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Abstract 

We present a novel approach to improving the security of 
passwords In our approach, the legitimate user's typing 
patterns (e.g, durations of keystrokes, and latencms between 
keystrokes) are combined with the user's password to gen- 
erate a hardened password that is convincingly more secure 
than conventmnal passwords against both online and offime 
attackers. In additmn, our scheme automatically adapts to 
gradual changes in a user's typing patterns while maintain- 
ing the same hardened password across multiple logms, for 
use m file encryption or other applications requiring a long- 
term secret key Using empirical data and a prototype im- 
plementatmn of our scheme, we give evidence that  our ap- 
proach Is viable m practice, m terms of ease of use, improved 
security, and performance 

l Introduction 

Textual passwords have been the primary means of authen- 
ticating users to computers since the introduction of access 
controls m computer systems Passwords remain the domi- 
nant  user authentication technology today, despite the fact 
that they have been shown to be a fairly weak mechamsm 
for authenticating users Studies have shown that users tend 
to choose passwords that can be broken by an exhaustive 
search of a relatively small subset of all possible passwords. 
In one case study of 14,000 Unix passwords, almost 25% 
of the passwords were found by searching for words from a 
carefully formed "dictionary" of only 3 × 10 ° words [10] (see 
also [21, 4, 27, 29]) This high success rate is not unusual 
despite the fact that there are roughly 2 x 10 TM 8-character 
passwords consisting of digits and upper and lower case let- 
ters alone 

In this paper, we propose a technique for improving the 
security of password-based apphcatmns by incorporating bin- 
metric information into the password Specifically, our tech- 
nique generates a hardened password based on both the pass- 
word characters and the user's typing patterns when typing 
the password. This hardened password can be tested for 
logm purposes or used as a cryptographm key for file en- 
cryptlon, wrtual private network access, etc. An attacker 
who obtmns all stored system information for password ver- 
~caUon (the analog of t he / e t c /pas swd  file m a typical Unix 
environment) is faced with a convincingly more difficult task 
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to exhaustwely search for the hardened password than in a 
traditional password scheme Moreover, an attacker who 
learns the user's textual password (e g., by observing it be- 
mg typed) must type it like the legitimate user to log into 
an account protected by our scheme 

There are several challenges to realizing this goal. The 
first is to identify features of a user's typing patterns (e.g, 
latencies between keystrokes, or duration of keystrokes) that 
the user reliably repeats (approximately) when typing her 
password The second is to use these features when the 
user types her password to generate the correct hardened 
password At the same time, however, the attacker who cap- 
tures system reformation used to generate or verify hardened 
passwords should be unable to determine which features are 
relevant to generating a user's hardened password, since re- 
veahng this reformation could reveal reformation about the 
characters related to that password feature. For example, 
suppose the attacker learns that  the latency between the 
first and second keystrokes Is a feature that  is rehably re- 
peated by the user and thus is used to generate her hardened 
password Then this may reveal information about the first 
and second characters of the text password, since due to 
keyboard dynamms, some digraphs are more amenable to 
reliable latency repetitions than others. 

Our approach effectively hides reformation about which 
of a user's features are relevant to generating her hardened 
password, even from an attacker that  captures all system 
information. At the same time, It employs novel techniques 
to impose an additional (multiplicative) work factor on the 
attacker who attempts to exhaustwely search the password 
space. Using empirical data, we evaluate both this work 
factor and the reliabihty with whmh legitimate users can 
generate their hardened passwords Our empirical studies 
demonstrate various choices of parameters that yield both 
increased security and sufficient ease of use 

Our scheme Is very attractive for use in practice. Unhke 
other b]ometnc authentmation procedures (e.g., fingerprint 
recognition, retina or ins scans), our approach is unmtru-  
sive and works with off-the-shelf keyboards. Our scheme 
initially is as secure as a "normal" password scheme and 
then adapts to the user's typing patterns over time, grad- 
ually hardening the password with biometrm information 
Moreover, while fully able to adapt to gradual changes m 
user typing patterns, our scheme can be used to generate 
the same hardened password indefimtely, despite changes in 
the user's typing patterns. Therefore, the hardened pass- 
word can be used, e.g,  to encrypt files, without needing to 
decrypt and re-encrypt files with a new hardened password 
on each logm. 

The main limitation of our scheme is that a user whose 
typing patterns change substantially between consecutive in- 
stances of typing her password may be unable to generate 
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her correct hardened password and thus, e g ,  might be un- 
able to log in The most common circumstance in which this 
could happen is if the user at tempts to log m using a different 
style keyboard than her regular one, whmh can cause a dra- 
matic change m the user's typing patterns. In hght of this, 
applications for which our scheme is ideally suited are access 
to virtual private networks from laptop computers, and file 
or disk encryptlon on laptop computers Laptops provide a 
single, persistently available keyboard at whmh the user can 
type her password, which Is the ideal situation for repeated 
generation of her hardened password Moreover, with the 
rising rate of laptop thefts (e g ,  see [22]), these apphcatlons 
demand security better than that  provided by traditional 
passwords 

2 Related work 

The motivation for using keystroke features to harden pass- 
words comes from years of research validating the hypoth- 
esis that  user keystroke features both are highly repeat- 
able and different between users (e g , [6, 28, 14, 15, 1, 9, 
20, 24]). Prior work has anticipated utilizing keystroke in- 
formation in the user login process (e g ,  [9]), and indeed 
products implementing this are being marketed today (e g ,  
see http://www, biopass,word, corn/) All such prior schemes 
work by storing a model of user keystroke behavior m the 
system, and then comparing user keystroke behavior during 
password entry to this model Thus, while they are useful to 
defend against an online attacker who at tempts to log into 
the system directly, they provide no additional protection 
against an offime attacker who captures system information 
related to user authentmation and then conducts an offime 
dictionary attack to find the password (e.g, to then decrypt 
files encrypted under the password). On the contrary, the 
captured model of the legitimate user's keystroke behavior 
can leak reformation about the password to such an attacker, 
as discussed in Section 1 Thus, our work improves on these 
schemes m two ways. First, our method is the first to offer 
stronger security against both onhne and offime attackers. 
Second, our scheme is the first to generate a repeatable se- 
cret based on the password and keystroke dynamics that  is 
stronger than the password itself and that can be used in 
applications other than login, such as file encryptlon 

The only work of whmh we are aware that previously 
proposed generating a repeatable key based on blometnc 
information is [3] In this scheme, a user carries a portable 
storage device containing (1) error correcting parameters to 
decode readings of the blometrlc (e.g, an Ins scan) with a 
limited number of errors to a "canonical" reading for that  
user, and (il) a one-way hash of that  canonical reading for 
verification purposes Moreover, they further proposed a 
scheme in whmh the canonical blometrm reading for that  
user is hashed together with a password Their techniques, 
however, are inappropriate for our goals because the stored 
error correcting parameters, if captured, reveal information 
about the canonical form of the biometnc for the user. For 
this reason, their approach requires a blometrm with sub- 
stantial entropy, e g ,  they considered iris scans offering an 
estimated 173 bits of entropy, so that  the remaining entropy 
after exposure of the error correcting parameters (they esti- 
mated 147 bits of remaining entropy) was still sufficiently 
large for their application. In our case, the measurable 
keystroke features for an 8-character password'are relatively 
few Cat most 15 on standard keyboards), and indeed in our 
scheme, the password's entropy will generally dominate the 
entropy available from keystroke features. Thus, exposing 

error-correcting parameters m our setting would substan- 
tially diminish the available entropy from keystroke features, 
almost to the point of negating their utility Moreover, ex- 
posing information about the keystroke features can, in turn, 
expose information about the password itself (as discussed 
in Section 1) This makes the careful utilization of keystroke 
features cmtical m our setting, whereas in their setting, the 
biometrics they considered were presumed independent of 
the password chosen. 

