
Distrib. Comput. (1998) 11: 203–213

c© Springer-Verlag 1998

Byzantine quorum systems
Dahlia Malkhi, Michael Reiter

AT&T Labs – Research, Florham Park, NJ 07932-0971, USA (e-mail:{dalia,reiter}@research.att.com)

Received: October 1996 / Accepted June 1998

Summary. Quorum systems are well-known tools for en-
suring the consistency and availability of replicated data
despite the benign failure of data repositories. In this pa-
per we consider the arbitrary (Byzantine) failure of data
repositories and present the first study of quorum system
requirements and constructions that ensure data availability
and consistency despite these failures. We also consider the
load associated with our quorum systems, i.e., the minimal
access probability of the busiest server. For services subject
to arbitrary failures, we demonstrate quorum systems overn
servers with a load ofO(1√

n
), thus meeting the lower bound

on load for benignly fault-tolerant quorum systems. We ex-
plore several variations of our quorum systems and extend
our constructions to cope with arbitrary client failures.

Key words: Quorum systems – Byzantine failures – Repli-
cation – Fault tolerance

1 Introduction

A well known way to enhance the availability and efficiency
of replicated data is by usingquorums. A quorum system
for a universe of data servers is a collection of subsets of
servers, each pair of which intersect. Intuitively, each quo-
rum can operate on behalf of the system, thus increasing its
availability and performance, while the intersection property
guarantees that operations done on distinct quorums preserve
consistency.

In this paper we consider the arbitrary (Byzantine) failure
of clients and servers, and initiate the study of quorum sys-
tems in this model. Intuitively, a quorum system tolerant of
Byzantine failures is a collection of subsets of servers, each
pair of which intersect in a set containing sufficiently many
correct servers to guarantee consistency of the replicated
data as seen by clients. We provide the following contribu-
tions.

1. We define the class ofmasking quorum systems, with
which data can be consistently replicated in a way that
is resilient to the arbitrary failure of data repositories.
We show necessary and sufficient conditions for the exis-
tence of masking quorum systems under different failure

assumptions, and present several example constructions
of such systems.

2. We explore two variations of masking quorum systems.
The first, calleddissemination quorum systems, is suited
for services that receive and distributeself-verifying in-
formation from correct clients (e.g., digitally signed val-
ues) that faulty servers can fail to redistribute but cannot
undetectably alter. The second variation, calledopaque
masking quorum systems, is similar to regular masking
quorums in that it makes no assumption of self-verifying
data, but it differs in that clients do not need to know
the failure scenarios for which the service was designed.
This somewhat simplifies the protocol by which clients
access the replicated data and, in the case that failures are
maliciously induced, reveals less information to clients
that could guide an attack attempting to compromise the
system.

3. We explore theload of each type of quorum system,
where the load of a quorum system is the minimal ac-
cess probability of the busiest server, minimizing over
all strategies for picking quorums. We present a masking
quorum system with the property that its load over a total
of n servers isO(1√

n
), thereby meeting the lower bound

for the load of benignly-fault-tolerant quorum systems.
For opaque masking quorum systems, we prove a lower
bound of 1

2 on the load, and present a construction that
meets this lower bound and proves it tight.

4. For services that use masking quorums (opaque or not),
we show how to deal with faulty clients in addition to
faulty servers. The primary challenge raised by client fail-
ures is that there is no guarantee that clients will up-
date quorums according to any specified protocol. Thus,
a faulty client could leave the replicated data in an in-
consistent and irrecoverable state. We develop an update
protocol, by which clients update the replicated data, that
prevents clients from leaving the data in an inconsistent
state. The protocol has the desirable property that it in-
volves only the quorum at which an access is attempted,
while providing system-wide consistency properties.

Our quorum systems, if used in conjunction with ap-
propriate protocols and synchronization mechanisms, can be
used to implement a wide range of data semantics. In this

204

paper, however, we choose to demonstrate a variable sup-
porting read and write operations with relatively weak se-
mantics, in order to maintain focus on our quorum construc-
tions. These semantics imply asafevariable [20], which a
set of correct clients can use to build other abstractions, e.g.,
atomic, multi-writer multi-reader registers [18, 20, 21], con-
current timestamp systems [10, 17],l-exclusion [2, 9], and
atomic snapshot scan [1, 5].

