Survivable Consensus Objects
(Extended Abstract)

Dahlia Malkhi Michael K. Reiter

AT&T Labs-Research, Florham Park, NJ, USA

{dalia,reiter }@research.att.com

Abstract scribed later) implemented at the servers. Using these prim-
itive objects, the clientemulatea consensus object with
Reaching consensus among multiple processes in a disthe specification described above. The result is a consen-
tributed system is fundamental to coordinating distributed sus object emulation that allows a client to obtain a con-
actions. In this paper we present a new approach to build- sensus value in aexpectedow-degree-polynomial number
ing survivable consensus objeatsa system consisting of a of primitive object operations as a function of the number
(possibly large) collection of persistent object servers and a of clients (implementations that deterministically guarantee
transient population of clients. Our consensus object imple- termination are known to be impossible to achieve [8]), re-
mentation requires minimal support from servers, but at the gardless of how many other clients simultaneously engage
same time enables clients to reach coordinated decisionsthe object. The consensus object is emulated with no server-
despite the arbitrary (Byzantine) failure of any number of to-server or client-to-client communication. Moreover, the
clients and up to a threshold number of servers. consensus object retains its properties despite even the mali-
cious behavior of any number of clients and a limited num-
ber of servers, and is thus survivable in an environment that
1. Introduction may suffer Byzantine failures.

A consensus object is a shared object to which a client objectrepository clients

can propose a value aneloeive a value in return. The con- c
sensus object returns the same value to each client, and the
returned value is one proposed by some client. Applica-
tions of consensus objects to achieving distributed coordi-
nation are numerous. For example, a consensus object can
be used to implement distributed locking: Each client pro-
poses its own identifier, and the consensus object returns
the identifier of the client to which the lock is granted. If

the consensus object supports “commit” or “abort” propos- c
als, then it can be used to implement transactional atomic c
commitment.

In this paper we describe a protocol for implementing a
survivableconsensus object in a distributed system, i.e., a Figure 1. System model: Persistent servers
consensus object that retains its correctness despite the ar- support replicated objects
bitrary corruption (Byzantine failure) of some number of
components involved in its implementation. The system
model for which we describe our consensus object imple- This system model is motivated by our larger ongoing
mentation is one in which there is a (possibly large) set of effort to build a highly scalable, application-independentin-
persistent object servers and an unknown number of tran{rastructure of servers to support replicated objects, called
sient clients that interact with the servers asynchronously;Phalanx [15]. The goals of Phalanx impose a number
see Figure 1. Clients communicate directly only with of constraints that rendered existing consensus protocols
servers, performing operations on primitive objects (de- inadequate. First, implementing a consensus object us-

ing an inter-server protocol, whose decision value is madethe shared memory model, but these shared objects are em-
available to clients, complicates server design and man-ulated by exchanging messages with servers, a threshold of
dates server-to-server communication, which hurts scala-which are required to participate to emulate those shared ob-
bility. Second, an inter-client consensus protocol would jects. Other work has supported read/write shared-memory
require the simultaneous participation of a high percent- emulations in a message passing system, e.g., [12, 3], but
age of the client population to converge on a consensusthese systems do not provide for fault tolerance. An emula-
value (see Section 2). A third alternative is a shared- tion of atomic shared read/write registers tolerant of benign
memory approach, in which servers would support minimal, failures was provided in [2]. Compared with the above, our
consensus-independent abstractions, e.g., reads and writegork differs in that (i) a consensus object is strictly stronger
to shared variables [10], and the clients would emulate athan any of the above object semantics; (ii) our protocols
consensus object simply by accessing those variables. Thigre survivable, i.e., resilient to Byzantine failures of any
appears to be impossible, even using randomization, duenumber of clients and a limited number of servers, and (iii)
to the following inherent difficulty: Using objects such as the underlying quorum techniques we employdocessing
read/write registers, (Byzantine) faulty clients could config- servers [13, 14] scale to very large systems of servers.
ure the variables so that one correct client infers one con- Consensus cannot be implemented deterministically in a
sensus value, and then reconfigure the variables so that anessage-passing or shared-memory system, i.e., in a way
later correct client infers a different value (and so that any that guarantees a unique consensus value and termination
traces left behind by the first correct client appear to havein a finite number of steps [8]. Numerous message-passing
been made by a malicious one). protocols have employed randomization to guarantee finite
The consensus object implementation described heretermination with probability one; see [4] for a survey. Asp-
strikes a balance among these options. Servers suppomes and Herlihy [1] introduced a shared-memory random-
shared objects calleimed append-only arrays Clients ized consensus protocol for a benign failure environment
then use these objects to emulate a consensus object. Thesbat uses read/write shared registers and terminates in ex-
objects enable clients to append values, but not to delete opected time polynomial in the number of clients. Similarly,
modify previously appended values. In addition, each ap- our consensus protocol is randomized and its expected con-
pended value is labeled with a logical time at which it was verging time is polynomial in the number of clients (assum-
appended. Intuitively, these objects prevent the scenarioing a computationally bounded adversary). Of the previous
described above because malicious clientsnoa “undo” works, our protocol most closely resembles [1], but differs
what they once did; they can only add to it. And, the times- significantly due to its tolerance to Byzantine faulty clients
tamps partially capture the order in which different clients and servers, and due to its implementation in a message-
appended different values, which also cannot be reorderecpassing (as opposed to shared memory) system.
by malicious clients. At the same time, timed append-only