Our method to harden user passwords has conceptual 
similarities to password "salting" for user logm Salting is 
a method in which the user's password is prepended with a 
random number (the "salt") of s bits in length before hash- 
ing the password and comparing the result to a previously 
stored value [21, 16] As a result, the search space of an 
attacker is increased by a factor of 22 if the attacker does 
not have access to the salts. However, the correct salt either 
must be stored m the system or found by exhaustive search 
at logm time Intuitively, the scheme that we propose in 
this paper can be used to improve this approach, by deter- 
mining some or all of the salt bits using the user's typing 
features. In addition, an advantage of our approach over 
salting is that  our scheme can be effective against an online 
attacker who learns the legitimate user's password (e.g, by 
observing the user type it) and who then attempts to log in 
as that  user. 

Finally, we note that  several other research efforts on 
password security have focused on detecting the unautho- 
rized modification of system information related to password 
authentication (e g ,  the attacker adds a new account with 
a password it knows, or changes the password of an exist- 
ing account) [13, 12, 8] Here we do not focus on this threat 
model, though our hardened passwords can be directly com- 
bined with these techniques to provide security against this 
attacker, as well 

3 Preliminaries 

The hardened passwords generated m our scheme have many 
potent,al uses, including user logm, file encryptlon, and au- 
thentication to virtual private networks However, for con- 
creteness of expositmn, m the rest of this paper we focus on 
the generation and use of hardened passwords for the pur- 
poses of user login Extending our discussion to these other 
apphcatlons is straightforward. 

We assume a computer system with a set A of user ac- 
counts Access to each user account is regulated by a login 
program that  challenges the user for an account name and 
password. Using the user 's-input and some stored informa- 
tion for the account a that  the user is trying to access, the 
logm program either accepts or rejects t he  a t tempt  to log 
into a. Like m computer systems today, the characters that 
the user types into the password field are a factor in the 
determination to accept or reject the logm. For the rest of 
this paper, we denote by pwd a the correct string of char- 
acters for the password field when logging into account a. 
That  is, pwda denotes the correct text password as typically 
used m computer systems today. 

In our architecture, typing pwd~ is necessary but  not 
sufficient to access a. Rather, the logm program combines 
the characters typed in the password field with keystroke 
features to form a hardened password that  is tested to de- 
termine whether login is successful. The correct hardened 
password for account a is denoted hpwd~. The login pro- 
gram will fail to generate hpwd~ if either something other 
than pwd~ is entered in the password field or if the user's 
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typing pa t te rns  sigmficantly differ from the typing pa t t e rns  
dlsplab;ed m previous successful logins to the  account  Here 
we present  our scheme m a way tha t  main ta ins  hpwd a con- 
s tant  across loglns, even despite gradual  shifts m the  user 's  
typing pat terns ,  so tha t  hpwd a can also be used for longer- 
t e rm purposes (e g ,  file encrypt lon)  However,  our scheme 
can be easily tuned  to change hpwd a after each successful 
logm, ff desired 

3.1 Features 

In order to generate  hpwd a from pwd a and the  ( legi t imate)  
user 's  typing pat terns ,  the  logm program measures  a set 
of features whenever  a user types  a password Empir ica l ly  
we will examine  the  use of keystroke dura t ion  and la tency 
between keystrokes as features of interest,  but  o ther  fea- 
tures (e g ,  force of keystrokes) could be used if they  can be 
measured  by the logm program. Abstract ly,  we represent  
a feature by a function ¢ A x N ~ R + where ¢ (a ,g )  is 
the  measurement  of tha t  feature dur ing t h e / - t h  (successful 
or unsuccessful) logm a t t e m p t  to account  a For example,  
if the  feature ¢ denotes the  la tency between the  first and 
second keystrokes, then  ~(a, 6) is t ha t  latency on the  s ixth 
a t t e m p t  to log into a Let  m denote  the  number  of features 
tha t  are measured  dur ing logms, and let ¢1, . . ,  Cm denote  
their  respectwe functmns.  

Centra l  to our scheme is the  not ion of a dzstmguzshzng 
feature.  For each feature ¢~, let t, C R + be a fixed pa ramete r  
of the  system Also, let # , ,  and aa, be the  mean  and stan- 
dard deviat ion of the  measurements  ¢~ (a , j l ) ,  , ¢~(a,3h) 
where 31, -,3h are the last h successful logins to the  ac- 
count  a and h E N is a fixed pa ramete r  of the  system We 
say tha t  ¢, is a dist inguishing feature for the  account  (af- 
ter  these last h successful logins) if I/Za, - t, I > k a ~  where 
k E R + is a pa ramete r  of the  system. If ¢, is a dist inguish- 
ing feature for the  account  a, then  ei ther  t, > #a, + ka~, ,  
i e., the  user consistently measures  below t, on this feature,  
or t~ < #a~ - kaa, ,  1.e , the  user consmtently measures  above 
t~ on thin feature 

3.2 Security goals 

In our login archi tecture,  the system stores informat ion per  
account  tha t  is accessed by the  logm program to verify at-  
t empts  to log m. This  reformat ion ~s necessarily based on 
pwd a and hpwda, but  will not  include ei ther of these values 
themselves  This  is similar to U m x  systems, for example,  
where the  / e t c / p a s s w d  file contains  the  salt for t ha t  pass- 
word and the  result  of encrypt ing  a fixed str ing wi th  a key 
generated from the password and salt In our logm archi- 
tecture,  the  reformation s tored per account  will be more 
extensive but  will still be relat ively small  

The  pr imary  at tacker  wi th  which we are concerned is an 
"offline" at tacker  who captures  this reformat ion s tored in 
the  system, and then  uses thin reformat ion m an oflline effort 
to find hpwd~ (and pwd~) A first and basic requi rement  is 
tha t  any such a t tack be at least as difficult as exhaust ive ly  
searching for pwd a m a t radi t ional  Unix  set t ing where the  
at tacker  h a s / e t c / p a s s w d .  In part icular ,  if the  user chooses 
pwd a to be difficult for an at tacker  to  find using a dic t ionary 
at tack,  then  hpwd a will be at least as secure m our scheme 

A more ambit ious goal of our scheme is to increase the  
work tha t  the  at tacker  must  under take  by a considerable 
amount  even if pwd a Is chosen poorly, i .e ,  m a way tha t  
is susceptible to a dict ionary at tack.  The  amount  of addi- 
t ional work tha t  the a t tacker  must  under take  m our scheme 
generally grows with the  number  of dmtmguishmg features 

for the  account  (when the  a t tacker  cap tured  the  sys tem m- 
format ion)  On  one ex t reme,  if there  are no d i s tmgmshmg 
features for the  account ,  then  the  at tacker  can find pwd a 
and hpwd~ m roughly the  same amoun t  of t ime  as the  at- 
tacker  would take to find pwd a in a t radi t ional  U m x  setting. 
On  the  o ther  ex t reme,  If all m features  are dis t ingmshing 
for the  account ,  t hen  the  a t tacker ' s  task can be slowed by a 
mu l t l phca twe  factor up to 2 m. In  Sectmn 7, we describe an 
empir ical  analysis t ha t  sheds light on what  thin slowdown 
factor m hkely to be  in practice.  In addit ion,  we show how 
our scheme can be combined  with  sal t ing techniques,  and 
so the  slowdown factor  t ha t  our  scheme achieves is over and 
above any benefits t ha t  sal t ing offers. 

