In the crash model, there is no protocol for
SC(k,t,wvl), fort 1 k.

Proof: For a contradiction sssume that there exists such a
protocol A. We claim that A can be used to solve SC(k,t,nvl)
for t 2 k. To see why, consider any run a in which f 5 t pro
ceases are faulty and let g be the set of correct processes and
g’ be the set of faulty processes. Now consider a run cu’ that
is identical to a except that all processes are correct and any
message sent by any p E g’ in a’ after the time that p failed
in Q is delayed until after all processes in g decide. That is,
for each pi E g and each pj E g’, pi receives a message from
pj at time T in o’ iff pi receives the same message at time T
from pj in a. By the validity condition WV~, each process
decides on some process’ input in Q’. Clearly, processes in
g cannot distinguish between o and Q’. Hence, processes
in g decide the same value in Q as they decide in a’, and
so validity ~1 is satisfied in a. In other words, protocol A
solves SC(k,t,RVl) for t >_ k, contradicting Lemma 3.2. 0

Lemma 3.5 In the crash model, there is no protocol for
SC(k,t,svl).

Proof: For a contradiction sssume that there exists such a
protocol A. Let Q be an execution of A in which all pro-
cesses are correct and they all start with different values.
Let v a decision made by at Iesst two processes (there is al-
ways such a decision since k < n). Because of validity svl,
v is the input of some process pi and since all inputs are
different only pi has v as input. Now consider the run a’
that is the same as Q except that process pi fails right after
sending its last message. Clearly a and a’ are indistinguish-
able and thus each process (maybe with the exception of pi)
makes the same decision in both runs. Hence in o’ value v
is decided by at least one process pj, j # i. But only pi has
v as input and p; is not correct in cr’, and so validity ~1 is
violated. II

Lemma 3.6 In the crash model, there is no protocol for
SC(k,t,sV2), fort 2 7&n.

Proof: For a contradiction sssume that there exists such
a protocol A. Consider first the case t 1 %. Partition the
system into two non-intersecting sets of processes, g, g’, each
containing at least n - t processes (e.g., 191 = /g’/ = n/2).
This is always possible because t 2 n/2. Let a be a run of
A in which all processes are correct, all start with different
initial values denoted vi, 7~2, vn, and all communication
between g and g’ is delayed until after the decisions are
made. We claim that n values are decided in o. To see this,
fix any process pi E g, and consider the following run oi.
The processes in g start with the same values as in Q, and all
except pi crash after pi reaches a decision. All the processes
in g’ start with vi but communication between g and g’ is
delayed until after pi makes a decision. By ~2, pi must
decide vi in oi, and by indistinguishability of a from oi , pi
must decide vi in cr. Similarly, runs ai can be constructed
for every process pi E g’, and hence all processes must decide
their own values in o. This contradicts the hypothesis that
A solves the problem (for k < n).

Now consider the case t < t. In this case, n - 2t x r!
and the condition t 2 n& is equivalent to k 5 2 - 1.
Let g be a subset of the system containing n - t processes,
and let gi , gl%, be a partition of g into disjoint sets of

size at least n -“St each. Let (I be a run of A in which all
the processes are correct, communication between g and the
rest of the system is delayed until after all processes have
decided and, for each i, processes in gi start with a distinct
value vi. Fix i, and let pi E gi be some process. Consider
a run oi of A as follows: Processes in gi are correct, all
processes in g \ gi are faulty, and crash after pi decides.
All communication between g and the rest of the system is
delayed until after pi decides. By SV~, pi must decide vi, but
since a is indistinguishable to pi from oi, pi must decide vi
in a. Therefore, in a, at least 1s J different values are
decided on. This contradicts the hypothesis that A solves
the problem since k 5 5 - 1 < 151. Cl

3.2 Protocols

In this section we provide two protocols for the crash model.

PROTOCOL A: Each process broadcasts its input
and waits for n - t messages. If all n - t mes-
sages contain the same value v, then the process
decides v, else it decides a default value vc.

Lemma 3.7 PROTOCOL A solves SC(k,t,RV2) in the crash
model fort < yn.

Proof: We start by proving termination. The number of
actual failures is less or equal to t. Hence there are at least
n-t correct processes. Thus each correct process eventually
receives at least n-t messages and is able to make a decision.