arrays are simple enough to implement with no server-to- 3. System model and assumptions
server communication and simple server-resident logic. '

Our system model consists of a group sdrversand
2. Related work some numbern of clients Clients are denoted by
P1,---,Pn, OFjustp, ¢, ... when subscripts are unnecessary.
Consensus objects have traditionally been studied in twoServers and clients need not be distinctcakrect client or
system models: The shared memory model and the messerver is one that obeys its functional specificatiorfiadlty
sage passing model. In each model, clients execute alientor server, on the other hand, can deviate from its spec-
distributed protocol to implement the consensus specifica-ification arbitrarily (Byzantine failures [11]), limited only
tion. In the shared memory model, clients communicate via by the assumptions stated below. Faulty clients and servers
shared memory locations. In the message passing modelinclude those that fail benignly.
clients communicate by exchanging messages over a net- We assume that at mosservers fail, wheré is a glob-
work. An important distinction between the two is that in ally known constant, and that there i$-anasking quorum
the shared memory model, consensus object implementasystem@ known to all clients and servers [13]. That 3,
tions are possible in which each client can obtain the con-is a set of subsets (quorums) of servers, such that (i) for any
sensus value even if it is the only client that participates in Q1, Q2 € 9, |@1 N Q2| > 2b 4+ 1 and (ii) for any setB
the protocol [1]. In the message passing model, typically a of servers wheréB| = b, there is somé&) € Q such that
threshold of (correct) processes need to simultaneously co-BN @ = (. In our protocols, clients interact with servers by
operate to achieve agreement. contacting a quorum of them. Intuitively, (i) enables clients
As described in Section 1, our work mixes elements of to infer correct replies from the contacted quorum, (ii) en-
both models: Clients communicate via shared objects as insures that a client can always contact a full quorum [13].

The mechanism by which clients communicate to servers arrays, such thaf0] is greater than the corresponding

is via aquorum remote procedure callA client's invoca- value in any array entry appended before this element
tion of Q-RPC(n), wherem is a request, returns responses was appended.

from a quorum of servers to the request To do this, Client-Timestamp: For each) < j < n, {[j] denotes,
Q-RPC¢n) sendsm to servers as necessary to collect re- where not zero, that théj]'th append onr; was al-

sponses from a quorum, and then returns these responses ready completed when this element was appended.

to the client. The Q-RPC module provides additional inter-

faces, e.g., that enable a caller to specify servers to avoid A reader can access any element of the array. The reader
because those servers have been detected to be faulty (e.gbtains the vector timestamp along with the value of an ar-
based on responses they returned to other Q-RPCs), or thatay element, if written.

enable a caller to issue a query to a partial quorum to com- |ntuitively, timed append-only arrays serve to implement
plete a previous Q-RPC in which faulty servers returned non-malleable communication among Byzantine fail-prone
useless values. For the purposes of this paper, however, Wgjients: The first two properties guarantee that values are
omit these interfaces from further discussion. Q-RPC can appended to each array in a sequential order that any reader
be implemented in aasynchronousystem, i.e., withoutas- can later observe. The timestamp properties enable clients

suming any known bound on message transmission delaysio partially disambiguate the order in which appends were
and thus our protocols are suited for an asynchronous sysperformed on different arrays.

tem. In our protocols, correct servers never send messages
to other servers, and correct clients never send messages 1°F 8 I mplementation
other clients.

We assume the existence of trapdoor one-way func-
tions [7], which are sufficient for constructing digital sig-
nature schemes (e.g., [16]). We assume that each corre
server possesses a private key known only to itself with

which it candigitally sign messages, and that any other Client ». d lueto - b i
client or server can verify the origin of a signed message I€nt p; can append some valueto 7; by execuling
7;.append(v), and any client can read ti¢h value inr; by

but cannot forge the signature of any correct server. So, if a tinar read(i). Ther. read(; tion is the simol
correct client or server attributes a signed message to a corsxecutingr; rea (i). Ther; read(i) operation s the simpler

rect server, thenu sentit. Not all messages sent by servers of the two, and so we discuss It first.