A second a t tacker  t ha t  we defend against  wi th  our scheme 
is an "online" a t tacker  who learns pwd a (e g., by obserwng 
it being typed  in) and then  a t t e m p t s  to log in using it Our  
scheme makes  thin no easmr and typical ly harder  for thin 
a t tacker  to succeed in logging m. 

4 Overview 

In this section we give an overview of our t echmque  for 
genera t ing  hpwd a f rom pwd a and user keystroke features 
W h e n  the  account  a is initialized, the  mi t iahzat lon  pro- 
g ram chooses the  value of hpwd a at  r andom from Zq, where 
q is a fixed, sufficiently large pr ime number ,  e .g ,  a q of 
length 160 bits  should suffice The  init ial ization program 
then  creates 2m shares o {s~, s~ }l<~_<m of hpwd~ using a se- 
cret  sharing scheme such tha t  for any b E {0, 1} m, the shares 

b(~)~ 
s, B<~_<m can be used to reconst ruct  hpwd~ (Here, b(i) 

is the  z-th bit  of b.) These  shares are arranged m an "in- 
s t ruc t ion  table" .  

1 s l  ° s~ 

m 80m Sra 

The  ini t ia l izat ion p rogram encrypts  each element  of both  
columns ( i .e ,  the  "< t~" and ">  t~" columns) wi th  pwd a 
This  (encrypted)  table  is s tored in the  system. In the  e-th 
login a t t e m p t  to  a, t he  login p rogram uses the  entered pass- 
word t ex t  pwd' to decrypt  the  e lements  of the  table, which 
will result  in the  previously s tored  values only if pwd a -- 
pwd'. For each feature  ¢~, the  value of ¢ , (a ,~)  indmates 
whmh of the  two values in the  i - th  row should be used in 
the  recons t ruc t ion  to find hpwda: if ¢~(a,~) < t,, then  the 
value in the  first co lumn is used, and otherwme the  value in 
the  second co lumn is used. In the  first logms after initial- 
ization, the  value m ei ther  t he  first or second column works 
equal ly  welt However,  as d i s tmgmshing  features ¢~ for this 
account  develop over t ime,  the  login program per turbs  the  
value in the  second co lumn of row z if #a, < t, and per turbs  
the  value m the  first co lumn of row , otherwise. So, the  
reconst ruct ion to  find hpwd a m the  future  will succeed only 
when future  measuremen t s  of features are consistent wi th  
the  user 's  previous dis t inguished features. 

In this way, our  scheme helps defend against  an onhne at- 
tacker who learns (or trms to guess) pwd a and then a t t empt s  
to log into a using it. Unless this a t tacker  can mimic  the 
legi t imate  user'S keystroke behavior  for the  account 's  distin- 
guishing features, the  a t tacker  will fall in logging into the  
account  Moreover,  numerous  prior studies have shown tha t  
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keystroke dynamics  tend to differ significantly from user to 
user (see Sectmn 2), and so typically the  online at tacker  will 
fad m his a t t emp t s  to log into a Thus,  the  securi ty analysis 
in the  rest of this paper  will focus on the  offime at tacker  

Not  any secret sharing scheme satisfying the  proper tms 
described above will suffice for our  technique,  since to  de- 
fend against  an offiine at tacker ,  the  shares must  be of a form 
tha t  does not  easily reveal if a guessed password pwd ~ suc- 
cessfully decrypts  the  table. In the  following sections, we 
present  instances of our technique using two different shar- 
ing schemes 

Our  scheme can be easily combined  with  sal t ing to fur- 
ther  improve security A natura l  place to include a salt  is in 
the  val idat ion of hpwd a jus t  after recons t ruc t ing  it For ex- 
ample,  when hpwd~ is genera ted  dur ing a logm, it could be 
prepended  w~th a salt before hashing it and tes t ing against  
a previously s tored hash value The  salt  can be s tored as 
is typmally done today, or may  not  he  s tored so tha t  the  
sys tem must  exhaust ive ly  search for it [16] In this case, 
the  ex t ra  salt  results in an addi t ional  work factor tha t  the  
oifflme at tacker  must  overcome.  

5 An instance using polynomials 

In this section, we describe an ins tance  of the  technique of 
Sectmn 4 using Shamir ' s  secret shar ing scheme [25] In thin 
scheme, hpwd a is shared by choosing a r a n d o m  polynomial  
fa E Zq[x] of degree m - 1 such tha t  fa(0)  = hpwd,~ The  
shares are points  on this polynomial .  We present  the  m e t h o d  
m two steps, by first describing a s impler  v a n a t m n  and then  
extending  it in Section 5.4 to be more secure against  an 
offiine a t tack  

5.1 Stored data structures and initialization 

Let G be a pseudorandom funct ion family [23] such tha t  
for any key K and any inpu t  x, GK(X) is a p seudorandom 
element  of Z~. 1 In practice,  a hkely implementa t ion  of G 
would be GK (x) ---- F ( K ,  x) where F is a one-way function,  
e.g., SHA-1 [26] There  are two d a t a  s t ruc tures  s tored in 
the  sys tem per  account.  

• An mstructwn table t h a t  contains  " instruct ions" regard-  
nag how feature measurements  are to be  used to genera te  
hpwd~. More specifically, this  ins t ruc t ion  table  contains  an 
en t ry  of the  form <~, O~a~,/3a,> for each feature  ¢, .  Here,  

OLa, = y 0  . G p w d  a (2Z)  m o d  q 

f~,  = y~, 'Gpwd~(2i+ l) m o d q  

and o i • Ya,,Ya~ are e lements  of Zq Imtml ly  0 e ,  when the  
user first chooses pwd~), all 2m values {y0 ,  yal }l<~<m are 
chosen such tha t  all the  points  {(2,, y o ) ,  (2 i+1,  1 Ya,)}i<,<m 
lie on a single, r andom polynomial  f~ E Zq[x] of degree 
m - 1 such tha t  f~(0) -- hpwd a 

• An encrypted,  constant-size hzstory .file t ha t  contains  the 
measurements  for all features  over the  last h successful 
logms to a for some fixed pa rame te r  h. More speof i -  
cally, if since the  last t ime  pwd a was changed, the  login 

1That is, a polynommlly-bounded adversary not knowing K can- 
not &stinguish between GK(X) and a randomly chosen element of Z~, 
even ff he as first allowed to examine GK (~) for many &'s of hm chmce 
and is allowed to even pick x (as long as it as different from every 
he prewously asked about) 

a t t e m p t s  31, . ,3t to a were successful, then  this file con- 
t ams  ¢~ (a, 3) for each 1 < i < ra and 3 E {3t -h+l ,  ,3t} 
In addi tmn,  enough redundancy  is added to this file so 
tha t  when it is decrypted  with  the  key under  whmh it 
was previously encrypted ,  the  fact t ha t  the  file decrypted  
successfully can be  recognized 

This  file is in i t iahzed wi th  all values set to 0, and then  is 
encryp ted  wi th  hpwd~ using a symmet r i c  cipher The  size 
of this file should remain  cons tan t  over t ime  (e g ,  must  
be padded  out  when necessary),  so tha t  its size yields no 
informat ion  about  how many  successful logins there  have 
been. 

