Password Hardening Based on Keystroke Dynamics

Fabian Monrose

Michael K. Reiter

Susanne Wetzel

Bell Labs, Lucent Technologies
Murray Hill, NJ, USA
{fabian,reiter,sgwetzel}@research.bell-labs.com

Abstract

‘We present a novel approach to improving the security of
passwords In our approach, the legitimate user’s typing
patterns (e.g , durations of keystrokes, and latencies between
keystrokes) are combined with the user’s password to gen-
erate a hardened password that is convincingly more secure
than conventional passwords against both online and offline
attackers. In addition, our scheme automatically adapts to
gradual changes in a user's typing patterns while maintain-
ing the same hardened password across multiple logins, for
use m file encryption or other applications requiring a long-
term secret key Using empirical data and a prototype im-
plementation of cur scheme, we give evidence that our ap-
proach 1s viable 1n practice, in terms of ease of use, improved
secunity, and performance

1 introduction

Textual passwords have been the primary means of authen-
ticating users to computers since the introduction of access
controls 1n computer systems Passwords remain the dom-
nant user authentication technology today, despite the fact
that they have been shown to be a fairly weak mechanism
for authenticating users Studies have shown that users tend
to choose passwords that can be broken by an exhaustive
search of a relatively small subset of all possible passwords.
In one case study of 14,000 Unix passwords, almost 25%
of the passwords were found by searching for words from a
carefully formed “dictionary” of only 3 x 10¢ words [10] (see
also {21, 4, 27, 29]) This high success rate 15 not unusual
despite the fact that therc are roughly 2 x 10'* 8-character
passwords consisting of digits and upper and lower case let-
ters alone

In ths paper, we propose a techmque for improving the
security of password-based applications by mcorporating bio-
metric imnformation into the password Spectfically, our tech-
nique generates a hardened password based on both the pass-
word characters and the user’s typing patterns when typing
the password. This hardened password can be tested for
login purposes or used as a cryptographic key for file en-
cryption, virtual private network access, etc. An attacker
who obtamns all stored system information for password ver-
tfication (the analog of the /etc/passwd file 1n a typical Unix
environment) js faced with a convincingly more difficult task

Permission to make digital or hard copies of all or part of this work for
personzl or classroom use 1s granted without fee provided that

copies are not made or distnbuted for profit or commercial advant

-age and that copies bear this nohice and the full citation on the first page
To copy otherwise, 10 republish, to post on servers or to

rechstribute to hsts, requires prior specific permission and/or a tee

CCS '99 11/89 Singapore

© 1999 ACM 1-58113-148-8/99/0010 45 00

73

to exhaustively search for the hardened password than in a
traditional password scheme Moreover, an attacker who
learns the user’s textual password (e g., by observing 1t be-
ing typed) must type it like the legitimate user to log mto
an account protected by our scheme

There are several challenges to realizing this goal. The
first 1s to 1dentify features of a user’s typing patterns (e.g,
latencies between keystrokes, or duration of keystrokes) that
the user reliably repeats (approximately) when typing her
password The second is to use these features when the
user types her password to generate the correct hardened
password At the same time, however, the attacker who cap-
tures system information used to generate or venify hardened
passwords shonld be unable to determine which features are
relevant to generating a user’s hardened password, since re-
vealing this information couid reveal mformation about the
characters related to that password feature. For example,
suppose the attacker learns that the latency between the
first and second keystrokes 15 a feature that is rehably re-
peated by the user and thus is used to generate her hardened
password Then this may reveal information about the first
and second characters of the text password, since due to
keyboard dynamics, some digraphs are more amenable to
rehable latency repetitions than others.

Our approach effectively hides information about which
of a user’s features are relevant to generating her hardened
password, even from an attacker that captures all system
information. At the same time, 1t employs novel techniques
to mmpose an additional (multiplicative) work factor on the
attacker who attempts to exhaustively search the password
space. Using empirical data, we evaluate both this work
factor and the reliability with which legitimate users can
generate their hardened passwords Our empincal studies
demonstrate various choices of parameters that yield both
increased security and sufficient ease of use

Qur scheme 15 very attractive for use in practice. Unlike
other biometric authentication procedures (e.g., fingerprint
recognition, retina or ins scans), our approach is unmtru-
sive and works with off-the-shelf keyboards. Our scheme
initially 1s as secure as a “normal” password scheme and
then adapts to the user’s typing patterns over tume, grad-
ually hardening the password with biometric information
Moreover, while fully able to adapt to gradual changes in
user typmng patterns, our scheme can be used to gencrate
the same hardened password indefinrtely, despite changes in
the user’s typing patterns. Therefore, the hardened pass-
word can be used, e.g, to encrypt files, without needing to
decrypt and re-encrypt files with a new hardened password
on each login.

The main limitation of our scheme is that a user whose
typing patierns change substantially between consecutive in-
stances of typing her password may be unable to generate

© ACM, 1999. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/319709.319720.

her correct hardened password and thus, e g , mught be un-
able to login The most common circumstance in which this
could happen 1s if the user attempts to log 1n using a, different
style keyhoard than her regular one, which can cause a dra-
matic change m the user’s typing patterns. In Light of this,
applications for which our scheme is 1deally suited are access
to virtual private networks from laptop computers, and fiie
or disk encryption on laptop computers Laptops provide a
single, persistently available keyboard at which the user can
type her password, which 15 the ideal situation for repeated
generation of her hardened password Moreover, with the
nising rate of laptop thefts (e g, sce [22]), these apphcations
demand secunty better than that provided by traditional
passwords

2 Related work

The motivation for using keystroke features to harden pass-
words comes from years of research validating the hypoth-
ests that user keystroke features both are highly repeat-
able and different between users (e g, [6, 28, 14, 15, 1, 9,
20, 24]). Pnor work has anticipated utilizing keystroke in-
formation 1 the user login process {e g, [9]), and indeed
preducts implementing this are bemg marketed today (e g,
see http://www.biopassword.com/) All such prior schemes
work by stormg a model of user keystroke behavior in the
system, and then comparing user keystroke behavior during
password entty to this model Thus, while they are useful to
defend against an onhne attacker who attempts to log into
the system directly, they provide no additional protection
against an offline attacker who captures system information
related to user anthentication and then conducts an offline
cictionary attack to find the password (e.g , to then decrypt
files encrypted under the password). On the contrary, the
captured model of the legitimate user's keystroke behavior
can leak information about the password to such an attacker,
as discussed in Section 1 Thus, our work improves on these
schemes i two ways. First, our method is the first to offer
stronger security agamnst both online and offhne attackers.
Second, our scheme is the first to generate a repeatable se-
cret based on the password and keystroke dynamics that 18
stronger than the password itself and that can be used in
apphcations other than login, such as file encryption