Our quorum systems can be used for building other pro-
tocols in addition to shared read/write register emulation.
For example, in an ongoing effort [25], we use Byzantine
quorum systems in constructing a large-scale, survivable ser-
vice supporting persistent data abstractions such as consen-
sus objects [24], locks and files. In addition, in Sect. 6, we
demonstrate how masking quorum systems can be used to
guarantee consistency and completion of updates, even those
executed by faulty clients.

The rest of this paper is structured as follows. We begin
in Sect. 2 with a description of related work. In Sect. 3 we
present our system model and definitions. We present quo-
rum systems for the replication of arbitrary data subject to
arbitrary server failures in Sect. 4, and in Sect. 5 we present
two variations of these systems. We then detail an access
protocol for replicated services that tolerate faulty clients in
addition to faulty servers in Sect. 6. We conclude in Sect. 7.

2 Related work

Our work was influenced by the substantial body of litera-
ture on quorum systems for benign failures and applications
that make use of them, e.g., [4, 7, 11–13, 15, 22, 31, 37]. In
particular, our grid construction of Sect. 4 was influenced by
grid-like constructions for benign failures (e.g., [7]), and we
borrow our definition ofload from [31].

Quorum systems have been previously employed in the
implementation of security mechanisms. Naor and Wool [32]
described methods to construct an access-control service us-
ing quorums. Their constructions use cryptographic tech-
niques to ensure that out-of-date (but correct) servers can-
not grant access to unauthorized users. Agrawal and El
Abbadi [3] and Mukkamala [30] considered the confiden-
tiality of replicated data despite the disclosure of the con-
tents of a threshold of the (otherwise correct) repositories.
Their constructions used quorums with increased intersec-
tion, combined with Rabin’s dispersal scheme [33], to en-
hance the confidentiality and availability of the data despite
some servers crashing or their contents being observed. Our
work differs from all of the above by considering arbitrarily
faulty servers, and accommodating failure scenarios beyond
a simple threshold of servers.

Herlihy and Tygar [16] applied quorums with increased
intersection to the problem of protecting the confidentiality
and integrity of replicated data against a threshold of arbi-
trarily faulty servers. In their constructions, replicated data is
stored encrypted under a key that is shared among the servers
using a threshold secret-sharing scheme [35], and each client
accesses a threshold number of servers to reconstruct the
key prior to performing (encrypted) reads and writes. This
construction exhibits one approach to make replicated data
self-verifying via encryption, and thus the quorum system

they develop is a special case of our dissemination quorum
systems, i.e., for a threshold of faulty servers.

Since the initial conference publication of this work [23],
several works that build upon its contributions have ap-
peared. A subsequent paper [27] is devoted to construc-
tions of masking quorum systems for the special case of a
threshold of faulty servers. Bazzi [6] explored a variation of
our quorum systems for synchronous systems. Probabilistic
constructions for dissemination and masking quorum sys-
tems are explored in [28] and [29], respectively. A practical
effort for building a large-scale survivable data repository
using Byzantine quorums is described in [24], and the con-
struction of a survivable consensus object in this context is
described in [25].

3 Preliminaries

3.1 System model

We assume auniverseU of servers,|U | = n, and an arbi-
trary number of clients that are distinct from the servers. A
quorum systemQ ⊆ 2U is a non-empty set of subsets of
U , every pair of which intersect. EachQ ∈ Q is called a
quorum.

Servers (and clients) that obey their specifications are
correct. A faulty server, however, may deviate from its spec-
ification arbitrarily. A fail-prone systemB ⊆ 2U is a non-
empty set of subsets ofU , none of which is contained in an-
other, such that someB ∈ B contains all the faulty servers.
The fail-prone system represents an assumption characteriz-
ing the failure scenarios that can occur, and could express
typical assumptions that up to a threshold of servers fail
(e.g., the setsB1, . . . , Bk could be all sets off servers), but
it also generalizes to allow less uniform assumptions. For ex-
ample, servers in physical proximity to each other or in the
same administrative domain may exhibit correlated proba-
bilities of being captured, or servers with identical hardware
and software platforms may have correlated probabilities of
electronic penetration. By exploiting such correlations (i.e.,
knowledge of the collectionB), we can design quorum
systems that more effectively mask faulty servers.