5.2 Logging in 

The  login p rogram takes the  following steps whenever  the  
user a t t e m p t s  to log into a Suppose tha t  this is the  g-th 
a t t e m p t  to log into a, and let pwd ~ denote  the sequence of 
characters  t ha t  the  user typed.  The  logln program takes the  
following steps. 

1. For each ¢, ,  the  login p rogram uses pwd ~ to "decrypt"  aa ,  
if ¢ , (a ,  g) < t~, and uses pwd' to "decrypt"  f l~ otherwise 
Specifically, It assigns 

(2., a~,  Gpwd,(2z) -1 m o d q )  i f¢~(a ,g )  < t ~  
( x , , y , ) =  ( 2 , + 1 ,  fi~, G p ~ 0 , ( 2 i + l )  - a m o d q )  

if ¢ , (a ,  g) > t, 

The  login p rogram now holds m points  {(x~, Y,)}i<,_<m 

2 The  logm program sets 

m 

hpwd' = E y~ " A~ m o d  q 
~ = 1  

where 

'~ = H X"'-L l<,7_<m,3~z x3 -- x~ 

IS the  s t anda rd  Lagrange  coefficmnt for in terpola t ion (e .g ,  
see [19, p. 526]) It  then  decrypts  the  history file using 
hpwd'. If  this decrypt lon  yields a proper ly- formed plain- 
t ex t  his tory file, then  the  logm is deemed successful (If 
the  logln were deemed  unsuccessful,  t hen  the  login proce- 
dure  would  hal t  here.) 

3. T h e  login p rogram upda tes  the  d a t a  m the  history file, 
computes  the  s t anda rd  devia t ion  an, and mean  pat for 
each feature  ¢,  over the  last h successful logms to  a, en- 
c rypts  the  new history file wi th  hpwd' ( i .e ,  hpwda) , and 
overwri tes  the  old hmtory file wi th  this new encrypted  
his tory file 2 

4 The  login p rogram generates  a new r andom polynomial  
fa E Zq[X] of degree m -- 1 such tha t  f,~(0) ---- hpwd' 

5 For each dis t inguishing feature  ¢ , ,  i e., IPa~ -- t,I > ka~ ,  
the  logm program chooses new r andom values y 0 ,  yal E 
Z~ subjec t  to the  following constraints-  

p a , < t .  ~ f a ( 2 z ) = y a ° , A f a ( 2 i + l ) ¢ Y ~ ,  

2For maximum secumty, this and the previous step should be per- 
formed without writing the plamtext history file to disk Rather, the 
login program should hold the plamtext history in volatde storage 
only 
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For all other features ¢2--1 e,  those for which I#~, - t,I -< 
k a a , ,  or all features ff there have been fewer than h suc- 
cessful logms to thas account since m~tmhzatmn (see Sec- 
tion 3 1)- - the  logln program sets yaO~ = f~(2~) and ya~ = 
fa(2~ + 1) 

6 The logm program replaces the mstructmn table w~th a 
new table with an entry of the form <,,  a'a,, ~ , >  for each 
feature ¢,. Here, 

, 0 (2*) m o d  q O~a~ ---- Ya~ Gpwd' 
~'o, = yL CowS,(2, + ~) m o d  q 

where 0 1 Ya,, Ya, are  the new values generated m the prewous 
step 

Step 4 above is partmularly noteworthy for two reasons 
Farst, due to thas step, the polynomial fa as changed to a 
new random polynomial during each successful logm This 
ensures that an attacker wewmg the instruction table at 
two different tames wall gain no informatmn about whmh 
features switched from distinguishing to non-dlStmgmshmg 
and vine-versa during the interim logins. That  is, each t~me 
the attacker vmws an instruction table for an account, rather 
all values will be the same since the last t ime (ff there were 
no successful logms since the attacker last saw the table) 
or all values wall be dafferent. Second, though generated 
randomly, fa IS chosen so that  fa(0) = hpwd a This ensures 
that  hpwd a remains constant across multiple logms 

Step 5 as also noteworthy, since at shows that  whether 
each feature is d~stmgmshmg ts recomputed m each success- 
ful logm So, a feature that  was previously dmtmgmshmg 
can become undistmgmshmg and wce-versa Th~s ~s the 
mechanism that  enables our scheme to naturally adapt to 
gradual changes in the user's typing patterns over t~me 

5.3 Security 
Consader the "oiThne" attacker who obtains account a 's has- 
tory file and mstructmn table, and at tempts  to find the value 
of hpwd a Presuming that  the encryptmn of the history file 
using hpwd a as secure, since the values o Y,~,, Ya~ are effectively 
encrypted under pwda, and since pwd a is presumably chosen 
from a much smaller space than hpwda, the easiest way to 
find hpwd~ as to first find pwd~ Thus, to argue the bene- 
fits of this scheme, we have to show two things First, we 
have to show that finding pwd~ is not made easmr m our 
scheme than at ~s m a typical envaronment where access is 
determined by testing the hash of the password against a 
prewously stored hash value. Second, we have to show that  
the cost to the attacker of finding hpwd a is generally greater 
by a slgmficant multlphcative factor 

That  searching for pwd a is not made easmr in our scheme 
as clear The attacker has available only the instruction table 
and the encrypted history file. Since there Is a row m the 
instructmn table for each feature (not just those that  are 
&stingmshing for a) ,  and since the contents of each row 
are pseudorandom values, the rows reveal no reformation 
about pwd~ And, all other data available to the attacker is 
encrypted with hpwd,~ 

The more anterestmg security consideration in this scheme 
is how much security ~t achmves over a traditmnal password 
scheme. Suppose that  the attacker captured the hmtory file 
and instructmn table after g _> h successful logms to a, and 
let d be the number of distinguishing features for thin ac- 
count in the /~-th logan When guessing a password pwcY, 
the attacker can decrypt each field oLa~ and j3a, using pwd ~ 

to ymld poants (2i,~°2) and (2z + 1 , ~ ) ,  respectively, for 
1 < ~ < m  Note t h a t ~ °  2 =ya°~and ^1 _ a 0 1 Ya~ --  Yap, where Ya2, Ya2 
are as generated in Step 5, if and (with overwhelming prob- 
ability) only ff pwd r = p w d  a. Therefore, there exists a bit 

^5(2) 
string b e {0, 1} m such that  {(2i + b(~), y~ )}1<2<m inter- 

polates to a polynomial ] with ](0)  = bpwd~, ff and only 
ff pwd' = pwd a. Consequently, one approach that  the at- 
tacker can take is to enumerate through all b C {0, 1} m and, 

for each ] thus computed, see if ](0) = hpwd~ (a e ,  ff ](0) 
will decrypt the history file). Thin approach slows down the 
attacker's search for hpwd~ (and pwd~) by a multlphcatlve 
factor of 2 m In practice, the slowdown that  the attacker 
suffers may be substantmlly less because user typing pat- 
terns are not random. In Sectmn 7, we use empirical data 
to quantify the degree of security achieved against this form 
of attack, and show that  at Is nevertheless substantial 