The only work of which we are aware that previously
proposed generating a repeatable key based on biometric
information 1s [3] In this scheme, a user carnes a portable
storage device containing (1) error correcting parameters to
decode readings of the biometrnic (e.g , an ins scan) with a
limited number of errors to a “canonical” reading for that
user, and (i1) a one-way hash of that canonical reading for
verification purposes Moreover, they further proposed a
scheme in which the canomical biometric reading for that
user 15 hashed together with a password Their techniques,
however, are inappropnate for our goals because the stored
error correcting parameters, if captured, reveal information
about the canonical form of the biometric for the user. For
this reason, their approach requires a hometnc with sub-
stantial entropy. e g, they considered iris scans offering an
estimated 173 bits of entropy, so that the remaining entropy
after exposure of the error correcting parameters {they esti-
mated 147 bits of remaining entropy) was still suficiently
large for their application. In our case, the measurable
keystroke features for an 8-character password are relatively
few (at most 15 on standard keyboards), and indeed in our
scheme, the password’s entropy will generally dominate the
entropy avallable from keystroke features. Thus, exposing

74

error-correcting parameters m our setting would substan-
tially diminish the available entropy from keystroke features,
almost to the pont of negating thenr utility Moreover, ex-
posing information about the keystroke features can, in turn,
expose mformation about the password itself (as discussed
in Section 1} This makes the careful utilization of keystroke
features critical 1n our setting, whereas in their setting, the
biometrics they considered were presumed independent of
the password chosen.

Our method to harder user passwords has conceptual
similanties to password “salting” for user login Salting 1s
a method i which the user’s password is prepended with a
random number (the “salt”)} of s bits mn length before hash-
ing the password and comparmg the result to a previously
stored value [21, 16] As a result, the search space of an
attacker is mcreased by a factor of 2° if the attacker does
not have access to the salts. However, the correct salt either
must be stored 1 the system or found by exhaustive search
at login time Intuitively, the scheme that we propose in
this paper can be used to improve this approach, by deter-
miming some or all of the salt bits using the user’s typing
features. In addition, an advantage of our approach over
salting is that our scheme can be effective against an onhne
attacker who learns the legtimate user’s password {e.g, by
observing the user type it) and who then attempts to log in
as that user.

Finally, we note that several other research efforts on
password security have focused on detecting the unautho-
rized modification of system informaton related to password
authentication (e g, the attacker adds a new account with
a password 1t knows, or changes the password of an exist-
g account) [13, 12, 8] Here we do not focus on this threat
model, though our hardened passwords can be directly com-
bined with these techniques to provide security aganst this
attacker, as well

3 Preliminaries

The hardened passwords generated in our scheme have many
potential uses, mcluding user login, file encryption, and au-
thentication to virtual private networks However, for con-
creteness of exposition, 11 the rest of this paper we focus on
the generation and use of hardened passwords for the pur-
poses of user login Extending our discussion to these other
applications is straightforward.

We assume a computer system with a set A of user ac-
counts Access to each user account is regulated by a login
program that challenges the user for an account name and
password. Using the user’s mput and some stored informa-
tion for the account o that the user 15 trying to access, the
login program erther accepts or rejects the attempt to log
into a. Like in computer systems today, the characters that
the user types mto the password field are a factor in the
determination to accept or reject the login. For the rest of
this paper, we denote by pwd, the correct string of char-
acters for the password field when logging into account a.
That is, pwd, denotes the correct text password as typically
used in computer systems today.

In our architecture, typing pwd, 15 necessary but not
sufficient to access a. Rather, the login program combines
the characters typed in the password field with keystroke
features to form a hardened password that is tested to de-
termine whether login is successful. The correct hardened
password for account a is denoted hpwd,. The login pro-
gram will fail to generate hpwd, if exther something other
than pwd, is entered in the password field or if the user’s

typing patterns sigmficantly differ from the typing patterns
displayed 1 previous successful logins to the account Here
we present our scheme in a way that maintams hpwd, con-
stant across logins, even despite gradual shifts 1n the user’s
typing patterns, so that hpwd, can also be used for longer-
term purposes (e g, file encryption) However, our scheme
can be easily tuned to change hpwd, after each successful
login, 1f desired

3.1 Features

In order to generate hpwd, from pwd, and the (legitimate)
user’s typing patterns, the login program measures a set
of features whenever a user types a password Empirically
we will examie the use of keystroke duration and latency
between keystrokes as features of interest, but other fea-
tures {e g, force of keystrokes) could be used if they can be
measured by the login program. Abstractly, we represent
a feature by a function ¢ A x N = R where o(e,£) 15
the measurement of that feature during the #-th (successful
or unsuccessful) login attempt to account ¢ For example,
if the feature ¢ denotes the latency between the first and
second keystrokes, then ¢{a,®) is that latency on the sixth
attempt to log into @ Let m denote the number of features
that are measured during logins, and let ¢1, .., ¢, denote
their regpective functions.

Central to our scheme 15 the notion of a distangusshang
feature. For each feature ¢, let t, € R be a fixed parameter
of the system Also, let p22. and a,. be the mean and stan-
dard deviation of the measurements ¢.(a,j1), ,¢.(a,7)
where 71, ., are the last k successful logins to the ac-
count a and h € N is a fixed parameter of the system We
say that ¢, 15 a distinguishing feature for the account {af-
ter these last h successful logins) if |fa. — %] > koa, where
k € Rt is a parameter of the system. If ¢, 15 a distinguish-
ing feature for the account a, then either ¢, > pa, + koa.,
ie.; the user consistently measures below ¢, on this feature,
or t, < Ma, — k@,,, 1€, the user consistently measures above
t, on this feature

3.2 Security goals

In our login architecture, the system stores information per
account that 18 accessed by the login program to verify at-
tempts to log in. This information 1s necessarily based on
pwd, and hpwd_, but will not include either of these values
themselves This is sumilar to Unix systems, for example,
where the /etc/passwd file contains the salt for that pass-
word and the result of encrypting a fixed string with a key
generated from the password and salt In our logm archi-
tecture, the mformation stored per account will be more
extensrve but will still be relatively small

The primary attacker with which we are concerned is an
“offline” attacker who captures this mmformation stored in
the system, and then uses this information in an offtine effort
to find hpwd, (and pwd,} A first and basic requirement is
that any such attack be at least as difficult as exhaustively
searching for pwd, 1 a traditional Unix setting where the
attacker has /etc/passwd. In particular, if the user chooses
pwd_ to be difficult for an attacker to find using a dictionary
attack, then hpwd, wiil be at least as secure m our scheme

A more ambitious goal of our scheme 1s to mcrease the
work that the attacker must undertake by a considerable
amount even if pwd, 1s chosen poorly, i.e, In a way that
is susceptible to a dictionary attack. The amount of adds-
tronal work that the attacker must undertake in our scheme
generally grows with the pumber of distingnishing features

75

for the account (when the attacker captured the system -
formation) On one extreme, if there are no distinguishing
features for the account, then the attacker can find pwd,
and hpwd, 1 roughly the same amount of tune as the at-
tacker would take to find pwd, in a tradational Umx setting.
On the other extreme, if all m features are distinguishing
for the account, then the attacker’s task can be slowed by a
multiphcative factor up to 2™. In Section 7, we describe an
empincal analysis that sheds light on what this slowdown
factor 18 hkely to be in practice. In addition, we show how
our scheme can be combined with salting techmgques, and
so the slowdown factor that our scheme achieves 1s over and
ahove any benefits that salting offers.