will be signed; we will explicitly indicate that the message Each gimed append-o?lyd%rray IS relpresethed inﬂ?atch
m is signed byu by denoting it(m),,. Aside from digital ~ >°'ver« DY @ sequence of a ressgs[1], 7j,u[2], . .. tha

signatures, we will also make use fainction sharing[6] hold value/timestamp pairs. Each address is initially

primitives based on one-way functions. These techniquesThe protocol for a client to read thieth element ofr; is

will be explained in the sections that use them. shown in Figure 2. The client executes a Q-RPC to ob-
tain the value/timestamp pair i) ., [7] from each server

in some quorund). More specifically, each server pends
with a message of the forfr;-value : 7, 7; ,[i]),; note
)))) that this is digitally signed by:, so that it can be used in
The most basic function provided by the servers is the {he 4ppend protocol below if necessary. The client obtains
maintenance of amed append-only array; for each client e resylt of the read by discarding any value/timestamp
pj- A timed append-only array; is asingle-writer multi- i returned byb or fewer servers, and choosing the re-
reader object that allowg; to appendvalues to the array paining (unique, as we show below) value/timestamp pair,
and any client teeadvalues from the array. Informally, the say (v,). The client also records the fact that it has read

We begin by describing the implementation of timed
c§1ppend-only arrays. Let;,...,r, denote the timed
append-only arrays maintained by the servers. Each timed
append-only arrayr; supports two kinds of operations:

4. Timed append-only arrays

object provides the following properties: the i-th element ofr; by setting thej-th element of a lo-
only array in a sequential order. Cjue = {(rj-value : i, (v, 1))a : u € Q} of at leasth + 1

signed messages v, ¢).
Write-Once: Values appended to a timed append-only ar- The r;.append operation is significantly more involved
ray are never modified or erased. than ther;.read operation; see Figure 3. Each server
maintains, in addition to array entriestienestamp gener-
ator ¢, andecho inhibitorsey, ,,, 1 < & < n, all initially
zero. Thei-th 7;.append proceeds in three phases. In the
Global-Timestamp: ¢[0] is a Lamport timestamp [9] first, p; sends its timestamp vectorto a quorum of servers.
that reflects the partial ordering of operations on all Recall thek-th element ofis (1 < k& < n) indicates the

Timestamp: Each element in a timed append-only array is
timestamped with a vectaérsatisfying the following:

Client

Q-RPC(r;-query : 1))

{{rj-value : 1, {

Vi, b0, « {(r;-value : 4, (b, Ha:a e Q)
return Lif vo,¢ : |C; ;5] <b

(v,) = ((0,8) 1 [C) 5 4] 2 b+ 1)

i
ts[y] < max{i, ts[5]}
return{v, t)

va, ta))a faeg < return value from Q-RPC

Serveru

(75-query : @):
send bacKr;-value : i, 75 4[i])u

Figure 2. The operation 7;.read(z)

highest index ofr; thatp; has successfully read. In or-
der to reply top;'s request, each serverrequires that for
eachl < k < n, it holds a value in ., [ts[k]]. Since this
value may have been written to a quorum not contaiming
p; piggybacksCy, -, :sx @S needed on its request, which
it collected from servers when it reag[¢s[k]], to enable
wto fill in 7 . [ts[k]]. The server: then verifies that for
eachl < k < n, it holds a value irr ., [ts[k]] and, if so,
responds tg; with its present value af,,, digitally signed.
Upon the completion of this first Q-RP@; now for-

protocol, and ends when the client returns from theead
protocol.

Definition 4.2 Thei-th 7;.append beginswhen some cor-
rect server receivesér;-gettime : ¢, ts) fromp;, and itends
whenr; ,[i] # L at each correct server in some quorum.

By this definition, once the-th 7;.append has begun, it is
possible for it to end before the protocol in Figure 3 com-
pletes. In particular, if a client;: reads the value of thieth

7; .append while that append is going on, and then performs

wards the digitally signed replies back to the servers via aa r;,.append, its own r;,.append could complete theé-th
second Q-RPC. Based on these included messages, 8erverr; append before the protocol for théth 7;.append itself

verifies thati > ¢; ., and then computes a vector timestamp completes. This property is made precise in Lemma 4.3.
t for this 7; .append operation that agrees wijf)'sts array

in positionsl . .. » and that has a zeroth element higher than Definition 4.3 Lete, ¢’ be any two operations (other than
any of the servers' timestamp generator values forwarded irféads by faulty clients). We say thahappens before’,
the request. The server‘echoes’t together with the value ~ denotede < ¢’, iff e ends before’ begins. Ife” £ ¢, we

v thatp; is appending, by digitally signing both values and denote ite < ¢.

sending them back tp;. v then setg;, - 4 so that it will Note that< forms an irreflexive partial order, and that if

never again echo a value for théh 7;.append. Finally, af- L < es < e3 < eq, thene; < es. Moreover, for any

ter receiving echoes fromguorum of servers; commits two operations:, e, at a correct process, either < e
the append at a quorum of servers by forwarding these echo