However, the attacker has potentially more powerful at- 
tacks against this scheme using the 2m points {(2i, ~0), (2z+ 
1, .~,)}l<,<m, due to the following contrast On the one 
hand, ff pwd ¢ pwda, then with overwhelming probabflaty, 
no m + 1 points will lie on a single degree m - 1 polynomial, 
i e ,  each subset of m points interpolates to a different poly- 
nomaal with a dafferent y-intercept (not equal to hpwda). On 
the other hand, ff pwd' = pwda, then there are 2m - d > m 
points that  all lm on a polynomial f of degree m - 1 (and 
f(0) = hpwd~), an partmular if d < ra,  then there are at 
least m + 1 points that  all lie on some such f .  Asymp- 
totically 0 .e ,  as m grows arbitrarily large), it is known 
that  the second case can be distmgmshed from the first an 
O(m 2) t ime if d _< (2 -v /2 ) rn  ~ .585m using error-correcting 
techniques [7]. These techmques do not directly break our 
scheme, since our anMysls in Sectmn 7 suggests that  for 
many reasonable values of k, d will typacally be too large 
relative to m for these techniques to succeed (unless the at- 
tacker captures the account reformation before the account 
m used). Moreover, typacally m will be too small in our sce- 
nario for these techniques to offer benefit over the exhaustive 
approach above. However, because these techniques maght 
be amproved with apphcatmn-specific knowledge--e g ,  that  
m the second case, at least one of (2z, ~a°,) and (2i + 1, . ~ )  
hes on f - - a t  is prudent to look for schemes that  confound 
the use of error-correcting techniques. This ~s the goal of 
Section 5 4 

5.4 A variation using exponentiation 
In this sectmn we present a manor vanatmn of the scheme 
presented m Sections 5 1-5.2, to which we refer as the "origi- 
nal" scheme below. The scheme of this sectmn is more secure 
m several ways that  will be described below. 

Let p be a large prime such that  computing discrete loga- 
rithms modulo p is computationally intractable (e g., choose 
p of length 1024 bits) and such that  q davides p - 1. Also, 
let g be an element of order q m Z~ The main concep- 
tual differences In thin variation are that  hpwd~ as defined to 
be g f , ( o )  mod p, and rather than storing C~a, and fla, in the 
instruction table, the values 

%2 = g~" m o d p  

~a2 = grid, m o d p  

are stored instead. Intuitively, since the attacker cannot 
compute discrete logarithms modulo p, thin h~des 0 a Yam, Ya, 
from him even if he guesses pwd~. 

There are a number of reasons to prefer this vanatmn 
to the original m practice. First, this modified instruc- 
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tlon table can yield no more information about ff~(0) to 
the attacker than that of the original, since the attacker 
can easily transform any instruction table in the original 
scheme to an instruction table for this variation by comput- 
ing g ~ '  rood p and gB~. mod p for each o~a~ and flat. Second, 
error-correcting algorithms such as [7] that  offer faster-than- 
brute-force attacks when m grows large and d is small do 
not directly apply to this variation, and we are unaware of 
any technique that  the attacker can use to search for hpwd a 
faster than brute force. Third, as a practical matter,  this 
variation seems to require the attacker to perform modu- 
lar exponentiatlons per guessed password when conducting 
a dictionary attack. Since these are computatlonally inten- 
sive operations, this should slow the attacker's efforts even 
further 

This modification Imposes other changes to the scheme 
In particular, the job of determining hpwd~ from pwda and 
the feature measurements changes somewhat Moreover, re- 
randomizing the polynomial fa after each successful logm 
must be done a bit differently, since ff~(0) Is hidden even 
from the logm program The resulting logm process for the 
£-th logm at tempt to a is as follows Let pwd' denote the 
sequence of characters that  the user typed 

1 For each ¢,, the logm program assigns 

{ (2z, (-7~,)c, ,~'(2')-~ mod q modp)  
if ¢,(a, ~e) < t~ 

(x,,z,) = (2z + 1, ((~a,) Gpwd'(2'+l)-I modq modp)  

if ¢~(a, g) >_ t, 

The logm program now holds m pairs {(xm, zm)}z<,_<m 

2. The logm program sets 

m 

hpwd' = H ( z , )  ~'' m o d p  

where )t, is the standard Lagrange coefficient. It then 
decrypts the history file using hpwd' If this decryptlon 
yields a properly-formed plamtext history file, then the 
logm is deemed successful. (If the login were deemed un- 
successful, then the login procedure would halt here.) 

3. The logm program updates the data in the history file, 
computes the standard deviation a~, and mean #am for 
each feature ¢~ over the last h successful logins to a, en- 
crypts the new history file with hpwd' (l.e, hpwda) , and 
overwrites the old history file with this new encrypted 
history file. 

4 The logm program generates a new random polynomial 
f E Zq[X,] of degree m - 1 such that  f(0) = 0. 

5 For each distinguishing feature ¢=, i e ,  I#a, - t,I > kaa~, 
the login program chooses new random values y0,  yal E 
Z~ subject to the following constrmnts: 

~ , < t ,  ~ f ( 2 ~ ) = y a  °,Af(2i+l)#y~ 
#am_>tm ~ f ( 2 z ) # y °  A f ( 2 i + l ) = y ~ ,  

For all other features ¢ , - - i . e ,  those for which I#a, - t,I _< 
kaa,, or all features if there have been fewer than h suc- 
cessful logms to this account since initialization (see Sec- 
tion 3.1)--the logm program sets y0  = f(2i) and y~, = 
f(2i + 1) 

6. The logm program replaces the instruction table with a 
new table with an entry of the form <z, '7~,, (i~> for each 
feature ¢~ Here, 

, g~0 
7am = (hpwd' • )cp,~,(2~) m o d p  

1 G 5~ = (hpwd' .9  v"~) p ~d'(2~+l) m o d p  

where y o ,  y l are the new values generated in the previous 
step. 

Step 4 Is again noteworthy In this case, ff, is determined 
by choosing a random polynomial .f of degree m -  1 such that 
f(0) = 0 The polynomial f ,  is then ~mphcltly determined 
as f~ (x) = f (x)  + logg (hpwd a), where the logarithm is taken 
mod p, due to the construction of 7'~, and (f'~, m Step 6 
This roundabout  method of re-randomizing fa in order to 
maintain the same hpwd a = giG(o) rood p is needed because 
the login program cannot compute logg(hpwda). 