A second attacker that we defend agamst with our scheme
is an “online” attacker who learns pwd, (e g., by observing
1t being typed in} and then attempts to log in using it Our
scheme makes this no easier and typically harder for thas
attacker to succeed in logging n.

4 Qvuerview

In this section we give an overview of our techmque for
generating hpwd, from pwd, and user keystroke features
When the account o 18 initialized, the initiahzation pro-
gram chooses the value of hpwd,, at random from Z,, where
q is a fixed, sufficiently large prime number, eg, a g of
length 160 bits should suffice The initialization program
then creates 2m shares {sl,s!}1<,<m of hpwd, using a se-
cret sharing scheme such that for any b € {0, 1}™, the shares

{s"}1c.cm can be used to reconstruct hpwd, (Here, b(i)
is the 1-th bit of b.) These shares are arranged 1» an “mn-
struction table”.

<t =1,
1 55 st
2 59 sk
m Sm_| Sm

The initialization program encrypts each element of both
columns (i.e, the “< #,” and “> t,” columns) with pwd,
This (encrypted) table is stored in the system. In the £-th
login attempt to @, the login program uses the entered pass-
word text pwd’ to decrypt the elements of the table, which
will result in the previously stored values only if pwd, =
pwd’. For each feature ¢,, the value of ¢.(e,£) indicates
which of the two values in the i-th row should be used in
the reconstruction to find hpwd,: if ¢.(a,f) < t., then the
value in the first column is used, and otherwise the value in
the second column 15 used. In the first logins after initial-
ization, the value i either the first or second column works
equally well However, 2s distingmshing features ¢, for this
account develop over time, the login program perturbs the
value in the second column of row z 1if e, < ¢, and perturbs
the value m the first column of row : otherwise. So, the
reconstruction to find hpwd, in the future will succeed only
when future measurements of features are consistent with
the user’s previous distinguished features.

In this way, our scheme helps defend against an online at-
tacker who learns (or tries to guess) pwd, and then attempts
to log wmto @ using 1t. Unless this attacker can mimic the
legitimate user’s keystroke behavior for the account’s distn-
guishing features, the attacker will fail 1n logging into the
account Moreover, numerous prior stuches have shown that

keystroke dynamics tend to differ significantly from user to
user (see Section 2), and so typically the onhne attacker wall
fail 10 his attempts to log into @ Thus, the secunty analysis
in the rest of this paper will focus on the offline attacker

Not any secret sharing scheme satisfying the properties
described above will suffice for our technique, since to de-
fend against an offine attacker, the shares must be of a form
that does not easily reveal if a guessed password pwd’ suc-
cessfully decrypts the table. In the following sections, we
present mstances of our techmque using two different shar-
ing schemes

Our scheme can be easily combined with salting to fur-
ther improve security A natural place to include a salt 1s m
the vahidation of hpwd, just after reconstructing 1t For ex-
ample, when hpwd, is generated during a login, 1t could be
prepended with a salt before hashing 1t and testing against
a previcusly stored hash value The salt can be stored as
15 typically done today, or may not be stored so that the
system must exhaustively search for 1t [16] In this case,
the extra salt results in an additional work factor that the
offline attacker must overcome.

5 An instance using polynomials

In this section, we describe an instance of the techmque of
Section 4 using Shamur’s secret sharing scheme [25] In this
scheme, hpwd_ is shared by chaosing a random pelyromial
Fa € Z]z] of degree m — 1 such that f,(0) = hpwd, The
shares are points on this polynomial. We present the method
i two steps, by first describmg a stmpler vanation and then
extendimg 1t 1 Section 5.4 to be more secure agamst an
offiine attack

5.1 Stored data structures and initialization

Let G be a pseadorandom function family {23} such that
for any key K and any mput z, Gx(z) is a psendorandom
element of Z;.l In practice, a likely implementation of G
would be Gk (z) = F(K,z) where F 1s a one-way function,
e.g., SHA-1 [26] There are two data structures stored 1n
the system per account.

s An mnstruction table that contains “instructions” regard-
mg how feature measurements are to be used to generate
hpwd,. Maore specifically, this instruction table contains an
entry of the form <3, cvs., Ba.> for each feature ¢,. Here,

ye‘o1 - Gpwd, (21) mod g
5, - Goua, (2 + 1) mod g

Qg =
,Bu'z =

and y2,,yl, are elements of Z; Imtially (e, when the
user first chooses pwd,), all 2m values {y2,, 43, }1<.cm are
chosen such that all the points {(22,43,}, (2i+1, vz,) }i<i<m
lie on a single, random pelynomial f, € Zgxz] of degrec
m — 1 such that f,(0) = hpwd,,

* An encrypted, constant-size hastory file that contains the
measurements for all features over the last h successful
logins to a for some fixed parameter h. More specifi-
cally, if since the last tume pwd, was changed, the login

*That 1s, a polynomally-bounded adversary not knowing K can-
not distinguish between G i (z) and a randomly chosen element of Z;,
even 1If he 1s first allowed to examine G g (£) for many £'s of his choice
and is allowed to even pick x (as long as 1t 15 different from every &
he previously asked about)

76

attempts 71, .,Jr to a were successful, then this file con-
tamns ¢, (a,7) foreach1 < i <mand 3 € {gr—ay1, 2}
In addition, enough redundancy is added fo this file so
that when 1t 18 decrypted with the key under which 1t
was previously encrypted, the fact that the file decrypted
successfully can be recognized

This file is initialized with all values set to 0, and then is
encrypted with hpwd, using a symmetric cipher The size
of this file should remain constant over time (e g , must
be padded out when necessary), so that its size yields no
information about how many successful logins there have
been.

5.2 Logging in

The login program takes the folowing steps whenever the
user attempts to log into @ Suppose that this is the £-th
attempt to log mto @, and let pwd’ denote the sequence of
characters that the user typed. The login program takes the
following steps.

1. For each ¢, the logmin program uses pwd’ to “decrypt” «a.
if ¢, (2, £) < t,, and uses pwd’ to “decrypt” [B.. otherwise
Speafically, 1t assigns

(20, Qar Gower(20)" ' modq) if ¢(a,0) <t
(2t 4+ 1, Bar Gonar (26 +1)7 " mod g}
if ¢u{a,f) >t

(#,10) =

The login program now holds m points {(z., %) }i<i<m

2 The login program scts

hpwd' = Z:yl - A mod ¢

=1

I

1<j8m s

where z,

A=

Ty, — T

1s the standard Lagrange coefficient for interpolation (e.g ,
see [19, p. 526]) It then decrypts the history file using
hpwd'. If this decryption yields a properly-formed plain-
text history file, then the logim is deemed successfut (If
the login were deemed unsuccessful, then the login proce-
dure would halt here.)