. ; - . Ores < e;. That is, the operations executed by a cor-
m_e(sjsages t? the?: in a th'rd_ Q'R'PC,' Upon trece|(\j/|ng this rect process are totally ordered. On the contrary, operations
K " rlegues ’_ﬁ?c serveras?[[?]ns-‘“;][z] < <¥’) an a;-] i by a faulty client are not necessarily totally ordered-hy

howledges. The purpose oTIne ecnoes Is 1o gnsu_re_ atn evertheless, i&; ande, are thek-th and’-th 7;.append
two correct servers write different values intg, [¢]; this is

) operations, respectively, by a faulty procesgi.e., corre-
\elzglsuuered because each server echoes onlytihng .append sponding to{r;-gettime : k, {s) and (7;-gettime : k', {5')

messages from;), such thak < &', then we will often use

) “e1 < e" as a shorthand to denote this.
4.2. Properties
Lemma 4.1 (Write-Once) Lete; = 7;.read(i) ande, =

; .read(¢) be two operations at correct clients.df returns

In proving properties of this implementation, we need to .
b g prop P (v, 1), thenes returns eitherL or (v,).

introduce some additional notation and terminology. Note
that reads by faulty clients are ignored in the following. Lemma 4.2 (Append-Only) Let ¢; be thei-th 7;.append,
and lete; = 7;.read(k), 1 < k < 4, be an operation by a
Definition 4.1 A 7;.read(i) operation by a correct client correct process such thai < ¢». Thene; does not return
beginswhen the client initiates the correspondimgread 1.

Clientp; Serveru

Q-RPC(r;-gettime : ¢, ts)
with V& : Cy, -, [:s157 Piggybacked as needed) (r,-gettime : i, £s):
Verify: 1)Vk,1 <k <n:7uf[ts[k]] # L
2)ts[j]l=1-1
send bacKr;-time : i, ts, Gu)o

|

|

|

|

|

|

|

|

|

|
S1 = {(7j-time : 1,ts, ga)ataco, < return value from Q-RPC |
Q-RPC(7;-propose : v, 51)) 3 (75-propose : v, {{7;-time : 1, ts, ga)a }aco,):
! Verify: @ > e,
: €ju 4= 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

V1 <k <n:tlk] « ts[k]

t[0] < maxacq,{ga} +1

send bacKr;-echo : 2, v, t).
S> = {(7j-echo : 4, v, t)a }aeq, « return value from Q-RPC

Q-RPC(7;-commit : 55)) {rj-commit : {{rj-echo : i, v, t)a}tacqg,):

T5u[t] < (v, t)
Gy + max{G,,t[0]}

send bacKr;- dd tu,t
{(rj-appenddone : &, 1)}ucq, + return value from Q-RPC Kr-appenddone : u, i)

ts[y] <1
return

Figure 3. The i-th invocation of 7;.append; v is the value appended

Henceforth, we will use the following notation:dfis an by” the consensus object. The protocol ensures the follow-
append operation of the form= 7;.append(v), such that ing two properties (due to space limitations, a proof of cor-
v is stored with timestamp, we denote this timestamp by rectness is omitted).

T(e) = t. The first lemma shows the main purpose of the

non-zero entries of a vector timestamp. Agreement If any correct client decides then all correct
clients decide.

Lemma 4.3 (Client-Timestamp) Let ¢; be the i-th

7;.append, and lete, = 7;/.read(k), wherel < j* < n

and1 < k < T'(e1)[j'], be a read operation by a correct

process such that, < e,. Thene, does not returnl.

Validity : If any correct client decides, then some client
hadwv as its input value.

Our protocol employs a round structure and high-level
strategy similar to [1], but otherwise differs significantly.

Lemma 4.4 (Global-Timestamp) If e; = 7;.append(v), : _
In our protocol, each client executes a sequence of logi-

es = mj.append(v’), ande; < es, thenT'(e1)[0] <

T(e2)[0]. cal rounds until it eache_s a decision. _There is one timed
append-only array per client for that client to communicate
Corollary4.1 Let ¢;, e; = 7.append(v), e5 = values to the_ system t_)y appending them to its array. Since
7;,.append(v/), and e, be four events such that < e, rounds at different clients peeed asynctanously, each
T(e2)[0] < T(e3)[0], andes < e4; thene; < e. client attaches its round number ¢ach value it appends.