6 An instance based on vector spaces 

In this section we briefly describe a second candidate in- 
stance of the technique outlined in Section 4 This solution 
addresses a potential weakness of the scheme of Section 5, 
namely that  any m of the 2m values m the instruction table 
could conceivably be used to reconstruct hpwd a. That is, the 
attacker need not hmit his at tempts at reconstructing hpwd a 
to those involving one value from each row of the table since, 
e.g., the topmost m values in the instruction table could be 
used to reconstruct hpwd~ if none of the first m/2 features 
are distinguishing It would seem that  our technique could 
be strengthened if the secret sharing scheme used to popu- 
late the table would allow reconstruction only with one value 
from each row Here we present such a sharing scheme and 
corresponding instance of our method 

In this method, hpwd~ is expressed as the determinant 
of a matrix over Zq, where q is chosen as m Section 5. 
Specifically, when an account m initialized, m (column) vec- 
tors V-,~I, ",Y-am E Z ~  are chosen at random from Z ~  
The hardened password m hpwd a = det(YVal, . ,v~m ) rood 
q. The instruction table initially contains an entry of the 
form <i,_q.a~,~ > for each feature ¢m, where 

-Q-at : .~-a,  Gpwda (2i) mod q 

-~-a, = .~..am Gowd. (2i + 1) rood q 

Note that  at initialization, and more generally when there 
are no distinguishing features, the "shares" in ..q,~ and _~, 
are the same (albeit encrypted under different outputs from 
Gp,do) This is reasonable since when there are no dlstin- 
gmshing features, our approach offers no additional security 
over that  offered by pwd a anyway. 

The logm process for the/~-th login at tempt to a is as 
follows. Let pwd' denote the sequence of characters that the 
user typed. 

1. For each ¢,, the logm program assigns 

{ gq.,~,- Gp,a,(2z) -1 m o d q  if ¢,(a,~) < t ,  
v-m= _~, G p , a , ( 2 i + l ) - l m o d q  i f¢ , (a ,£)>t~ 

The login program now holds m vectors {v_,}l_<,_<m 

2 The login program sets hpwd' = de t (v l , . .  ,Vm ) modq.  
It then decrypts the history file using hpwd' If this de- 
cryption yields a properly-formed plaintext history file, 
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then the logm is deemed successful (If the logm were 
deemed unsuccessful, then the logm procedure would halt 
here ) 

3. The logm program updates the data m the history file, 
computes the standard deviatmn Cra~ and mean #a, for 
each feature ¢~ over the last h successful logms to a, en- 
crypts the new history file with hpwd' (1 e., hpwda) , and 
overwrites the old history file w~th th~s new encrypted 
h~story file. 

4 The logm program generates new random vectors W l , ., 
w m • Z ~  such that det(_w~, , w_m ) mod q = hpwd' 

5. The logm program takes one of the following two steps, 
depending on whether there are dlstmgmshmg features 

a. If there are no dmtmgmshmg features, then the logm 
program sets v~°~ = ~ = w__~ for each 1 < ~ < m 

b Otherwise, the logm program generates new random 
vectors u_l , . . . ,  -~m ~ ~ n  such that a 

Vbe {0 ,1)m:  det(u~O),.. , u ~ m ) ) m o d q = l  (1) 

where 
ub(,) ~" e_, ff b(i) ---- 0 z ---- 
- [ u ,  i f b ( z ) - - - - 1  

and e~ is the unit  vector with a 1 m position i and a 
0 in all other positions. (How to compute ul ,  ,urn 
efficmntly is described below ) Then, for each distin- 
guishing feature ¢~, the logm program chooses new 
random vectors v~°~,y_~ • Z ~  subject to the following 
constraints, where W = (Wl , ,Wrn)" 

, o , > t ,  u, 

For all other features ¢,--Le.,  those for which ]#a~ -- 
t~ ] ~ kaa~--the logm program sets v~ °, = w~ and y_~) = 
W u, 

6. The logm program replaces the mstructmn table with a 
new table with an entry of the form <z, _~_~,, . ~ >  for each 
feature ¢~. Here, 

I 0 -~--a~ = v~  - Gpwd'(2~) mod q 

~_a, --~ V~,i Gpw d' (2i + 1) mod q 

where ~ , ,  ~ ,  are the new vectors generated m the previ- 
ous step 

To perform Step 4 efficiently, the login program can select 
any factorizatmn hpwd,~ = H : ~  ~/, mod q of hpwd a. Then, 
the login program can set (wl , ,~m) = T~ T~o m o d q  
where T~o, T~ satisfy T~o[i,3] = Tu~,~] = 0 for 1 < ~ < 
3 _~ m, T~o[z,j] and T,~b,z ] are random elements of Zq for 
1 < 3 < i < m, and {T~o[z,i],T.p[z,i])l_<,_<m = {~/,}l_<,<2m- 

An efficmnt algorithm to generate U l , , u_ m m Step 5b 
so that they contain s~gmficant randomness and satmfy con- 
d~tion (1) is as follows The logm program first chooses an 

3Cond~ tmn  (1) ~s s t r o n g e r  t h a n  n e c e s s a r y  R a t h e r ,  u s ing  t e r m i n o l -  

ogy  i n t r o d u c e d  m S e c t m n  77, ~t suffices t h a t  det(_ul bO) , , _u~ m))  rood  
q = 1 on ly  for a n y  b ~ {0, 1} ~ t h a t  e x t e n d s  t h e  f e a t u r e  d e s c r i p t o r  
of th i s  a c c o u n t  However ,  we know a fas t  a l g o r i t h m  for  c o m p u t i n g  
( u , ) ~ _ < , < ~  sa t i s fy ing  on ly  t h e  m o r e  r e s t r m t i v e  c o n d i t m n  ( t )  

upper-trmngular matrix U' = (u_ ' l , . . . ,u~)  that has 1 for 
each diagonal element and random elements of Zq above 
the diagonal Then, the logm program sets (u l, ,Urn) = 
H U' 1-1-1 where l I I= (E l , . -  , Era) is a random permutation 
matrix 0 e ,  the identity matrix with columns permuted ran- 
domly) subject to the constraint that  If ¢ ~ , .  ,¢,d are the 
dlstmgmshing features for this account, then {K 3 }l<j <d = 
{e,j }153<d. In particular, this st lpulatmn ensures (with high 

probability) that v~°, ~ y.~ for each 1 < ,  < m when created 
m Step 5b 

A property of this scheme is that when an offime attacker 
decrypts the instruction table with a candidate password 
pwd' to ymld vectors {~o, ~}1_<~_<~, the only combmatmns 
of these vectors that  could conceivably yield hpwd~ are of the 

^b(1) :,.b(rn ) "~ form det(v~l ,- ",-~a~ J mod q for some b E {0, 1} TM. That  
is, not any combination of the m vectors holds the possibihty 
of generating hpwd a 

As m Section 5, the security of this scheme against an 
offline attacker depends most directly on how quickly the 
attacker can distinguish the cases pwd ~ = pwd~ and pwd ~ 
pwd~ When an attacker decrypts the instruction table with 
a password pwd ~ ¢ pwda, the result will be 2m random 
vectors. If pwd ~ = pwda, however, the table may have more 
structure For example, if pwd ~ = pwd a and there is only 
one dmtmguishing feature ¢~, then either ~o or ~_~ will be 
expressible as a linear combination of ~° 3 and ~3  for some 
3 ¢ i (due to our constructmn of u l , . .  ,um above) In 
general, whether there is enough addltmnal structure for 
the attacker to efficmntly exploit depends on the number 
and distributmn of distinguishing features 

7 Empirical analysis 

In order to evaluate the viablhty of our approach, we devel- 
oped and deployed an experiment to collect password typ- 
ing measurements from users. Specifically, we replaced the 
b a s i c - a u t h  function of a Netscape Enterprise Server 3 0 
m active use with an implementation that  uses a Java ap- 
plet to record each user's keystroke features (keystroke du- 
rations and latencms between keystrokes) when typing her 
password On this web server, all privileged users use the 
same password to access the password-protected pages Thin 
provided an interesting case study, since it enabled a direct 
comparison of user typing behavior on the same password. 
The password used in this experiment has 8 characters (i e., 
m = 15), but because it is still in actwe use, we cannot 
disclose it here. At the time of this writing, login measure- 
ments have been recorded for approximately 11 weeks. For 
the discussion in this section, we use data gathered from 
the 13 users for which we have at least 4 logms recorded on 
her usual keyboard Our analysm employs only each user's 
logms from her usual keyboard, as reported by the user. In 
total, this analysis is based on 188 recorded logins. 