Now we prove agreement. By the sake of contradiction
assume that k + 1 values are decided. One of them could be
the default value, but at least k values, diierent from the
default value, are decided. By the protocol it is necessary
that there be k disjoint sets gi, gs, gk, each consisting of
at least n - t processes such that each process in gi sends a
value vi (with vi # uj for i # j). Hence there must be at
least k(n - t) processes. However since t < k$n we have
that n - t > n/k and that k(n - t) > n, which implies that
there must be more than n processes. This is impossible
since we have n processes.

260

Finally we prove validity. Assume that all processes start
with value u. Clearly a process cannot receive two different
values since v is the only value being sent. Hence by the
protocol each process that makes a decision, decides v.
0

PROTOCOL B: Each process broadcasts its input
and waits for n - t messages. One of these n - t
messages is the process’ own message. If n - 2t
messages contain the same value as its own, say
v, the process decides v, else it decides a default
value VO.

Lemma 3.8 PROTOCOL B solves SC(k,t,sv2) in the cmsh
model fort < +a.

Proof: We start by proving termination. The number of
actual failures is less or equal to t. Hence there are at least
n-t correct processes. Thus each correct process eventually
receives at least n-t messages and is able to make a decision.

Now we prove agreement. By the sake of contradiction
assume that k + 1 values are decided. One of them could be
the default value, but at least k values, different from the
default value, are decided. By the protocol it is necessary
that there be k disjoint sets gi, gs, gk, each consisting of
at least n - 2t processes such that each process in gi sends
a value vi (with v; # uj for i # j). Hence there must be
at least k(n - 2t) processes. However since t < %n we
have that k(n - 2t) > n, which implies that there must be
more than n processes. This is impossible since we have n
processes.

Finally we prove validity. Assume that all correct pro-
cesses start with value v. We have to prove that a correct
process decides v. Let p be a correct process. First we ob-
serve that since p starts with v it decides v or ve. Hence
it suffices to prove that p receives at least n - 2t messages
with v. Among the n - t messages p receives at least n - 2t
are from correct processes. Hence process p receives at least
n - 2t messages with v. II

3.3 Remarks

For SC(FLVS) and SC(WVS), there is a very tiny gap be-
tween our possibility and impossibility results (Lemmas 3.3
and 3.7), formed by the cases where n is a multiple of k.
These are isolated points on the line that separates possi-
ble from impossible. Since for all other points on this line
the problem is not solvable it would be very surprising if for
those isolated points the problem is solvable. For SC(sv2)
there is also small gap between our possibility and impossi-
bility results (Lemmas 3.6 and 3.8).

4 Byzantine failures

In thii section we consider the Byzantine model. In Sec-
tion 4.1 we are concerned with impossibilities and in Sec-
tion 4.2 we provide protocols. Figure 3 shows a graphical
representation of the results.

4.1 Impossibilities

In this section we provide impossibility results for the Byzan-
tine model. Clearly the impossibilities proved for the crash
model still hold. In particular the impossibilities for SC(svl)
and SC(wv1) are directly derived from the corresponding
ones for the crash model. Next we provide additional im-
possibilities.

Lemma 4.1 Zn the Byzantine model, there is no protocol
that solves SC(k,t,w2), fort 3 &n and t >_ k.

Proof: For a contradiction assume that such a protocol A
exists. We distinguish two cases: (i) t >_ n/2 and (ii) t <
n/2.

Consider case (i). Let vi, us, vt+i be t + 1 different
values. Let (L be the following run of A. The number of ac-
tual failures in (Y is f = n-t - 1. Let F be the set of faulty
processes and let p1 , . ..pt+l be the correct processes. Pro-
CESS pi has input vi, for i = 1,2, t + 1. Messages between
any two correct processes are delayed until all correct pro-
cesses decide, that is, correct processes communicate only
with processes in F.

We now show that at least k + 1 values are decided in CY,
which contradicts the hypothesis that A solves the problem.
For each i = 1,2, t + 1 consider the following run Qi. All
processes are correct, all have input vi, messages between
processes not beIonging to F are delayed until all processes
not in F decide. By validity WV~, we have that in oi all
processes must decide vi. Process pi, for i = 1,2, t + 1,
cannot distinguish between cr and ~i, if in Q, the members of
F behave as if they were correct and had vi initially. Hence
pi has to decide the same value in both runs. We have
that process Pi decides vi also in cr. Since vr, us, vt+i are
different, we have that t + 1 values are decided in Q. But
t 1 k, hence at least k + 1 values are decided in o.