3. The login program updates the data in the history file,
computes the standard deviation o,, and mean o, for
each feature ¢, over the last h successful logins to a, en-
crypts the new history file with hpwd’ (i.e, hpwd,), and
overwrites the old lstory file with this new encrypted
history file ®

4 The login program generates a new random polynomial
Ja € Zy[x] of degree m — 1 such that f.(0) = hpwd’

5 For each distinguishing feature ¢,, i e., ltar — &} > koas,
the login program chooses new random values y,,, ¥, €
Z, subject to the following constraints:

fla <t = fu(20) = Yo A fu(2i+1) £ ys,
frar 28 = fa(2) Fym A fol2i+1) =y,

2For maximum secunty, this and the previous step should be per-
formed without writing the plamtext history file to disk Rather, the
login program should hold the plaintext history in volatile storage
only

For all other features ¢»—1 e, those for which {u., — .| <
k&, or all features if there have been fewer than 71 suc-
cessful logns to this account since mutiahization (see Sec-
tion 3 1)—the login program sets yl, = fo(2t) and ¢!, =
fa(2e+ 1)

6 The login program replaces the nstruction table with a
new table with an entry of the form <1,al,, 85,> for each
feature ¢,. Here,

alaz = ygu Gpwd' (2’!) mod q
Bor = b o (204 1) modg

where 30,, 41, are the new vatues generated in the previous
step

Step 4 above is particularly noteworthy for two reasons
Furst, due to this step, the polynomial f, 18 changed to a
new random polynomial during each successful login This
ensures that an attacker viewing the mstruction table at
two different times will gam no information about which
features switched from distinguishing to non-distingwmishing
and vice-versa during the interim logins. That 1s, each time
the attacker views an instruction table for an account, either
all valucs will be the same since the last time (if there were
no successful logis since the attacker last saw the table)}
or all values will be different. Second, though generated
randomly, f. 1s chosen so that f,(0) = hpwd, This ensures
that hpwd, remains constant across multiple logins

Step 5 15 aiso noteworthy, since 1t shows that whether
each feature 13 distinguishing s recomputed in each success-
ful login So, a feature that was previously distinguishing
can become undistingmshing and vice-versa This 15 the
mechanism that enables our scheme to naturally adapt to
gradual changes in the user’s typing patterns over time

5.3 Security

Consider the “offime” attacker who obtams account a’s ns-
tory file and mstruction table, and attempts to find the value
of hpwd, Presurmng that the encryption of the history file
using hpwd, s secure, smce the values y2,, yo, are effectively
encrypted under pwd,, and since pwd,, is presumably chosen
from a much smaller space than hpwd_, the casiest way to
find hpwd, 15 to first find pwd, Thus, to argue the bene-
fits of this scheme, we have to show two things First, we
have to show that finding pwd, is not made easier i our
scheme than it 15 1n a typical environment where access is
determined by testing the hash of the password agamnst a
previcusly stored hash value. Second, we have to show that
the cost to the attacker of finding hpwd, is generally greater
by a significant multiplhicative factor

That searching for pwd, 1s not made easier in our scheme
1s clear The attacker has available only the instruction table
and the encrypted history file. Since there 1s a row in the
instruction table for each feature (not just those that are
distinguishing for), and since the contents of each row
are pseudorandom values, the rows reveal no mformation
about pwd, And, all other data available to the attacker 1s
encrypted with hpwd,

The more interesting secunty consideration in this scheme
is how much secunity it achieves over a traditional password
scheme. Suppose that the attacker captured the history file
and instruction table after € > h successful logins to a, and
let d be the number of distinguishing features for tlus ac-
count in the £th login When guessing a password pwd’,
the attacker can decrypt each field oy, and ., using pwd’

77

to yield pomts (24,48,) and (2 + 1,9,,), respectively, for
1< <m Note that §2, = 3, and 92, = v5,, where v,,, v,
are as generated in Step 5, if and (with overwhelming prob-
ablity) only if pwd’ = pwd,. Therefore, there exists a bt
string b € {0,1}™ such that {(2i + b(2), 523")}1 <o miter-
polates to a polvnomial f with f{0) = hpwd,, if and only
if pwd’ = pwd,. Consequently, one approach that the at-
tacker can take is 0 enumerate through all b € {0,1}™ and,
for each f thus computed, see if £(0) = hpwd, (1 e, 1f f(0)
will deerypt the history file). This approach slows down the
attacker’s search for hpwd, {and pwd_) by a multiphcative
factor of 2™ In practice, the slowdown that the attacker
suffers may be substantially less because user typing pat-
terns are not random. In Section 7, we use empirical data
to quantify the degree of security achieved against this form
of attack, and show that 1t 1s nevercheless substantial

However, the attacker has potentially more powerful at-
tacks agamst this scheme using the 2m pomts {{24, §2,), (2¢+
I, §a.)}i<e<m, due to the following contrast On the one
hand, if pwd’ # pwd,, then with overwhelimng probability,
no m-+1 powmts will lie on a single degree m —1 polynomual,
i e, each subset of 1n points interpolates to a different poly-
nomal with a different y-intercept (not equal to hpwd,}. On
the other band, if pwd’ = pwd,, then there are 2m —d > m
ponts that all ie on a polynomial f of degree m — 1 (and
§(0) = hpwd_), m particular if d < m, then there are at
least m + 1 points that all lie on some such f. Asymp-
totically (1.2, as m grows arbitrarily large}, 1t is known
that the second case can be distmguwished from the first n
O(m?) time it d < (2—v/2)m = .585m using error-correcting
techniques [7]. These techmgues do not directly break our
scheme, since our analysis in Section 7 suggests that for
many reasonable values of &, d will typically be too large
relative to m for these techniques to succeed (unless the at-
tacker capiures the account wformation before the account
1s used). Moreover, typically m will be too small in our sce-
nario for these techniques to offer benefit over the exhaustive
approach above. However, because these techniques might
be unproved with apphcation-specific knowledge-—e g , that
m the second case, at least one of (22,4, and (2i + 1,%.,)
hes on f—it is prudent te look for schemes that confound
the use of error-correcting techniques. This 18 the goal of
Section 5 4

5.4 A variation using exponentiation

In this section we present a munor varzation of the scheme
presented in Sections 5 1-5.2, to which we refer as the “ongi-
nal” scheme below. The scheme of this section is more secure
m several ways that will be described below.

Let p be a large prime such that computing discrete loga-
nithms modulo p 15 computationally intractable (e g., choose
p of length 1024 bits) and such that ¢ divides p — 1. Also,
let ¢ be an element of order ¢ i Z; The main concep-
tual differences 1 this variation are that hpwd 1s defined to
be g+ mod p, and rather than storing cv, and fFq, in the
mstruction table, the values

Yar = g modp

gy = gﬂ‘“ mod p

are stored instead. Intuitively, since the attacker cannot
compute discrete logarithms medulo p, this hides o, yl,
from him even if he guesses pwd, .