The goal of our experiment is to empirically evaluate the 
number of distinguishing features for the average user, the 
entropy of users' distinguishing features, and the rehabihty 
of successful password entry. The number of distingmsh- 
ing features for the average user is Important because the 
strength of our proposal is enhanced if the number d of dis- 
tinguishing features for a user is large relatlve to the number 
m of features overall However, this alone is not enough to 
ensure that  our scheme offers a significant increase m se- 
curity. To see why, suppose for an extreme case that all 
users could be partitioned into "slow typmts" and "fast typ- 
ists": slow typists have the property that  for any of their 
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dist inguishing features ¢~, #a~ > t~ (where a is the  user 's  ac- 
count) ,  and analogously fast typists  have the  proper ty  tha t  
#a, < t~ for all of their  d l s tmgmshmg features ¢~ Then,  
even if all of an account ' s  features are dist inguishing,  the  
offilne a t tacker  needs to examine  only two possibilit ies upon  
guessing a password pwd': the  values m the  first co lumn of 
the  (decrypted)  ins t ruc t ion  table,  and the  values in the  sec- 
ond column. Consequently,  the entropy of users '  dist inguish- 
lng features (defined below) is as impor t an t  to our  scheme as 
the  number of dis t inguishing features. Finally, obviously the  
abili ty of a user to rel iably genera te  her ha rdened  password 
is impor t an t  to the  usabil i ty of our scheme. 

We evalua ted  each of these facets for varying values of 
k, where a feature  ¢~ is dis t inguishing if [#a~ -- t~[ > kant 
(see Section 3 1) In general, a lower value of  k increases the  
number  of d i s t ingmshmg features per  user and thus  increases 
the  sensi t ivi ty of logm to user typ ing  pat terns .  On  the  o ther  
hand,  a higher value of k makes  it easier for the  user to log in, 
but  tends  to decrease the  number  of d is t lngmshlng features 
per user. In addl tmn,  for s lmphci ty  of presentat ion,  in our 
evaluat ion we ignored the  pa ramete r  h, I e ,  all of an account  
a 's  logms were used to compu te  p~, and a , ,  

7.1 Entropy due to keystrokes 

Fundamenta l  to our empir ical  evaluat ion  is the  measure  of 
keystroke entropy we chose, which we now describe As 
described above, all users employ  the  same password in our 
exper iments .  Intuit ively,  our measure  of ent ropy should cap- 
ture  the  amount  of remaining  uncer ta in ty  there  is in hpwd a 
for a randomly  chosen account  a 

We define a feature dcscmptor to be a part ial  funct ion 
b : { 1 , . . . , m }  ~ {0, 1}, and let B be the  set of  all feature  
descriptors For a fixed k, let the  feature descmptor ba for 
account a be defined by 

0 i f # ~  +kern,  < t~ 
b~(~) = 1 lf p ~  - ka~, > t, 

± otherwise 

T h a t  is, ba(i) ---- 1 for every dis t inguishing feature  q~ on 
which the  user is "slow" and b~ (~) = 0 for every dist inguish- 
mg feature ¢~ on whmh the  user is "fast".  For o ther  features 
¢~, ba(z) is undefined (.1_). 

We would like to compu te  the  ent ropy of  a r andomly  
chosen account 's  feature descr iptor  However,  this is com- 
phcated  by the  fact tha t  a feature  descr iptor  may  (and typ- 
ically will) have undefined values. For example,  suppose 
tha t  )A I = m,  tha t  each account  has only a single distin- 
guishing feature,  and tha t  no feature is dis t inguishing for 
two accounts.  Then,  the  Shannon ent ropy of  a r andomly  
chosen account  a 's  feature descr iptor  would seem to be at  
least log m, due to the  uncer ta in ty  m the  posi t ion i of the  
account ' s  dmtmgmshing  feature  (i e ,  ba(i) ¢ _1_). Never-  
theless, an a t tacker  knowing pwd a need only a t t e m p t  to re- 
const ruct  hpwd~ using at  most  two different ( total)  feature  
descriptors,  e .g ,  b such tha t  b(i) = 0 for each 1 < z < m,  
and b such tha t  b(~) = 1 for each 1 < z < m 

As a tool to be t t e r  cap ture  the  ent ropy available due to 
keystrokes, we define a cover to be a funct ion C : A ~ B 
such tha t  C(a) is to ta l  for each a E A, and b~(i) 7 ~ ± 
ba(z) = C(a)(z). T h a t  Is, a cover maps  each account  a to 
a (total)  feature  descriptor  t ha t  is identical  to ba wherever  
ba is defined Given a cover, we can evalua te  the  ent ropy 
of C(a) under  r andom choice of a, in a way t h a t  will be 
defined below. We then  choose a cover t ha t  minimizes  this 
entropy, and take this cover 's  en t ropy as " the en t ropy  due to 

keystrokes" This  provides a more  conservat ive evaluat ion 
of the  en t ropy  due to keystrokes, because  mul t ip le  accounts 
can m a p  to the  same total  fea ture  descr iptor  under  C So, 
in the  example  of the prevmus paragraph,  all accounts can 
m a p  to at most  two such descriptors  

Guessing ent ropy [17] is a na tura l  way to define the  en- 
t ropy  of  a cover. Let  Img(C) = {b E B I Sa E A : C(a) = b}, 
and wc(b) = I{a • d I C(a ) = b}I/IA I If  we denote  
Img(C) = {bl, . ,b t}  such tha t  wc(bl)  _> wc(b2) > _> 
wc(be), then  the  guessing ent ropy of the  cover C is 

)Img(C)) 

Ec = ~ (i wc(b,)) 

Intuit ively,  the  guessing ent ropy is the  expec ted  number  of 
feature  descr iptors  in Img(C) an a t tacker  would need to ex- 
amine  (and perform the  corresponding reconst ruct ion)  to 
find hpwd a for a r andomly  chosen account  a Moreover,  
this expec ted  value supposes tha t  the  a t tacker  knows the  
"weight" we(b) of each e lement  in Img(C)  and thus exam- 
ines e lements  of Img(C) in an op t ima l  order to minimize  
this  expec ted  value As descr ibed above, in the  worst case 
an a t tacker  will know Img(C) and wc for a cover C tha t  min- 
imizes Ec,  and so It is this cover we use in our computa t ions  
of Sectmn 7 2. 