Consider case (ii). Since t < n/2 we have that n- 2t > 0
and thus the condition t > _ &n is equivalent to s >
k+l. Then, we can partition the processes into k+2 groups,
the 6rst k+l of which, denoted gi,gs,gk+i. each consists
of at least n - 2t processes, and the last of which, denoted
F, consists oft processes. Let Q be the following run of A.
Let v1,v2,..., vk+l be k + 1 d&rent values. Processes in gi
start with vi, for i = 1,2,..., k + 1, and processes in F are
faulty. Processes in group gi communicate only within g;
and with processes in F. For each group gi processes in F
behave as correct processes with input vi.

We now show that at least k + 1 values are decided in o,
which contradicts the hypothesis that A solves the problem.
For each i = 1,2, k + 1 consider the following run oi. All
processes are correct, all have input vi, processes in group
gi communicate only within gi and with processes in F. By
validity WV~, we have that in oi all processes must decide
vi. Processes in gi, for i = 1,2, k + 1, cannot distinguish
between Q and ai. Hence they have to decide the same
value in both runs, and so processes in gi decide vi also in
a. she Vl,V2 ,..., Vk+l are different, we have that k + 1
values are decided in CY. u

Lemma 4.2 Zn the Byzantine model, there is no protocol
that solves SC(lc,t,RVl).

ProoE For a contradiction assume that such a protocol A
exists. Let ~1 be a run of A in which all processes are correct
and each start with a different input value. Let vi, vZ be
the set of values decided by correct processes. Because A
satisfies validity ~vl, each of the vi is the input of some
process. Since z < k < n, we have that there exists a value
vi, 1 < i < z, decTded by at least two processes, say pl and
P2.

Let process q be the process whose input in (~1 is vi for
some i E (1, z}. Use A in the run a2 in which q is faulty
but behaves as in al, claiming that vi is its input, but it
has vi as its input, with vi different from vi and also from
any other input. Since correct processes cannot distinguish

261

4t 0 SW

2 n-l

4t 0 RV2
4’ 0 RVl

.
2 n:I

2 n-1

n

n/2

I
k

k
*

Figure 3: Byzantine model. Regions filled in brick pattern indicate impossibility. Regions filled in honeycomb pattern indicate solvability.
Unfilled regions indicate open problems. Figures are drawn to scale n = 64.

262

between (~1 and (~2 they have to decide on the same value.
We now distinguish three possible cases: (1) q is different
frombothplandpz,(2)qispland(3)qispz. Ifqisdifferent
from both pl and p2 then both pl and p2 are correct and
thus they decide on V; in ~2. However vi is not an input
value in ~2. Hence validity is violated. If q is p1 (rwp.
pz) then pz (resp. pl) is correct and thus decides vi in 02.
However vi is not an input value in ~2. Hence validity RV~
is violated. Thii contradicts the hypothesis that A solves
SC(k,t,RVl). Cl

Lemma 4.3 In the Byzantine model, there is no protocol
forSC(k,t,RV2), fort 1 &?a.

Proof: The proof is similar to that for Lemma 3.6. For
a contradiction assume that such a protocol A exists. We
distinguish two cases: (i) t < n/2 and (ii) t 2 n/2. Consider
case (i). Since t < n/2 we have that n - 2t > 0 and thus
the condition t > _ &n is equivalent to A 2 k + 1.
Then, we can partition the processes in k + 1 groups each
consisting of at least n - 2t processes. Consider case (ii).
In this case we partition the processes in k + 1 groups each
consisting of at least one process.

In both cases, let 91, g2 , -, gk:r Qk+l be the k + 1 groups
of processes. Let VI , . ..vk+l be k + 1 different values and
consider the following run a. All processes are correct, pro-
CXSS~S in group gi start with Vi. For each group g+, there is
a set of t processes not belonging to gi, call it Fi, such that,
for each i, communication is allowed only among processes
in gi and Fi until all processes have decided. Notice that
the cardinality of gi U Fi is at least n - t in both cases.

We now show that k + 1 values are decided in CY, which
contradicts the hypothesis that A solves the problem. Fix
i, 1 5 i 5 k + 1, and consider run Oi. There are exactly t

faulty processes and these processes are those in Fi. Pro-
cesses in gi are correct. All processes start with vi. Faulty
processes behave exactly as they do in run CY. Processes in
gi communicate only with other processes in gi and Fi. We
can use A to solve SC(k,t,Rv2), and by the validity RV2 we
have that all correct processes, and in particular those in gi
decide vi. Processes in gi cannot distinguish run Q and run
ai. Hence, since they decide tli in ai they have to decide vi
also in a. It follows that k + 1 values are decided in cr. 0

4.2 Protocols

In this section we provide protocols for the Byzantine model.
We start by observing that PROTOCOL A, used for the crash
model, solves SC(WV~) also in the Byzantine model, though
only for a restricted range of values of k and t.