In each pund, a client starts by appending its currently pre-
ferred value, and then reads the latest values appended by
5. A consensus protocol all of the other processes to their arrays (a “global read”).
Among these values, the ones with the highest round num-
In this section, we describe a protocol by which clients ber are called the leaders' values. If the leaders agree (i.e.,
can emulate a consensus object by performing a series ofast appended the same values), it tries to adopt their value
read and append operations on timed append-only arraysas its own preferred value and move to the next round (or
Each client begins the protocol with an initipteferred decide); if the leaders disagree and it is a leader itself, it
valueand ends the protocol by irrevocahiecidingon a attempts to flip a (multivalued) coin, adopt the value of the
value. Intuitively, this decision value is the value “returned coin as its preferred value, and then move to the next round.

Decision is possible for a leader when all the processes who
disagree with its preferred value are at least two rounds be-
hind. Intuitively, this protocol converges at the latest when (g)
a round starts with all the leaders preferring the same value)
We argue in Section 7 that by properties of the coin flip, this Eg;

occurs with some positive probability @ach ound. @

Several points need to be refined in the description Eg;
above. First, to adopt a new preferred value in a round (ei-
ther the leaders' or by coin flip), a client twice performs a 823
cycle of appending a value “announcing” its status and ex- (12)
ecuting a new global read of all clients' latest values. If 8‘3‘;
the status of the leaders' value hasn't changed during theses)
two cycles (i.e., either the leaders still disagree, or the lead-(®)
ers still agree on the same value), then the client adopts theis)
value it intended to. If, however, the client detects a change(;g)
in the status of the leaders' value, then it starts the round21)
over. The two append/read cycles guarantee that with twogg
concurrently executing leaders, at least one will observe the
other's value and act consistently. ggg

Second, the process for performing the global read, i.e.,(26)
reading all clients' last-appended values, involves readinggg
the arrays of all clients up to the last filled slot, filtering out (29)
any invalid values appended by faulty clients (which will gi;
be defined precisely in Section 5.1), and returning a set of(32)
latest (valid) values from all arrays. Even though this is a 82
compound operation, we will abuse notation and denote it (35)
by a single eventast, allowing it to be ordered as a single (g
operation via<. In particular, if aLast operatione; starts (37)
before some append operatienterminates, i.e.¢; con- gg;
tains a primitive read operatior} such that]| < e, then (40)
we say that; < es.

Third, we need to specify how to flip a random coin. For
now, we denote this operation as subroutine Coin(). Meet-

ing the two properties of consensus (Agreement and Valid-

ity) requires simply that Coin() return a value that was ini- the leaders' round and values.

private varspref, r, (r;, Uj)lSan' leaderVals, leaderRound

append((r, pref))
repeat

Last()

if (|leaderVals] > 1V L € leaderVals)
LeadersDisagree()

else
LeadersAgree()

until roundr + 1 enabled

subroutine LeadersAgree()

pref « (v : leaderVals = {v})
append((r, pref))
Last()
if (leaderVals # {pref})
return
append((r, pref))
Last()
if (leaderVals # {pref})
return
if (r = leaderRound A Vj : (v; # pref = r; < leaderRound — 2))
decidgpref)
else
enable round + 1

subroutine LeadersDisagree()

append({r, L})

Last()

if (|leaderVals] = 1 A L ¢ leaderVals)
return

append({r, L})

Last()

if (|leaderVals| = 1 A L ¢ leaderVals)
return

if (leaderRound = r)
pref«+— Coin()

enable round + 1

subroutine Last()

Vi€ {l,...,n} imax + max{i : 7;.read(s) is justified}
((ry,v5), t5) ¢ 7j-read(imax)

leaderRound +— max; < j<n{r;

leaderVals < {v; : r; = leaderRound}

Figure 4. Round r of the consensus protocol

If the leaders agree, the

tially preferred by some process. In addition, the Coin() LeadersAgree subroutine is invoked. This subroutine sim-
operation is important to the running time of the consensusply appends the leaders' value twice and if leader disagree-

protocol. This will be the topic of discussion in Section 7.

ment or a change of leader value is not observed in be-

In terms of data structures, each client maintains severaltween these appends, it moves the client to the next round
local variables:pref, which holds the client's present pre- (or decides) with the leaders' value as its new preferred

ferred valuey, which holds the client's current round num- value.
LeadersDisagree subroutine is invoked. This routine ap-

pendsL twice and, if the clientis a leader, adopts a new pre-
ferred value by flipping a coin, provided that leader agree-

ber;(r;,v;)1<;<n, which hold the latest (valid) round num-
ber/value pairs read from clients' arrajsiderVals, which
is the set of leaders' values; alrdderRound, which is the

If leader disagreement is observed lbigt, the

leaders' round number. And, as described above, there is anent is not observed while this routine is executing.