There are a number of reasons to prefer this vanation
to the onginal mm practice. First, this modified instruc-

tion table can yeld no more information about f.(0) to
the attacker than that of the original, since the attacker
can easily transform any wstruction table mm the onginal
scheme to an mstruction table for this vanation by comput-
ing g*=* mad p and g”>* mod p for each &, and B,.. Second,
error-correcting algorithms such as [7] that offer faster-than-
brute-force attacks when m grows large and d is small do
not drrectly apply to this variation, and we are unaware of
any techmque that the attacker can use to search for hpwd,
faster than brute force. Third, as a practical matter, this
variation seems to requre the attacker to perform modu-
lar exponentiations per guessed password when conducting
a dictionary attack. Since these are computationally inten-
sive operations, this should slow the attacker’s efforts even
further

This modification imposes other changes to the scheme
In particular, the job of determining hpwd, from pwd, and
the feature measurements changes somewhat Moreover, re-
randomizing the polynomal f, after each successful login
must be done a bt differently, since f,(0) 1s hidden even
from the login program The resulting login process for the
£-th login attempt to o 1s as follows Let pwd’ denote the
sequence of characters that the user typed

1 For each ¢, the login program assigns

(20, (an) Comst BDTImA 9 g)

if (0, £) < i,
(20 +1, (JM)GM,(21+1)-' modg .o p)

if ¢ {0, £) > t,

(@, 2) =

The login program now holds m paws {(z.,2.)}1<i<m

2. The logmm program sets

hpwd' = H(z.)’\‘ mod p

=1

where A, 13 the standard Lagrange coefficient. It then
decrypts the history file using hpwd’ If this decryption
yields a properly-formed plaintext history file, then the
login 15 deemed successful. (If the login were deemed un-
successful, then the login procedure would halt here.)

3. The logan program updates the data in the history file,
computes the standard deviation o,. and mean p,. for
each feature ¢, over the last h successful logins to a, en-
crypts the new history file with hpwd’ (1.e , hpwd,), and
overwrites the old history file with this new encrypted
history file.

4 The login program generates a new random polynomial
f € Z[z] of degree m —~ 1 such that £{0) = 0.

5 For each distinguishing feature ¢,, i ¢, |pa: — t.} > koa,
the login program chooses new random values 32, yl, €
Z; subject to the following constraints:

= f2) =y Af(2i+1) #yo,
= f(20) £yl A F(20+1) =y,

For all other features ¢,—i.e , those for which {ge, — t| <
koo, or all features if there have been fewer than A suc-
cessful logins to this account since imtiahzation (see Sec-
tion 3.1)—the login program sets y2, = f(2i) and yl, =
f2i+1)

far < by
Har 2t

78

6. The login program replaces the instruction table with a
new table with an entry of the form <z,+,,, d,,> for each
feature ¢, Here,

(hpwd' . gyg.)cpua!(ll) mod p
{hpwd’ —g’“I")GPW"(Z”"l) mod p

’ —
Yar =
Y
6!1 2 =

where y,, y., are the new values generated in the previous
step.

Step 418 again noteworthy In this case, f. 15 determined
by choosing a random polynomial f of degree m—1 such that
f(0) =0 The polynomial f, is then mmphcitly determined
as fo(x) = f(z)+log,(hpwd,), where the loganthm 1s taken
mod p, due to the construction of +,, and §,, m Step 6
This roundabout method of re-randomizing f. m order to
maintam the same hpwd, = gf"(o) mod p 15 needed because
the login program cannot compute log, (hpwd,).

6 An instance based on vector spaces

In this section we briefly describe a second candidate in-
stance of the technique outlined in Section 4 This solution
addresses a potential weakness of the scheme of Section 5,
namely that any m of the 2m values 1n the 1nstruction table
could conceivably be used to reconstruct hpwd,. That 1s, the
attacker need not limit his attempts at reconstructing hpwd,
to those involving one value from each row of the table since,
e.g., the topmost m values in the instruction table could be
used to reconstruct hpwd, if none of the first m /2 features
are distinguishing Tt would seem that our techmgue could
be strengthened if the secret sharing scheme used to popu-
late the table would allow reconstruction only with one value
from each row Here we present such a shanng scheme and
corresponding instance of our method

In this method, hpwd, 1s expressed as the determinant
of a matrix over Z,, where g is chosen as m Section 5.
Specifically, when an account 1s mmtialized, m (column) vec-
tars 2,5, . ,¥m € Zg are chosen at random from Z*
The hardened password 15 hpwd, = det(z,,, . ,2,..} mod
g. The instruction table nitially contains an entry of the
form <, gm,gm> for each feature ¢,, where

L4994 Yy, GWda (27‘) mod q
8, = v, Gow,(2i+1)modg

Note that at initialization, and more generally when there
are no distingwishing features, the “shares” in a,, and 8
are the same (albeit encrypted under different outputs from
Gowd,) This is reasonable since when there are no distin-
gwishing features, our approach offers no additional security
over that offered by pwd, anyway.

The login process for the £-th login attempt to a is as
follows. Let pwd’ denote the sequence of characters that the
user typed.

1. For each ¢,, the login program assigns

| a,, Cpwe(2)" mod g if ¢.(a,f) < t,
LT 8, G (2i+ 1) modg if gu(a,6) 21,

The login program now kolds m vectors {2, }1<i<m

2 The login program sets hpwd' = det(v,,.. ,v,,) modaq.
It then decrypts the history file using hpwd’ If this de-
cryption yields a properly-formed plaintext history file,

then the login is deemed successful (I the login werc
deemed unsuccessful, then the login procedure would halt
here)

3. The login program updates the data in the history file,
computes the standard deviation o4, and mean pig, for
each feature ¢, over the last h successful logins to a, en-
crypts the new history file with hpwd' (1e., hpwd,), and
overwrites the old history file with this new encrypted
history file.