In the remainder of this section, and throughout Sects. 4
and 5, we assume that clients behave correctly. In Sect. 6 we
will relax this assumption (and will be explicit when we do
so).

We assume that any two processes (clients or servers)
can communicate over a point-to-point channel. If both end-
points of the channel are correct, then this channel is both
authenticated and reliable. That is, a correct process receives
a message from another correct process if and only if the
other correct process sent it. However, we donot assume
known bounds on message transmission times; i.e., commu-
nication is asynchronous.

3.2 Access protocol

We consider a problem in which the clients perform read
and write operations on a variablex that is replicated at
each server in the universeU . A copy of the variablex is

205

stored at each server, along with a timestamp valuet. Times-
tamps are assigned by a client to each replica of the variable
when the client writes the replica. Our protocols require that
different clients choose different timestamps, and thus each
client c chooses its timestamps from some globally-known
setTc that does not intersectTc′ for any other clientc′. The
timestamps inTc can be formed, e.g., as integers appended
with the name ofc in the low-order bits. The read and write
operations are implemented as follows.

Write. For a clientc to write the valuev, it queries servers
to obtain a set of timestampsA = {<tu>}u∈Q for some quo-
rum Q; chooses a timestampt ∈ Tc greater than the highest
timestamp value inA and greater than any timestamp it has
chosen in the past; and sends the update<v, t> to servers
until it has received an acknowledgement for this update
from every server in some quorumQ′.

Read. For a client to readx, it queries servers to obtain a
set of value/timestamp pairsA = {<vu, tu>}u∈Q for some
quorumQ. The client then applies a deterministic function
Result() to A to obtain the resultResult(A) of the read op-
eration.

In the case of a write operation, each server updates its local
variable and timestamp to the received values<v, t> only if
t is greater than the timestamp currently associated with the
variable. In any case, it returns an acknowledgement to the
client.

Two points about this description deserve further discus-
sion. First, the nature of the quorumsQ and the function
Result() are intentionally left unspecified; further clarifica-
tion of these are the point of this paper. Second, read and
write operations need to exchange messages with a full quo-
rum of servers. For example, the read operation requires a
client to obtain a setA containing value/timestamp pairs
from every server in some quorumQ. This requirement
stems from our lack of synchrony assumptions on the net-
work: in general, the only way that a client can know that
it has accessed everycorrect server in a quorum is to ac-
cess every server in the quorum. Our framework guaran-
tees the availability of a quorum at any moment, and thus
by attempting the operation at multiple quorums, a client
can eventually make progress. In some cases, the client can
achieve progress by incrementally accessing servers until it
obtains responses from a quorum of them.

In Sects. 4 and 5, we will argue the correctness of the
above protocol—instantiated with quorums and aResult()
function that we will define—according to the following se-
mantics; a more formal treatment of these concepts can be
found in [20]. We say that a read operationbegins when
the client initiates the operation andends when the client
determines the read result; an operation to write valuev
with timestampt beginswhen the client initiates it andends
when all correct servers in some quorum have received the
update<v, t>. An operationop1 precedesan operationop2
if op1 ends beforeop2 begins (in real time). Ifop1 does not
precedeop2 and op2 does not precedeop1, then they are
calledconcurrent. Given a set of operations, aserialization
of those operations is a total ordering on them that extends
the precedence ordering among them. Then, for the above

protocol to be correct, we require that any read that is con-
current with no writes returns the last value written in some
serialization of the preceding writes. This will immediately
imply safevariable semantics [20].

3.3 Load

A measure of the inherent performance of a quorum system
is its load [31], defined as follows: Given a quorum system
Q , an access strategyw is a probability distribution on the
elements ofQ ; i.e.,

∑
Q∈Q w(Q) = 1. w(Q) is the prob-

ability that quorumQ will be chosen when the service is
accessed. Load is then defined as follows:

Definition 3.1 Let a strategyw be given for a quorum system
Q = {Q1, . . . , Qm} over a universeU . For an elementu ∈
U , the load induced byw onu is lw(u) =

∑
Qi3u w(Qi). The

load induced by a strategyw on a quorum systemQ is

Lw(Q) = max
u∈U

{lw(u)}.