separate timed append-only array per client. At the begin-

ning of its execution, each client appen@spref) to its ar-

ray. In the remainder of this paper, an operatiprappend

by a clientp; is denoted simply byppend, and is under-

stood to apply to the array to whigh is allowed to append.
The precise protocol executed by cliemtat roundr

is given in Figure 4. Thd ast subroutine, introduced

5.1. Justified values

As indicated above, after each global read, the client uses
the observed values to determine its next preferred value. In
order to ensure correctness of our protocol, it is important
that the plausibility of these observed values is verified be-

above, implements a “global read” plus identification of fore they are used; otherwise, a faulty client could append

arbitrary values in an effort to misguide future preferred val- 5.2. The Coin() operation

ues of other clients. We therefore introduce the notion of a

justified valuewhich intuitively is an appended value that is

According to the protocol of Figure 4, when a leader re-

consistent with the protocol and, in particular, with the val- peatedly observes leader disagreement, it sets its preferred
ues that the appender's preceding global read must have obralue to the output of a Coin() operation before moving to
served. After executing a global read, a client discards anythe next round. At a correct client, this Coin() operation
unjustified values and forms its next preferred value based(shown in Figure 5) returns a value taken from among the

upon the justified values only.

values that have been appended by all clients in the proto-

Unfortunately, detecting justified values is not straight- col. More precisely, the Coin() operation works by reading

forward, because a reading clienhoat accurately deter-

the value in the first element of each client's array (which,

mine what values should have been observed by an appendsy definition, is justified if it is of the form{0, v") for some
ing client prior to its append. We will now make use of the v’), and if this value exists, adding this value twiaw of

Global-Timestamp property of our timed append-only ar- the values in the system. We say that ¢heev so computed
rays, to derive an estimation of the values that the appendings the view of the client in round. The Coin() operation

client observed, as follows:

Definition 5.1 Lete, be anappend operation executed by
clientp, and lete, be a differentppend operation executed
by clientq. We say that, definitely reflects:, if (i) p = ¢
ande, < e, or (ii) p # ¢ and there exiséppend operations
eé,, e, executed by andq, respectively, such that, < e,
e, =< ep, andT'(e)[0] < T'(ey,)[0].

We make use of Definition 5.1 as follows:eRall that in

returns an element of thigew.

1) subroutine Coin()

2) view — 0

3) Vi€ {l,...,n} (v, t) + 7;.read(1)

4) if ((v,t) # L andis justified)

(5)
(6)
O

view « view U {v’ : v = (0,v'}}
k « (flip() mod |view|) + 1

returnk-th largest element afiew

Figure 5. The Coin() operation

our consensus protocol, each process alternates global reads

(i.e., invocations of ast) and append operations. Therefore,
if p operates as prescribed by the protocol, then betwgen
ande, as above, there must b ast atp. By Corollary 4.1,
this implies thatp's Last beforee, observed the value ap-
pended bye,. We now use this definition as a foundation
for justification of appended values.

Definition 5.2 Let O be a set okppend operations gener-
ated in some execution of the systensefial executiorof
O is a linear order on the elements 6f that extends the
per-client linear orders.

Definition 5.3 Lete be thei-th 7;.append, with timestamp
T(e) = t. Thejustification sefor ¢ is the set consisting of
the k-th 7;,.append operations for alll < j* < n and all
1<k <ij).

Definition 5.4 Lete be thei-th 7;.append. ¢ is justifiedif

its justification set) contains all operations thatdefinitely
reflects and if there is a serial execution @ffollowed by
e that is consistent with correct execution ppy A justified
valueis one appended in a justifiegpend.

In Figure 5, the element returned from thiew is se-
lected by &lip operation that returns a nonnegative integer.
Correctness of the protocol requires nothing morelipf
thoughflip is very important to the running time of the pro-
tocol, as we show in Section 7.

6. Theflip protocol

Before analyzing the running time of our protocaol, it is
necessary to detail the implementation of fifygoperation.
This operation is implemented by a distributed protocol that
returns the same value to every correct client that invokes it
in roundr, i.e., theflip value for round- is unique. In addi-
tion, the roundr flip value cannot be predicted by any client
until some client completes thip protocol for that round.
Intuitively, in theflip protocol the servers generate a deter-
ministic digital signature (such as an RSA signature [16])
on a string that includes the round number in whichfthe
protocol is invoked. By definition, digital signatures are un-
predictable to those not knowing the key to generate them.

The signature generation process must ensure that faulty
servers cannot computip values ahead of time. This is

We note that by the properties of timed append-only ar- achieved by employingtireshold signature schen@gen-
rays, justification is well defined, i.e., it does not depend erate a signature. Informally, (@, m)-threshold signature
on the reader of the appended value. Furthermore, all cor-scheme is a method of generating a public key:arghares
rect clients' appends are justified, and if a client executesof the corresponding private key in such a way that for any
an unjustified append, then all of its future appends are alsomessagev, each share can be used t@mguce apartial

unjustified.