4 The login program generates new random vectors w;, .,
w,, € Z7 such that det{w,, ,w,) modqg = hpwd’

5. The login program takes one of the following two steps,
depending on whether there are distingmshing features

a. If there are no distinguishing features, then the login
program sets v, = v, =w, foreach 1 <2< m

b Otherwise, the login program generates new random

vectors u,, . .., &, € Z7 such that®
Vhe {0,1}™: det(_qfl’(l), .. ,gﬂm)) modg=1 (1)
where
IO I YN 3f bi)=10
= u, ifb(r)=1

and g, 15 the unit vector with a 1 1n position ¢ and a
0 in all other positions. (How to compute u,, ,u,
efficiently 15 described below) Then, for each distm-
guishing feature ¢,, the lomn program chooses new
random vectors v, vl € Z7* subject to the following

—ar? Ta!
comstramts, where W = (w,;, ,w,)

Par <t = 20

.umZt: = ﬁ.#w,Aﬂilxwﬂ

=:l£1/\yn:lui{:vvlH

]
3

For all other features ¢,—r1.c., those for which |p,. —
t| € koa,—the login program sets v, = w, and v}, =
W ou,
. The login program replaces the instruction table with a

uew table with an entry of the form <1, af,, 8 > for each

feature ¢,. Here,

@ = g, Gonar(2) modg
B, = v Gews(2i+1)modg

where zj,, v}, are the new vectors generated in the previ-
ous step

To perform Step 4 efﬁcientlgr, the login program can select
any factorization hpwd, = [, 7 mod g of hpwd,. Then,
the login program can set (w,, ,w,.) = Tup Tio mod g
where Ti,, Ty satisfy Toli, 3] = Tipf,8] = 0 for 1 < 2 <
2 £ m, Tz, j] and Ty, 1] are random elements of Z, for
1 S J <t S m, and {IIiO["" i]lTup[zg 1]}ISISm. = {Th}lgzg?m»

An efficient algorithm to generate u,, ,u,, 1n Step 5b
so that they contain sigmficant randomness and satisfy con-
dition (1) 15 as follows The login progtam first chooses an

3Condition (1) 1s stronger than necessary Rather, using terminol-
ogy introduced in Section 7, 1t suffices that det(gi’(l)) ,gi’,f"‘)) mod
¢ = 1 only for any b € {0,1}™ that extends the feature descriptor
of this account However, we know a fast algonthm for computing

{2, }1<i<m satisfying only the more restrictive condition (1)

79

upper-tnangular matrix U’ = (uj,...,u},) that kas 1 for
cach diagonal element and random elements of Z; above
the diagonal Then, the login program sets {»;, ,u.,}=
0y 0! where Il = (z;, .- ,%,,) is a random permutation
matrix (1 e , the 1dentity matrix with columns permuted ran-
domly) subject to the constraint that if ¢,,,. ¢, are the
distingwishing features for this account, then {z, }h<)<a =
{glj }i<y<a. In particular, this stipulation ensures (with high

probability} that y_ao, £ _qi” for each 1 < ¢ < m when created
1n Step 5b

A property of this scheme is that when an offline attacker
decrypts the instruction table with a candidate password
pwd' to yield vectors {#2,, 41, }1<i<m, the only combinations
of these vectors that could conceivably yield hpwd,, are of the

form det(92(",. ., #20™)) mod ¢ for some b € {0,1}™. That
18, not any combination of the m vectors holds the possibility
of generating hpwd,

As i Section 5, the securify of this scheme against an
offline attacker depends most directly on how quickly the
attacker can distinguish the cases pwd’ = pwd, and pwd’ #£
pwd, When an attacker decrypts the instruction table with
a password pwd # pwd,, the result will be 2m random
vectors. If pwd’ = pwd,, however, the table may have more
structure For example, if pwd’ = pwd, and there 1s only
one distinguishing feature ¢,, then either ©2, or &, will be

Las
expressible as a linear combination of) and 9}, for some
2 # i (due to our construction of u,,.. ,u, above} In

general, whether there is encugh additional structure for
the attacker to efficiently exploit depends on the number
and distribution of distinguishing features

7 Empirical analysis

In order to evaluate the viabulity of our approach, we devel-
oped and deployed an experiment to collect password typ-
ing measurements from users. Specifically, we replaced the
basic-auth function of a Netscape Enterprise Server 30
in active use with an implementation that uses a Java ap-
plet to record each user’s keystroke features (keystroke du-
rations and latencies between keystrokes} when typing her
password Om this web server, all privileged users use the
sarne password to access the password-protected pages This
provided an interesting case study, since i1t enabled a direct
comparison of user typing behavior on the same password.
The password used in this experiment has 8 characters {ie.,
m = 15), but because it is still in active use, we cannot
disclose 1t here. At the time of this writing, login measure-
ments have been recorded for approximately 11 weeks. For
the discussion in this section, we use data gathered from
the 13 users for which we have at least 4 logms recorded on
her usual keyboard COur analysis employs only each user’s
logins from her usual keyboard, as reported by the user. In
total, this analysis is based on 188 recorded logins.

The goal of our experiment is to empirically evaluate the
number of distinguishing features for the average user, the
entropy of users’ distinguishing features, and the rehability
of successful passwerd entry. The number of distinguish-
ing features for the average user 1s ymportant hecause the
strength of our proposal is enhanced if the number d of dis-
tinguishing features for a user is large relative to the number
m of features overall However, this alone is not enough to
ensure that our scheme offers a significant increase 1n se-
curity. To see why, suppose for an extreme case that all
users could be partitioned into “slow typists” and “fast typ-
1sts” slow typists have the property that for any of their

distingmishing features ¢,, pe, > £, (where a 1s the user’s ac-
count), and analogously fast typists have the property that
Jar < &, for all of ther distingmishing features ¢, Then,
even 1If all of an account’s features are distinguishing, the
offhne atiacker needs to examne only two possibilities upon
guessing a password pwd’: the values in the first column of
the {decrypted) instruction table, and the values in the sec-
ond column. Consequently, the entropy of users’ distinguish-
g features (defined below) 1s as important to our scheme as
the number of distingnishing features. Finally, obviously the
ability of a user to reliably generate her hardened password
1s important to the usabuity of our scheme.

We evaluated each of these facets for varying valnes of
k, where a feature ¢, 15 distingmistung of |pza; — t.| > kg,
{sce Section 3 1) Tu general, a lower value of & increases the
number of distingmishing features per user and thus mncreases
the sensitivity of login to user typing patterns. On the other
hand, a higher value of k¥ makes 1t easier for the user to log m,
but tends to decrease the number of distinguishing features
per user. In addition, for stmphcity of presentation, i our
evaluation we 1gnored the parameter b, 1¢ , all of an account
a's logins were used to compute p,, and o,

7.1 Entropy due to keystrokes

Fundamental to our empinical evaluation is the measure of
keystroke entropy we chose, which we now describe As
described above, all users employ the same password m our
expernnents. Intuitively, our measure of entropy should cap-
ture the amount of remaining uncertamnty there is in hpwd,
for a randomly chosen account a

We define a feature descripior to be a partial function
b:{1,...,m} — {0,1}, and let B be the set of all feature
descriptors For a fixed k, let the feature descriptor b, for
account a be defined by

0 if prg, +koa. <t
bu(i) = 1 lf Ha: — kdaz >t
L otherwise

That is, bs{2) = 1 for every distingwshing feature ¢, on
which the user 1s “slow” and b, (2) = 0 for every distinguish-
g feature ¢, on which the user 1s “fast”. For other features
&, ba (1) is undefined (L).