Thesystem load(or just load) on a quorum systemQ is

L(Q) = min
w

{Lw(Q)},

where the minimum is taken over all strategies. �

We reiterate that the load is a best case definition. The
load of the quorum system will be achieved only if an op-
timal access strategy is used, and only in the case that no
failures occur. A strength of this definition is that load is a
property of a quorum system, and not of the protocol using
it. A comparison of the definition of load to other seemingly
plausible definitions is given in [31].

4 Masking quorum systems

In this section we introducemasking quorum systems, which
can be used to mask the arbitrarily faulty behavior of data
repositories. To motivate our definition, suppose that the
replicated variablex is written with quorumQ1, and that
subsequentlyx is read using quorumQ2. If B is the set of
arbitrarily faulty servers, then the following is obtained by
reading fromQ2: the correct value forx is obtained from
each server in (Q1 ∩ Q2) \ B (see Fig. 1); out-of-date values
are obtained fromQ2 \ (Q1 ∪ B); and arbitrary values are
obtained fromQ2 ∩ B. In order for the client to obtain the
correct value, the client must be able to identify the most
up-to-date value/timestamp pair as one returned by a set of
servers that could not all be faulty. This yields requirement
M-Consistency below. In addition, since communication is
asynchronous and thus accurate failure detection is not pos-
sible, in order for a client to know it completes an operation
with all the correct servers of some quorum, it must be able
to obtain responses from a full quorum. Therefore, for avail-
ability we require that there be no set of faulty servers that
intersects all quorums.

Definition 4.1 A quorum systemQ is a masking quorum
systemfor a fail-prone systemB if the following properties
are satisfied.

206

B

Q2

Q1

Fig. 1. Reading from a masking quorumQ2

M-Consistency: ∀Q1, Q2 ∈ Q ∀B1, B2 ∈ B : (Q1 ∩
Q2) \ B1 6⊆ B2

M-Availability : ∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅

�

For example, in the case that at mostf servers can fail,
M-Consistency guarantees that every pair of quorums inter-
sect in at least 2f + 1 elements, and thus inf + 1 correct
ones. If a read operation accepts only a value returned by at
leastf + 1 servers, then any accepted value was returned by
at least one correct server.

More generally, the masking quorum system require-
ments enable a client to obtain the correct answer from the
service despite the Byzantine failure of any fail-prone set.
The write operation is implemented as described in Sect. 3.
To obtain the correct value ofx from a read operation, the
client reads a set of value/timestamp pairs from a quorum
Q, discards values that are returned from anyB′ ∈ B or
subsets thereof, and chooses among the remaining values the
one with the highest timestamp. This guarantees correctness
of the returned value/timestamp pair, which was received
from some setB+ ⊆ Q of servers, whereB+ is not con-
tained in anyB′ ∈ B and therefore must contain at least
one correct server. Furthermore, it is easy to see that if the
most recent write has completed in quorumQ′, then all of
the servers inQ ∩ Q′ \ B will return this most up-to-date
value, and since by definitionQ ∩ Q′ \ B is not contained
in any B′ ∈ B , this value will be returned by the read op-
eration. The read operation is thus as follows:

Read. For a client to read a variablex, it queries servers
to obtain a set of value/timestamp pairsA = {<vu, tu>}u∈Q

for some quorumQ. The client computes the set

A′ = {<v, t> : ∃B+ ⊆ Q [∀ B ∈ B [B+ 6⊆ B] ∧
∀ u ∈ B+ [vu = v ∧ tu = t]]}.

The client then chooses the pair<v, t> in A′ with the highest
timestamp, and choosesv as the result of the read operation;
if A′ is empty, the client returns⊥ (a null value, which
indicates that the read failed).

Lemma 4.2A read operation that is concurrent with no write
operations returns the value written by the last preceding
write operation in some serialization of all preceding write
operations.

Proof. Let W denote the set of write operations preceding
the read. The read operation will return the value written
in the write operation inW with the highest timestamp,
since, by the construction of masking quorum systems, this
value/timestamp pair will appear inA′ and will have the
highest timestamp inA′ (any pair with a higher timestamp
will be returned only by servers in someB ∈ B). So, it suf-
fices to argue that there is a serialization of the writes inW
in which this write operation appears last, or in other words,
that this write operation precedes no other write operation
in W . This is immediate, however, as if it did precede an-
other write operation inW , that write operation would have
a higher timestamp.�

This lemma implies that the protocol above implements
a multi-writer multi-reader safevariable [20]. A failure
value (⊥) may be returned when some write overlaps a
read operation. From safe variables multi-writer multi-reader
atomic variables can be built using well-known construc-
tions [18, 20, 21].