7.2 Results 

Our  analysis me thodo logy  consis ted of the  following steps 
for each value of k We first found values tdu~ and t)at tha t  
max imized  the  guessing entropy, when  t~ = tdur for each 
dura t ion  feature  ¢~ and when ti = tint for each la tency fea- 
ture  ¢~. More specifically, for each pair  of candida te  integer 
values tdur, tint in the  ranges 80 ms < tour _< 125 ms and 
70 ms _< tint _< 140 ms, we c o m p u t e d  the  feature  descriptor  
for each account  and a cover C for these  feature descriptors 
wi th  m l m m u m  guessing ent ropy We then  chose a pair tour, 
t)at t ha t  resul ted in the  highest  guessing ent ropy from this 
calculat ion In this way, we cap tu red  the  guessing entropy 
faced by the  a t tacker  in the  case tha t  the  sys tem was con- 
figured wi th  op t imal  values of tdur, tint. The  rel iablhty of 
password logm was c o m p u t e d  by calcula t ing the  percentage 
of each account ' s  logms tha t  would have succeeded for these 
values of  tdur, ttat, and then  averaging these percentages  over 
all accounts  If  there  were mul t ip le  pairs t ha t  ymlded the  
same m a x i m u m  guessing ent ropy as c o m p u t e d  above, then  
tdur, tint were chosen from among t h e m  as the  pair  ymldmg 
the  highest  reliability. The  average number  of dist inguishing 
features  d per  user given k, tdor, and t)at was then  computed .  

The  results  of this analysis are shown in Figure  1 The  
smallest  value of k s tudied  was k = 0.4. This  choice yields 
a guessing en t ropy  of roughly 6 1, which is s t rong given the  
small  number  of users (13) in our study. (For this number  of 
users, the  m a x i m u m  possible guessing ent ropy would be 7.) 
Moreover,  this  choice yields roughly 12.3 dis t inguishing fea- 
tures  for the  average account  and an approx imate ly  51 6% 
success ra te  for legi t imate  logins. T h a t  is, the  expec ted  num- 
ber  of a t t e m p t s  before a user succeeds in logging into her 
account  is less t han  2 If  this rel iabil i ty is insufficient, how- 
ever,  then  increasing k to 1.0, for example ,  increases login 
rel iabil i ty to 77 1% while re ta in ing a respectable  guessing 
en t ropy  (2 8) and number  of dis t inguishing features (7 7). 
Due  to the  computa t iona l  expense of analyzing our da t a  for 
values of k greater  t han  1 0, we cannot  repor t  results for 
these  cases here. 
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Figure 1 EmpElcal results 

8 I m p l e m e n t a t i o n  

We have implemented the method of Section 5 4 to experi- 
ment with our techniques further. Our reference ]mplemen- 
tation is built in C/C-t-+ for Microsoft Windows platforms, 
and utlhzes the Microsoft Foundation Classes (MFC) for 
constructing its user interface In particular, the MFC pro- 
vides the low-level key press and key release events necessary 
to time the durat]on and latency of keystrokes Our imple- 
mentation utlhzes the CryptoLib library [11] version 1.2 for 
its basic cryptographic operations, extended with the use of 
addition chains to optimize modular exponentlatlons [2] 

Our ]mplementation provides three types of functions 
initialization, login, and recovery. We have already described 
the first two of these functions in detail. The thEd, recovery, 
is intended for use in circumstances where the user finds her- 
self unable to generate her correct hardened password after 
repeated attempts, due to a sharp change in her typing pat- 
terns We have shown in Sect]on 7 that  this should be a rare 
occurrence for reasonable values of k, but  it is nevertheless 
one that  must be anticipated. The recovery program that we 
have ]mplemented is easily derived from the login program 
described in Section 5.4. the recovery program decrypts all 
instruction table entries using the password pwd a (provided 
by the user) and then exhaustively searches to find hpwd a 
(within time proportional to 2 TM) However, this recovery 
program should not simply be used as an alternative logln 
program, since ]t would enable an attacker who learns pwd a 
to generate hpwd a without having to recreate the legitimate 
user's keystroke dynamics. Rather, the use of this recovery 
program should be under tighter controls, e g, an admin- 
istrator's. Other recovery techmques are possible, such as 
additionally storing the hardened password encrypted under 
a much stronger secret that  can be accessed only with ad- 
ministrator assistance or with an additional hardware token 

We have performed a battery of tests to evaluate the 
performance of the method in Section 5.4 These tests were 
run on a Dell Inspiron 3200 computer with a 266 MHz Pen- 
tram II processor running Windows NT Workstation 4 0 In 
these tests, q and p were 160 bits and 1024 bits, respec- 
tively Triple-DES in CBC mode was used to encrypt the 
history file The pseudorandom functmn family G was im- 
plemented as GK(X) = F(K,x)  where F was SHA-1. The 
history length was h = 8 The number of measured features 
w a s m - -  15 

Of the three functions, the times reqmred for mitiahza- 
tion and recovery are highly variable. The time for initial- 
lzatlon is overwhelmingly dominated by the time needed to 
generate p and q, whmh can he substantial but m our tests 
always completed m under one minute Since p and q can be 
generated once and then used for all accounts, this should 
not be a bottleneck m practice Recovery is 'the other func- 
tion with h]ghly variable delays Our implementation ex- 
haustively searches through the 215 possible (total) feature 
descriptors, using each to a t tempt  to generate hpwd a. The 
enumeration and testing of all 215 possibdltles completes in 
roughly 11 hours m the worst case. 

In contrast to the times for imtiahzation and recovery, 
delays for successful and failed logms are v]rtually constant. 
Beginning when the user finishes typing her password, suc- 
cessful logms reqmre roughly 4.5 seconds to complete, and 
failed loglns complete in approximately 1 2 seconds The 
delay for a failed login is substantially shorter than for a 
successful one because a login failure causes most of the lo- 
gin steps to be bypassed 
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9 Conclusion 

We have presented a novel approach for hardening passwords 
by explomng the keystroke dynamics of users. Our approach 
enables the generation of a long-term secret (the hardened 
password) that can be tested for logm purposes or used for 
encryptmn of files, entry to a virtual private network, etc. 
Our technique increases the time for an oflhne attacker to 
exhaustively search for thin hardened password (or the text 
password used to generate it), and can be used m conjunc- 
tmn with salting to slow the attacker further In addltmn, 
our approach improves security against an online attacker 
who learns the text password (e g ,  by observing it being 
typed) and attempts to login to an account protected by 
the hardened password 

As our prototype ~mplementatmn suggests, our techmque 
is viable for use in practice It adapts to gradual changes m 
a user's keystroke dynamics over time, while still generating 
the same hardened password. And, using actual keystroke 
data, we have given evidence that  our scheme both improves 
upon the security of conventmnal passwords and Is easy to 
use by the average user. There remmns a small risk m our 
scheme that due to a sudden shift in typing behawor, a 
user will be unable to log into her account. Thin risk can 
be minimized if the use of our scheme ~s restricted to local 
logms on the same keyboard (e.g., on laptops). In additmn, 
our scheme can be coupled with recovery mechamsms, as we 
have described 

For future work, we intend to validate our methods on a 
larger user population. We are also investigating the perfor- 
mance of our techmques when applied to other bmmetrics, 
partmularly other non-static bmmetrms such as voice, where 
features such as pitch and amplitude can be used in place 
of latencies and duratmns. 
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