Lemma 4.4 PROTOCOL A solves SC(k,t,WP) in the Byzan-
tine model for t < n/2 and k 2 2 + 1.

Proof: We start by proving termination. Since there are at
most t failures, correct processes are guaranteed to receive
at least n - t messages and thus they decide.

Next we prove agreement. To have a bound on the num-
ber of possible decisions we look at how many values dif-
ferent from the default value can be decided. Let f be
the number of actual failures. We have that any group of
n - t - f correct processes that start with the same value
can be forced by the f faulty processes to decide that value.
Notice that since f 5 t < n/2 we have that n - t - f 2 1.
Hence the number of decisions can be as big as the number

of possible disjoint groups of n - t - f correct processes,
plus one to take into account the default value. There can
be at most (n - f)/(n - t - f) such groups. This func-
tion is an increasing function of f and thus it achieves its
maximum value for f = t. Hence the number of different
fec$;t r,(can have is at most (n - t)/(n - 2t) + 1. Since

n - 2t) + 1 agreement is satisfied.
-Finally we prove validity. Assume that all processes are

correct and start with v. Then clearly v is the only decision.
Cl

Lemma 4.5 PROTOCOL A solves SC(k,t,wv2) in the Byzan-
tine model for t > n/2 and k 1 t + 1.

Proof: Termination and validity are as in the previous lemma.
Next we prove agreement. Let f be the number of actual
failures. We distinguish two cases: (i) f 2 n - t - 2 and
(ii) f > n - t - 2. In case (i) we have that for any n - t

messages received by a process, at least two of them are sent
by correct processes. Hence for each different value v # vo
decided by some process at least two correct processes have
sent that value. Hence no more than n/2 values different
from the default value vo can be decided. Hence at most
n/2 + 1 difkrent values can be decided in case (i). In case
(ii) the number of correct processes is strictly less than t +2.
Hence we cannot have more than t + 1 different decisions.
Putting together the two cases, we have that the number of
different decisions is at most max{n/2+ 1, t + 1) = t + 1 5 k.
Cl

Next we provide a generalized version of the “echo” protocol
of Bra&a and Toueg 141, which we call &echo, where e 2 2.
(The l-echo protocol is Bra&a and Toueg’s echo protocol.)
The &echo protocols will be used to provide a family of
protocols for SC(SV2).

e-echo protocol: To .&echo broadcast a mes-
sage m, the sender s sends the message (init,s,m)
to all other processes. When a process p receives
the first (init,s,m) from s, it sends the message
(echo,s,m) to all other processes. Subsequent
init messages from 9 are ignored. If process
p receives message (echo,s,m) from more than
(n -t .tt)/(t + 1) processes, then process p accepts
message m as sent by the sender process s.

Lemma 4.6 In a system with t < ln/(2.! + l), if a sender
s uses the .&echo protocol to send a message m then:

(i) Correct processes accept at most e different messages.

(ii) If 8 is correct, every correct process accepts m.

Proof: Fit we prove (i). By sake of contradiction as-
sume that correct processes accept e + 1 different messages
ml, ma, rnt+l. Then there must be L+l correct processes,
say pl,p2,pt+l. such that process pi receives more than
(n+et)/(e+l) ethos with mi, for each i = 1,2,!+l. Thus
there must be a total of more than n + et ethos sent for the
messages ml, m2, rnl+l. Let f be the actual number of
faulty processes. Since a faulty process can send e+ 1 differ-
ent ethos (it can echo ml to pl, m2 to p2 and SO on) we have
that strictly more than n+&-(e+l)f 1 n+ef -(e+l)f =
n - f ethos are sent, by correct processes. This implies that
at least one correct process sent two different ethos, which
is not possible.

263

Now we prove (ii). If the sender is correct. then it sends
an init message for. m to all other processes. Any correct
process will receive this and broadcast an echo message for
m. Because there are at most t < (n + &)/(e + 1) faldty
processes, no correct process accepts any message other than
m. Since there are at least n - t correct processes, it is
sufficient that n-t be strictly greater than (n+Lt)/(e+l) in
order to guarantee that any correct process receives enough
echo messages to be able to accept m. Since t < &/(2[+ 1)
we have that n - t > (n + et)/(e + 1). Cl
The t&ho protocol is used to define a family of protocols
for SC(k, t,sv2) as follows.