A necessary and sufficient condition for the existence of
a masking quorum system (and a construction for one, if it
exists) for any given fail-prone systemB is given in the
following theorem:

Theorem 4.3Let B be a fail-prone system for a universe
U . Then there exists a masking quorum system forB iff
Q = {U \B : B ∈ B } is a masking quorum system forB .

Proof. Obviously, if Q is a masking quorum system forB ,
then one exists. To show the converse, assume thatQ is
not a masking quorum. Since M-Availability holds inQ by
construction, there existQ1, Q2 ∈ Q andB′, B′′ ∈ B , such
that (Q1∩Q2)\B′ ⊆ B′′. Let B1 = U \Q1 andB2 = U \Q2.
By the construction ofQ , we know thatB1, B2 ∈ B . By
M-Availability, any masking quorum system forB must
contain quorumsQ′

1 ⊆ Q1, Q′
2 ⊆ Q2. However, for any such

Q′
1, Q

′
2, it is the case that (Q′

1 ∩Q′
2)\B′ ⊆ (Q1 ∩Q2)\B′ ⊆

B′′, violating M-Consistency. Therefore, there does not exist
a masking quorum system forB under the assumption that
Q is not a masking quorum system forB . �
Corollary 4.4 LetB be a fail-prone system for a universeU .
Then there exists a masking quorum system forB iff for all
B1, B2, B3, B4 ∈ B , U 6⊆ B1 ∪B2 ∪B3 ∪B4. In particular,
suppose thatB = {B ⊆ U : |B| = f}. Then, there exists a
masking quorum system forB iff n > 4f .

Proof. By Theorem 4.3, there is a masking quorum forB

iff Q = {U \ B : B ∈ B } is a masking quorum forB .
By construction,Q is a masking quorum iff M-Consistency
holds forQ , i.e., iff for all B1, B2, B3, B4 ∈ B :

((U \ B1) ∩ (U \ B2)) \ B3 6⊆ B4

⇐⇒ U \ (B1 ∪ B2) 6⊆ B3 ∪ B4

⇐⇒ U 6⊆ B1 ∪ B2 ∪ B3 ∪ B4.

�
The existence criterion for masking quorum systems

identified by Theorem 4.3 characterizes all possible masking
systems for the fail-prone systemB . In particular, the sys-
tem Q in Theorem 4.3 isdominated(in the sense of [12])

207

by any other masking quorum systemQ ′ for B , in that for
everyQ ∈ Q there must existQ′ ∈ Q

′ such thatQ′ ⊆ Q.
While this provides a characterization of masking quorum
systems for any fail-prone systemB , it does not help in
constructing ones to meet any specific requirements. Garcia-
Molina and Barbara [12] present techniques for enumerat-
ing a certain class of (non-Byzantine) quorum systems. Their
methods are not directly applicable for enumerating masking
quorum systems, and we leave as an open research topic the
question of efficiently mechanizing masking quorum gener-
ation. A separate paper [27] provides constructions that are
optimal in load and various availability measures for any
threshold failure assumption up to the maximum ofn/4.

The following theorem was proved in [31] for benign-
failure quorum systems, and holds a fortiori for masking
quorums (as a result of M-Consistency). Letc(Q) denote
the size of the smallest quorum ofQ .

Theorem 4.5[31] If Q is a quorum system over a universe

of n elements, thenL(Q) ≥ max{ 1
c(Q)

, c(Q)
n }, and thus,

L(Q) ≥ 1√
n

.

Below we give several examples of masking quorum
systems and describe their properties.

Example 4.6 (f -masking) Suppose thatB = {B ⊆ U :
|B| = f}, n > 4f . Note that this corresponds to the usual
threshold assumption that up tof servers may fail. Then,
the quorum systemQ = {Q ⊆ U : |Q| = dn+2f+1

2 e} is a
masking quorum system forB . M-Consistency is satisfied
because anyQ1, Q2 ∈ Q will intersect in at least 2f + 1
elements. M-Availability holds becausedn+2f+1

2 e ≤ n − f .
A strategy that assigns equal probability to each quorum
induces a load of1ndn+2f+1

2 e on the system. By Theorem
4.5, this load is in fact the load of the system.�

The following example is interesting since its load de-
creases as a function ofn, and since it demonstrates a
method for ensuring system-wide consistency in the face
of Byzantine failures while requiring the involvement of
fewer than a majority of the correct servers. These advan-
tages are dramatic whenn is sufficiently large, e.g., hundreds
of servers.