We would like to compute the entropy of a randomly
chosen account’s feature descriptor However, this is com-
phicated by the fact that a feature descriptor may (and typ-
ically will) have undefined values. For example, suppose
that JA| = m, that each account has only a smgle distin-
gumishing feature, and that no feature 1s distinguishing for
two accounts. Then, the Shannon entropy of a randomly
chosen account a’s feature descriptor would seem to be at
least logm, due to the uncertanty in the position i of the
account’s disingmshing feature (e, 4.(i) # 1). Never-
theless, an attacker knowing pwd, need only attempt to re-
construct hpwd, using at most two different (total) feature
descriptors, e.g, b such that 6(z) = 0 for each 1 < 1 < m,
and b such that b(z) = 1 foreach 1 <21 < m

As a tool to better capture the entropy available due to
kevstrokes, we define a cover to be a function C : A — B
such that C(a) is total for each a € A, and b,(i) # L =
b.{2}) = C(a){z). That s, a cover maps each account a to
a (total) feature descriptor that s 1dentical to b, wherever
bo is defined Given a cover, we can evaluate the entropy
of C{a) under random chowe of @, mn a way that will be
defined below. We then choose a cover that mimmizes this
entropy, and take this cover’s entropy as “the entropy due to

30

keystrokes” This provides a more conservative evaluation
of the entropy due to keystrokes, because multiple accounts
can map 1o the same total feature descriptor under ¢ So,
in the example of the previous paragraph, all accounts can
map to at most two such descriptors

Guessing entropy [17] is a natural way to define the en-
tropy of a cover. Let Img(C) = {b€ B [3a € A:((a) = b},
and we(b) = a € A | Cla) = b}j/iA] U we denote
Img{C) = {b1, .,bs) such that we(b) > we(bs) > >
we (be), then the guessing entropy of the cover C is

Tmg(C)]

D (i weltn))

Intuitively, the guessing entropy is the expected number of
feature descriptors in Img(C) an attacker would need to ex-
amme (and perform the corresponding reconstruction) to
find hpwd, for a randomly chosen account ¢ Moreover,
this expected value supposes that the attacker knows the
“weight” we(h) of each element 1w Img(C) and thus exam-
ines elements of Img(C) m an optimal order to minimize
this expected value As described above, in the worst case
an attacker will know Img(C) and we for a cover C that man-
imazes F¢, and so 1t is this cover we use 1 our computations
of Section 7 2.

Ee =

7.2 Results

Qur analysis methodology consisted of the following steps
for each value of & We first found values tg,, and #, that
maximized the guessing entropy, when t, = t4. for each
duration feature ¢, and when ¢; = #, for each latency fea-
ture ¢,. More specifically, for each pair of candidate integer
values fg,, tia 10 the ranges 80 ms < tg, < 125 ms and
70 ms < ¢ < 140 ms, we computed the feature descriptor
for each account and a cover C for these feature descriptors
with minimum guessing entropy We then chose a pair tq,,,
tia that resulted in the highest guessing entropy from this
calculation In this way, we captured the guessing entropy
faced by the attacker 1n the case that the system was con-
figured with optimal values of #4,, fi:. The reliability of
password login was computed by calculating the percentage
of each account’s logins that would have succeeded for these
values of 4y, tt, and then averaging these percentages over
all accounts If there were multiple pairs that yelded the
same maximum guessing entropy as computed above, then
taur, tiar were chosen from among them as the pair yielding
the highest reliabihty. The average number of distinguishing
features d per user given k, £y, and £, was then computed.

The results of this analysis are shown in Figure 1 The
smallest value of k studied was k = 0.4. This choice yields
a guessing entropy of roughly 6 1, which 1s strong given the
small number of users (13) m our study. (For this number of
users, the maximum possible guessing entropy would be 7.)
Moreover, this choice vields roughly 12.3 distinguishing fea-
tures for the average account and an approximately 51 6%
success rate for legitimate logins. That 1s, the expected num-
ber of attempts before a user succeeds in loggimng mto her
account is less than 2 If this reliability is insuflicient, how-
ever, then increasing k to 1.0, for example, mcreases login
rehability to 77 1% while retaining a respectable guessing
entropy (2 8) and number of distinguishing features (7 7).
Due to the computational expense of analyzing our data for
values of k greater than 10, we cannot report results for
these cases here.

mean # dishinguishing features per account guessing entropy

% successful logins

66

55

45

35

25

125

12

11
105
10
85

B5

75

80

75

70

65

60

55

Figure 1 Empirical results

81

8 Implementation

We have implemented the method of Section 5 4 to experl-
ment with our techniques further. Our reference implemen-
tation 1s bwilt i C/C++ for Microsoft Windows platforms,
and utihzes the Microsoft Foundation Classes (MFC) for
constructing 1ts user interface In particular, the MFC pro-
vides the low-level key press and key release events necessary
to time the duration and latency of keystrokes Our imple-
mentation utihzes the CryptoLib library [11] version 1.2 for
1ts basic cryptographic operations, extended with the use of
addition chains to optumze modular exponentiations [2]

Qur 1mplementation provides three types of functions
initialization, login, and recovery. We have already described
the first two of these functions in detail. The third, recovery,
18 intended for use mm crcumstances where the user finds her-
self unable to generate her correct hardened password after
repeated attempts, due to a sharp change 1n her typing pat-
terns We have shown in Section 7 that this should be a rare
occurrence for reasonable values of k, but it is nevertheless
one that must be anticipated. The recovery program that we
have implemented is easily derived from the login program
described in Section 5.4. the recovery program decrypts all
mstruction table entries using the password pwd, (provided
by the user) and then exhaustively searches to find hpwd,
(within time proportional to 2™) However, this recovery
program should not simply be used as an alternative logm
program, since 1t would enable an attacker who learns pwd,
to generate hpwd, without having to recreate the legitimate
user’s keystroke dynamics. Rather, the use of this recovery
program should be under tighter controls, e g, an admin-
istrator’s. Other recovery techmiques are possible, such as
add:itionally storing the hardened password encrypted under
a much stronger secret that can be accessed only with ad-
munistrator assistance or with an additional hardware token

We have performed a battery of tests to evaluate the
performance of the method in Section 5.4 These tests were
run on a Dell Insprron 3200 computer with a 266 MHz Pen-
tium II processor runmng Windows N'T Workstation 40 In
these tests, ¢ and p were 160 bits and 1024 bits, respec-
tively Triple-DES 1n CBC mode was used to encrypt the
history file The pseudorandom function family G was mm-
plemented as Gx{z) = F(K,z) where F was SHA-1. The
history length was b = 8 The number of measured features
was m = 15

Of the three functions, the times required for mitiahza-
tion and recovery are highly variable. The time for initial-
1zation 1s overwhelmingly dominated by the time needed to
generate p and ¢, which can be substantial but 1n cur tests
always completed 1n under one minute Since p and g can be
generated once and then used for all accounts, this should
not be a bottleneck 1n practice Recovery isthe other func-
tion with highly variable delays Our implementation ex-
haustively searches through the 2! possible (total) feature
descriptors, using each to attempt to generate hpwd,. The
enumeration and testing of all 2'® possibilities completes 1n
roughly 11 hours in the worst case.