PROTOCOL c(e): Each process broadcasts its in-
put using the f-echo protocol and waits for n - t

messages to be accepted, where one of these n-t
messages is the process’ own message. If n - 2t
messages contain the same value u, then the pro-
cess decides v, else it decides a default value we.

Lemma 4.7 PROTOCOL c(e) solves SC(k,t,sv2) in the Byzan-
tine model for t < an and t < &pa.

Proof: We start by proving termination. Since there are at
least n - t correct processes, each correct process eventually
accepts at least n - t messages broadcast by e-echo and is
able to make a decision.

Now we prove agreement. For a contradiction assume
that k + 1 values are decided. One of them could be the
default value, but at least k values, different from the de-
fault value, are decided. By the protocol it is necessary that
there be k sets gi, gz, gk, each consisting of at least n - 2t
processes, such that some correct process accepts a value vi
from each process in gi (with vi # vj for i # j). Hence
correct processes accept at least k(n - 2t) values broadcast
by e-echo. Each faulty process can contribute L different
values, and so the number of different senders is at least
k(n - 2t) - (L - 1)t. However since t < &&n, we have

that k > w and thus k(n - 2t) - (e - 1)t > n, which
implies that there must be more than n processes, a contra-
diction.

Finally we prove validity. Assume that all correct pro-
cesses start with value v. We have to prove that a correct
process decides v. Let p be a correct process. First we ob-
serve that since p starts with v it either decides v or vo.
Hence it suffices to prove that p receives at least n - 2t mes-
sages with v. Among the n - t messages p receives at least
n - 2t are from correct processes. Hence process p receives
at least n - 2t messages with v. Ll

Finally we provide a protocol for SC(wv1).

PROTOCOL D: Processespl,p2,pt+l each broad-
casts its input value. A process that receives a
value vi from pi, i E { 1,2, t + l}, broadcasts
an (echo,vi,pi) message and never ~&OS a value
for pi again. Processes pl,pg, pk each decides
on its own value. Every other process decides
the first value vi, i E (1,. . . , t + l}, for which
it receives identical ethos (echo,v; ,p;) from n - t
processes.

In PROTOCOL D, we say that a process accepts a value vi
from p; if it receives identical ethos for v; from at least n - t
processes. We define the following functions

v(n9t9f)= y;f_f+f[“-fJ ifn-t-f >0
{

ifn-t-f 50

Lemma 4.8 PROTOCOL D solves SC(k,t,wvl) in the Byzan-
tine model for k 2 Z(n, t).

Proof: We start by proving termination. At least one pro-
cess among pl, . . . ,p:+l is correct, and at least n - t receive
its value and echo it. Hence it is guaranteed that each cor-
rect process receives at least one set of identical n - t echo
messages and thus is able to decide.

Next we prove validity. Assume that there are no fail-
ures. Then all processes are correct and thus the values
accepted by any process are input values. All decisions are
one of the accepted values. Hence validity wvl is satisfied.

Finally we prove agreement. We compute au upper bound
on the number of different decisions for each possible value
of f, that is the number of actual failures. By definition,
0 5 f 2 t. We distinguish two cases: (i) n - t - f 5 0
and (ii) n - t - f > 0. In case (i) a correct process may
be forced to communicate only with faulty processes. In
this case we simply bound the number of decisions with the
number of correct processes, that is n - f. In case (ii) the
total number of values that correct processes accept from
one faulty process is bounded by [*I. Indeed, a cor-
rect process accepts a value when receiving at least n - t
ethos, at least n - t - f of which are from correct processes.
Thus the total number of values from pl,pt+l accepted
by correct processes is at most (t + 1- f) + f [$$I, that
is the number of values sent by correct processes plus the
number of values that correct processes may be forced to ac-
cept because of the Byzantine behavior of faulty processes.
Hence the number of different decisions that we can have is
t + 1 - f + f [SJ. It is possible that this bound is bigger
than n - f. In such a case, we can bound the number of
different decisions by n - f. Summarizing the two cases we
have that for any f, we bound the number of decisions by
n-fifn-t-f <Oandbymin{t+l-f+fL$&j,n-f}
ifn-t - f > 0. The maximum over all possible values of
f is given by Z(n, t). Hence we have that the number of
decisions is always at most .Z(n, t), as required. cl

We note that when t < f, [*I = 1 for all 0 5 f 5 t,
and therefore, the protocol above guarantees agreement for
any k > t (see Figure 3).