Example 4.7 (Grid quorums) Suppose that the universe of
servers is of sizen = k2 for some integerk and thatB =
{B ⊆ U : |B| = f}, 3f + 1 ≤ √

n. Arrange the universe
into a

√
n × √

n grid, as shown in Fig. 2. Denote the rows
and columns of the grid byRi andCi, respectively, where
1 ≤ i ≤ √

n. Then, the quorum system

Q =

{
Cj ∪

⋃
i∈I

Ri : I, {j} ⊆ {1 . . .
√

n}, |I| = 2f + 1

}

is a masking quorum system forB . M-Consistency holds
since every pair of quorums intersect in at least 2f + 1 ele-
ments (the column of one quorum intersects the 2f + 1 rows
of the other), and M-Availability holds since for any choice
of f faulty elements in the grid, 2f+1 full rows and a column
remain available. A strategy that assigns equal probability to
each quorum induces a load of(2f+2)

√
n−(2f+1)
n , and again by

Theorem 4.5, this is the load of the system.�

Note that by choosingB = {∅} (i.e., f = 0) in the
example above, the resulting construction has a load of
O(1√

n
), which asymptotically meets the bounds given in

Theorem 4.5. In general, however, this construction yields
a load ofO(f√

n
), which is not optimal: Malkhi et al. [27]

show a lower bound of
√

2f+1
n on the load of any masking

quorum system forB = {B ⊆ U : |B| = f}, and provide a
construction whose load matches that bound.

k

k

Fig. 2. Grid construction,k × k = n, f = 1 (one quorum shaded)

Example 4.8(Partition) Suppose thatB = {B1, . . . , Bm},
m > 4, is a partition ofU where Bi /= ∅ for all i, 1 ≤
i ≤ m. This choice ofB could arise, for example, in a
wide area network composed of multiple local clusters, each
consisting of someBi, and expresses the assumption that at
any time, at most one cluster is faulty. Then, any collection
of nonempty setŝBi ⊆ Bi, 1 ≤ i ≤ m, can be thought of as
‘super-elements’ in a universe of sizem, with a threshold
assumptionf = 1 (see Fig. 3). Therefore, the following is a
masking quorum system forB :

Q =

{⋃
i∈I

B̂i : I ⊆ {1, . . . , m}, |I| = dm+3
2 e

}

M-Consistency is satisfied because the intersection of any
two quorums contains elements from at least three sets inB .
M-Availability holds since there is noB ∈ B that intersects
all quorums. A strategy that assigns equal probability to each
quorum induces a load of1mdm+3

2 e on the system regardless
of the size of eachB̂i, and again Theorem 4.5 implies that
this is the load of the system.

If m = k2 for somek, then a more efficient construction
can be achieved by forming the grid construction from Ex-
ample 4.7 on the ‘super elements’{B̂i}, achieving a load of
4
√

m−3
m . �

5 Variations

5.1 Dissemination quorum systems

As a special case of services that can employ quorums in
a Byzantine environment, we now consider applications in
which the service is a repository for self-verifying infor-
mation, i.e., information that only clients can create and to
which clients can detect any attempted modification by a
faulty server. A natural example is a database ofpublic key

208

︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

B1 B2 B3 B4 B5

B̂1 B̂2 B̂3 B̂4 B̂5

︷ ︸︸ ︷

U

Fig. 3. Partition{B1, B2, B3, B4, B5}, B̂i’s shaded

certificatesas found in many public key distribution sys-
tems (e.g., [8, 19, 36]). In its simplest form, a public key
certificate is a structure containing a name for a user and
a public key, and represents the assertion that the indicated
public key can be used to authenticate messages from the
indicated user. This structure is digitally signed (e.g., [34])
by a certification authorityso that anyone with the public
key of this authority can verify this assertion and, providing
it trusts the authority, use the indicated public key to au-
thenticate the indicated user. Due to this signature, it is not
possible for a faulty server to undetectably modify a cer-
tificate it stores. However, a faulty servercan undetectably
suppress a change from propagating to clients, simply by
ignoring an update from a certification authority. This could
have the effect, e.g., of suppressing the revocation of a key
that has been compromised.