In contrast to the times for imtialization and recovery,
delays for successful and failed logins are virtually constant.
Beginning when the user finishes tyvping her password, suc-
cessful logins require roughly 4.5 seconds to complete, and
failed logins complete in approximately 12 seconds The
delay for a failed login 1s substantially shorter than for a
successful one because a login failure causes most of the lo-
gin steps to be bypassed

9 Conclusion

We have presented a novel approach for hardening passwords
by exploiting the keystroke dynamics of users. Qur approach
enables the generation of a long-term secret (the hardened
password) that can be tested for login purposes or used for
encryption of files, entry to a virtual private network, etc.
Our technique increases the time for an offline attacker to
exhaustively search for this hardened password (or the text
password used to generate 1t), and can be used 1n conyunc-
tion with salting to slow the attacker further In addition,
our approach improves security against an online attacker
who learns the text password (e g, by observing 1t bemng
typed) and attempts to login to an account protected by
the hardened password

As our prototype implementation suggests, our technigue
is viable for use in practice It adapts to gradual changes m
a user’s keystroke dynamics over time, while still generating
the same hardened password. And, using actual keystroke
data, we have given evidence that our scheme both improves
upon the security of conventional passwords and is easy to
use by the average user. There remaimns a small risk m our
scheme that due to a sudden shift i typing behawvior, a
user will be unable to log into her account. This risk can
be minimized if the use of cur scheme 1s restricted to local
logins on the same keyboard (e.g., on laptops). In addition,
our scheme can be coupled with recovery mechamsms, as we
have described

For future work, we intend to validate our methods on a
larger user population. We are also investigating the perfor-
mance of our techmques when applied to other biometrics,
particularly other non-static biometrics such as voice, where
features such as pitch and amplitude can be used in place
of latencies and durations.

Acknowledgements

We are grateful to Markus Jakobsson and Amin Shokrollahi
for insightful discussions Phil MacKenzie and the anony-
mous referees provided helpful comments that improved the
presentation of thus paper. Thanks also to Daniel Bleichen-
bacher for providing an implementation of [2]

References

[1] S Bleha, C Shvinksy, and B Hussein Computer-access secn-
nity systems using keystroke dynamics IEEE Transactions on
Patiern Analysis end Machine Intelligence PAMI-12{12) 1237-
1222, December 1990

D Bleichenbacher Addition chains for large sets Manuscript,
1999

G I Davida, Y Frankel, and B J Matt On enabling secure ap-
pheations through off-line hiometric identification. In Proceed-
ings of the 1998 IEEE Symposium on Secunity and Privacy,
pages 148-157, May 1993

D Feldmeier and P Karn UNIX password security—Ten years

later In Adwvances i Cryptology— CRYPTOQ ’'88 Proceedings
(Lecture Notes mm Computer Science 435), 1990

M R Garey and D 5 Johnson Computers and Intractebility
A Gurde to the Theory of NP-Completeness W H Freeman
and Company, New York, 19790.

R Gaines, W Lisowskl, S. Press, and N Shapiro Authenti-
cation by keysiroke ifiming. Some prelimanary résults Rand
report R-256-NSF Rand Corpoeration, 1980

V Guruswarmi and M Sudan Improved decoding of Reed-
Solomon and algebraic-geometric codes In Proceedmgs of the
30" IEEE Symposwum on Foundations of Computer Science,
pages 28-37, 1998

G Horng Password authentication without using a password
table Information Pracessing FLetters 55 247-250, 1995

(2

8

(8]

82

9]

(10

(11]

(12]

[13]

[14]

[25]

[16]

7]

(18]

f19]

(20}

(21]

{22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

R Joyce and G Gupta Identity authorization based on
keystroke latencies Commumcations of the ACM 33(2) 168-
176, February 1990

D Klemn Foiling the cracker A survey of, and improvements to,

password secunity In Proceedings of the 2% USENIX Seccurity
Workshop, August 1990

J. B Lacy, D P Mitchell, and W M Schell. Cryptolib Cryp-

tography in software In Proceedings of the 4*" USENIX Secu-
rity Workshop, pages 1-17, Qctober 1993

C H.Lm, C C Chang, T C Wu, and R C T Lee Pass-
word authentication using Newton's interpolating polynomials
Informaizon Systems 16(1) 97-102, 1991

R E Lennon, 3 M Matyas, and C H Meyer Cryptograpluc
authentication of time-1nvariant quantities /FEE Transaclions
on Communscations COM-29(6) 773-777, June 1981

G Leggett and J Wilhams Verifying identity via keystroke
charactenstics Internationel Journal of Man-Machine Studies
28(1) 67-76, 1988

G Leggett, J Williams, and D Umphress Verification of user
identity via keystroke charactenistics Humen Factors in Man-
agement Information Systems, 1989

U Manber A simple scheme to make passwords based on one-
way functions much harder to crack Computers & Securiy
15(2) 171-176, 1996

J L Massey Guessing and entropy In Proceedings of the 1994
IEEE International Symposmum on Information Theory, 1994

D Mahar, R Naprer, M Wagner, W Laverty, R Henderson
and M Hiron Optimizing digraph-latency based biometric typ-
15t venification systems nter and intra typists differences in di-
graph latency distnibutions Internaiioncl Jowrnal of Human-
Computer Studies 43 579-592, 1995

A J Menezes, P C van Oorschot, and S A Vanstone Hand-
book of Apphed Cryptegraphy, CRC Press, 1997

F Monrose and A Rubin Authentication via keystroke dynam-

18 In Proceedings of the 4ttt AcM Conference on Computer
and Communications Security, pages 48-36, April 1997

R Morns and K Thompson Password secunity A case history
Communzcations of the ACM, 22(11) 594-597, November 1979

K S Nash Rising laptop theft tacks
on $150 a box Compuier World, August 3, 1998 Awvailable at
http //www computerworld com/home/print nsf/all/9808035ED6

R L Rivest Cryptography In Handbook of Theoretical Com-
puter Scrence, Chapter 13, pages 717-755, Elsevier Science Pub-
lishers, B V , 1990

J A Robmson, V M Liang,J A Chambers and C L MacKen-
zie Computer user verfication using login string keystroke dy-
namics IEEE Transactions on System, Man, and Cybernetics,
28(2), 1998

A Shamir How to share a secret Communicatzons of the ACM
22(11) 612-613, November 1979

FIPS 180-1, Secure hash standard Federal Information Pro-
cessig Standards Pubhication 180-1, U S Department of Com-
merce/N 1S T, National Technical Information Service, April
17, 1995

E Spafford Observations on reusable password choices In Pro-
ceedings of the 39 USENIX Security Symposium, September
1992

D Umphress and G Wilhams Identity verification through key-

board characteristics International Journal of Men-Machine
Studres 23(3) 263-273, 1985

T Wu A real-world analysis of Kerberos password secunty In
Proccedings of the 1998 Network and [Distributed System Se-
curity Symposium, February 1999