4.3 Remarks

For the Byzantine model, the impossibility results and pro-
tocols we have provided in this section leave a small gap for
the SC problem defined with validities WV~, RV2 and sv2
and a substantial gap for SC(wvl).

5 Conclusions and Future Work

We have considered several variations of the k-set consen-
sus problem. The variations were obtained by considering
six different validity conditions. One of these variations is
the k-set consensus problem introduced by Chaudhuri [5]
and considered by several papers in the literature. Several
of the other variations have been considered for the classi-
cal, i.e., k = 1, consensus problem. We showed that the
exact definition of the validity condition is crucial in or-
der to discern solvable from impossible. Known results had

264

demarcated this line for the problem considered by Chaud-
huri. In this paper we have provided this line for the other
variations of the problem. The results show that this line
changes depending on the exact definition of the validity
condition. We have considered each of the variations in the
message-passing model with either crash-failures or Byzan-
tine failures. In most of the cases we were able to exactly
demarcate the line between solvable and impossible; in a few
cases there is still a gap to be filled in.

One area of ongoing work is to perform a similar analy-
sis for k-set consensus problems in shared-memory systems.
Many of the techniques we developed here are useful for pro-
viding protocols and proving impossibilities in this case. In
some cases, translations between the shared memory model
and the message passing model are possible [2], allowing
us to use the protocols developed for the message passing
model. However, these do not always provide solutions with
the highest fault tolerance possible, and do not hold when
Byzantine failures are possible. In these cases, protocols
designed specifically for thii context are required. The im-
possibility result of [3,7,13, l] (i.e., Lemma 3.2) also applies
to the shared memory model. Future work will provide full
analysis of this context.

A second natural direction is to consider synchrorious
systems. For synchronous settings, we note that any proto-
col that works in asynchronous systems works also in syn-
chronous systems. There are protocols to solve SC(IE, t,~vl)
for any t in the synchronous crash setting (see, e.g., [lo, Ch.
71). Some of the impossibility proofs provided in this p*
per still work in the synchronous setting. Putting together
these results we can almost demarcate the line between pos-
sible and impossible for the synchronous message-passing
crash model. However for the other models, especially with
Byzantine failures, nothing is known (except, of course, for
the known results on l-consensus, e.g., (8, 9, 121).

References

[l] H. Attiya. A direct proof of the asynchronous lower bound for
k-set consensus. In Pmceedinos of the 17th ACM Sumvosium
on Principles of Distributed Cokputing, page 314, j&y 1998.

[2] H. Attiya, A. Bar-Noy and D. Dolev. Sharing memory ro-
bustly in message-passing systems. Journal of the ACM
42(1):124-142, January 1995.

[3] E. Borowsky and E. Gafni. Generalized FLP impossibility
result for t-resilient asynchronous computations. In Pmceed-
ings of the 25th ACM Symposium on Theory of Computing,
pages 91-100, 1993.

[4] G. Bra&a and S. Toueg. Resilient consensus protocols. In
Pmceedings of the 2nd ACM Symposium on Princip1e.s of
Distributed Computing, pages 12-26, 1983.

(51 S. Chaudhuri. More choices allow more faults: Set consensus
problems in totally asynchronous systems. Information and
Computation 105(1):132-158, July 1993.

[6] M. Fischer, N. Lynch and M. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the
ACM 32(2):374-382, April 1985.

[7] M. Herlihy and N. Shavit. The asynchronous computability
theorem for t-resilient tasks. In Proceedings of the 25th ACM
Symposium on Theory of Computing, pages 111-120, 1993.

[8] L. Lamport. The weak Byzantine generals problem. Journal
of the ACM 30(3):254-280, 1983.

[9] L. Lamport, FL. Shostak and M. Pease. The Byzantine gener-
als problem. ACM Iltnnsoctions on Pmgmmming Languages
and Systems 4(3):382-401, July 1982.

[lo] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, San Francisco, California, 1996.

[ll] G. Neiger. Distributed consensus revisited. Information Pro-
cessing Letters 49(4):195-201, 1994.

[12] M. Pease, R. Shostak and L. Lamport. Reaching agreement
in the presence of faults. Journal of the ACM 27(2):228-234,
April 1980.

[13] M. Saks and F. Zaharoglou. Wait-free k-set agreement is im-
possible: The topology of public knowledge. In Proceedings
of the 25th ACM Symposium on Theory of Computing, pages
101-110, 1993.

265