result from w, where anyk of these partial results can be

combined into the private key signature for Moreover, our consensus object solo and obtain the consensus decision
knowledge ofk shares should beexessary to sigm, in within a finite number of steps. In fact, in such a case, a solo
the sense that without the private key it should be computa-client will obtain the consensus value within a small num-
tionally infeasible to (i) create the signature forwithout ber of steps, specifically within fouppend and thred ast
k partial results forw, (ii) compute a partial result fow operations. Even when multiple clients participate simulta-
without the corresponding share, or (iii) compute a share neously, if a leader emerges quickly then every client may
or the private key withouk other shares. Our replication terminate after engaging in only a small number of protocol
technique does not rely on any particular threshold signa-rounds and no coin-flips. We now peed to describe the
ture scheme, provided that it is deterministic; the literature expected running time of our algorithm more generally.
includes such schemes (e.g., [5, 6]). Typically, one hopes that in the common case clients
We implement thélip protocol as follows. At service fail only benignly and do not exhibit malicious behavior.
initialization time, a(k, m)-threshold signature scheme, With the algorithm as described so far, we can prove that in
with & = b+ 1 andm equal to the number of servers, isused this case, a client will complete the protocol in an expected
to generate a public key and one share of the private key forO(c*n) operations on timed append-only arrays (even in the
each server. Each server's share is known only to itself; theface of up to the threshold of Byzantine server failures),
corresponding public key is assumed to be available to allwherec < n is the actual number of clients that append val-
clients. Theflip protocol for round- then proceeds simply ues to their arrays before any correct process decides. The
as follows: the client executes a Q-RPC to obtain partial strategy used for proving this result is to show that in only
results from a quorum of servers for the “messageénd ¢? rounds can Coin() operations return different values to
combines them to form a valid signature far It returns different clients. Moreover, in eacloundr in which the
this value, interpreted as a nonnegative integer. Coin() operation returns the same value to all clients that
It is worth reviewing several properties of tfig pro- invoke it, there is a constant probability that the value re-
tocol that are necessary for the results of Section 7. First,turned by the Coin() operation is the same as the first value
due to the properties of a threshold signature scheme, the@ppended in round When this happens, the algorithm will
flip value for round- is known nowhere prior to some client quickly terminate. The resultis an expecte?) roundsin
completing the protocol for that round. Second, if we view which each client executed(c?n) array operations, yield-
theflip protocol as producing a result that is a sampling from ing a total ofO(c*n) operations.
the space of integers up to some large (i.e., much larger than The story is different for the worst-case running time for
|view|; see Section 5.2) bound, it is reasonable to assumethis algorithm in case of Byzantine client failures. In this
flip samples uniformly at random from thisa! Third, case, the algorithm no longer terminates with probability
because thélip protocol produces a digital signature for one. The reason for this is twofold: First, there is noth-
which all parties are assumed to have the verifying public ing to prevent faulty clients from invoking tHép protocol

key, any value claimed to be produced by fhe protocol for any roundr far in advance, effectively rendering these
for roundr can be immediately verified. Fourth, because the flips predictable to faulty clients. By carefully controlling
threshold signature scheme is deterministic, ftipeproto- the scheduling of operations in the protocol, they can use

col returns the same value to any correct client that invokesthis advance knowledge @fp results to prolong the proto-

it in roundr. This doesotimply that the Coin() operation col indefinitely. Second, even ffip values were withheld
returns the same value to correct processes that invoke it ifrom clients for long enough, a faulty client might repeat-
roundr, because each client may have a differéatv in edly use a differentiew in its Coin() operation than correct
roundr (see Section 5.2). However, when all correct pro- clients, thereby resulting in a different coin value than cor-
cesses invoking the Coin() operation in roundhave the rect clients.

sameview, the Coin() operation will indeed return the same In order to prove termination in the general case, we

value everywhere. are thus forced to make some modifications to the proto-
col. First, to prevent prematurely revealifigp values to
7. Running time faulty clients, we stipulate the following:

Stipulation 7.1 A correct server does not respond to a
client invoking thelip protocol for round- unless that client
has executetivo justifiedappend operations in round-.

1 This appears to be a reasonable assumption for threshold signature
schemes that generate RSA signatures. If this property is not realistic for Second, we forceach client to explitly append the value

a threshold signature scheme of choice, then passing the signature throug . : : ; s
a suitable cryptographic hash function (e.g., [17]) should adequately sim- Bf view used in a Coin() operation, and the (verifiable) resuit

ulate the selection of a number uniformly at random from the space of all Of theflip qperation, to deteCt_a fau'_ty client th_at attempts to
hash values. report a different result from its Coin() operation:

One of the motivations guiding our design of a consen-
sus object was to allow any single (correct) client to access

Stipulation 7.2 The Coin() operation returns, in addition
to the selected value, the result of fhig operation and the

value ofview computed in the Coin() operation; the client [1]
appends thisflip value and theview in the sameappend
operation as the coin value (i.e., in its firsppend of the [2]
next round).

Though seemingly minor additional stipulations, the first (3

of these substantially increases server involvement in the
protocol, in terms of the amount of protocol logic that must

be server-resident and the message traffic sent to servers.
This is due to the fact that each server is required to test [4]
for justification ofappend operations (which we have not
required until now) prior to participating infip protocol.

In order to make this test as efficient as possible for servers, [5]
each client can first forward copies of all previaignmit
andvalue messages (i.e., sets; , ; in Section 4) to each
server that it contacts in tHép protocol (see Section 6), so

that the server can update its local arrays and then restrict its [61
attention to its own local arrays to determine justifiability of

the client' sappend operations in that round.

With Stipulations 7.1 and 7.2 in place, we can prove the [7]
following:
Theorem 7.1 Each correct client decides in expected [8]

O(c*n) array operations.

We emphasize that in practice, however, it may be desirable [9]
to omit Stipulations 7.1 and 7.2 and settle for a protocol

that terminates with probability one in the case of benign- [10]
failures only. Though in theory the algorithm without these
stipulations could be extended arbitrarily by faulty clients, [11]

in practice this would require substantial control over sys-
tem scheduling by faulty clients.

[12]
8. Conclusion

A consensus object in a Byzantine failure-prone environ- [13]
ment is a powerful abstraction, allowing individual clients
to obtain a consensus value without waiting for other clients
to invoke the object. We described an implementation of
randomized consensus objects supported by a set of persis-
tent servers, that can survive arbitrary failures of up to a
threshold number of the servers and any number of clients
accessing them. Due to tljgorum-based replication tech-
niques underpinning our implementation [13, 14], we ex-
pect that our protocol can scale to very large nhumbers of
servers and clients. Several of the enabling mechanisms werig]
have developed in our protocol are of general value in them-
selves: The timed append-only arrays can be used in other
protocols to support non-malleable communication among [17]
clients when Byzantine failures are a concern; and the dis-
tributed coin-flipping technique of Section 6 can be useful
in other randomized protocols.

14]

(15]

References

J. Aspnes and M. Herlihy. Fast randomized consensus using shared
memory.Journal of algorithms11:441-461, 1990.

H. Attiya, A. Bar-Noy and D. Dolev. Sharing memory robustly in
message-passing systedsurnal of the ACM42(1):124-142, Jan-
uary 1995.

J. K. Bennet, J. B. Carter and W. Zwaenepoel. Munin: Distributed
shared memory based on type-specific memory coheren&adn
ond ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programmingpages 168-176, March 1990.

B. Chor and C. Dwork. Randomization in Byzantine agreement.
In Advances in Computing Research, Randomness in Compuytation
volume 5, JAI Press, edited by S. Micali, pages 443-497,1989.

Y. Desmedt and Y. Frankel. Shared generation of authenticators
and signatures. In J. Feigenbaum, ediéatyances in Cryptology—
CRYPTO '91 Proceedingdecture Notes in Computer Science
576), pages 457-469. Springer-Verlag, 1992.

A. De Santis, Y. Desmedt, Y. Frankel and M. Yung. How to share
a function securely. IProceedings of the 26th ACM Symposium on
Theory of Computingpages 522-533, May 1994.

W. Diffie and M. E. Hellman. New directions in cryptographsEE
Transactions on Information Theoty-22(6):644-654, November
1976.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty proceksirnal of the ACM
32(2):374-382, April 1985.

L. Lamport. Time, clocks, and the ordering of events in a distributed
systemCommunications of the ACRIL(7):558-565, July 1978.

L. Lamport. On interprocess communication (part Il: algorithms).
Distributed Computind.:86-101, 1986.

L. Lamport, R. Shostak and M. Pease. The Byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems
4(3):382-401, July 1982.

K. Li and P. Hudak. Memory coherence in shared virtual memory
systemsACM Transactions on Computer System@):321-359,
November 1989.

D. Malkhi and M. Reiter. Byzantine quorum systerf8stributed
Computingl11(4), to appear. Preliminary version appear$m-
ceedings of the 29th ACM Symposium on Theory of Computing
pages 569-578, May 1997.

D. Malkhi, M. Reiter, and A. Wool. The load and availability of
Byzantine quorum systems. Proceedings of the 16th ACM Sym-
posium on Principles of Distributed Computingages 249-257,
August 1997.

D. Malkhiand M. Reiter. Secure and scalable replication in Phalanx.
In Proceedings of the 17th IEEE Symposium on Reliable Distributed
SystemdOctober 1998.

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digi-
tal sighatures and public-key cryptosyste@smmunications of the
ACM 21(2):120-126, February 1978.

FIPS 180-1, Secure hash standard. Federal Information Pro-
cessing Standards Publication 180-1, U.S. Department of Com-
merce/N.I.S.T., National Technical Information Service, April 17,
1995.