As can be expected, the use of digital signatures to ver-
ify data decreases the cost of accessing replicated data. To
support such a service, we employ adissemination quorum
system, which has weaker requirements than masking quo-
rums, but which nevertheless ensures that in applications
like those above, self-verifying writes will be propagated to
all subsequent read operations despite the arbitrary failure of
some servers. To achieve this, it suffices for the intersection
of every two quorums to not be contained in any set of po-
tentially faulty servers (so that a written value can propagate
to a read). This leads to requirement D-Consistency below.
And, supposing that operations are required to continue in
the face of failures, then due to the lack of accurate failure
detection, there should be quorums that a faulty set cannot
disable; this yields requirement D-Availability below.

Definition 5.1 A quorum systemQ is a dissemination quo-
rum systemfor a fail-prone systemB if the following prop-
erties are satisfied.

D-Consistency: ∀Q1, Q2 ∈ Q ∀B ∈ B : Q1 ∩ Q2 6⊆ B

D-Availability : ∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅

�

A dissemination quorum system will suffice for propa-
gating self-verifying information as in the application de-
scribed above. The write operation is implemented as de-
scribed in Sect. 3, and the read operation becomes:

Read. For a client to read a variablex, it queries servers
to obtain a set of value/timestamp pairsA = {<vu, tu>}u∈Q

for some quorumQ. The client then discards those pairs that
are not verifiable (e.g., using an appropriate digital signature
verification algorithm) and chooses from the remaining pairs
the pair<v, t> with the largest timestamp.v is the result of

the read operation.

It is important to note that timestamps must be included
as part of the self-verifying information, so they cannot be
undetectably altered by faulty servers. In the case of the ap-
plication described above, existing standards for public key
certificates (e.g., [8]) already require a real-time timestamp
in the certificate.

The following lemma states correctness of the above pro-
tocol using dissemination quorum systems. The proof is al-
most identical to that for masking quorum systems.

Lemma 5.2A read operation that is concurrent with no write
operations returns the value written by the last preceding
write operation in some serialization of all preceding write
operations.

Due to the assumption of self-verifying data, we can also
prove in this case the following property.

Lemma 5.3 A read operation that is concurrent with one
or more write operations returns either the value written by
the last preceding write operation in some serialization of
all preceding write operations, or any of the values being
written in the concurrent write operations.

The above lemmata imply that the protocol above im-
plements aregular variable [20]. Theorems analogous to
the ones given for masking quorum systems above are eas-
ily derived for dissemination quorums. Below, we list these
results without proof.

Theorem 5.4Let B be a fail-prone system for a universe
U . Then there exists a dissemination quorum system forB

iff Q = {U \B : B ∈ B } is a dissemination quorum system
for B .

Corollary 5.5 Let B be a fail-prone system for a universe
U . Then there exists a dissemination quorum system forB

iff for all B1, B2, B3 ∈ B , U 6⊆ B1∪B2∪B3. In particular,
suppose thatB = {B ⊆ U : |B| = f}. Then, there exists a
dissemination quorum system forB iff n > 3f .

Below, we provide several example constructions of dissem-
ination quorum systems.

Example 5.6 (f -dissemination) Suppose thatB = {B ⊆
U : |B| = f}, n > 3f . Note that this corresponds to the
usual threshold assumption that up tof servers may fail.
Then, the quorum systemQ = {Q ⊆ U : |Q| = dn+f+1

2 e} is
a dissemination quorum system forB with load 1

ndn+f+1
2 e.

�
Example 5.7 (Grid) Let the universe be arranged in a grid
as in Example 4.8 above, and letB = {B ⊆ U : |B| = f},
2f + 1 ≤ √

n. Then, the quorum system

209

Q =

{
Cj ∪

⋃
i∈I

Ri : I, {j} ⊆ {1 . . .
√

n}, |I| = f + 1

}

is a dissemination quorum system forB . The load of this
system is(f+2)

√
n−(f+1)
n . �

Example 5.8(Partition) Suppose thatB = {B1, . . . , Bm},
m > 3, is a partition ofU as in Fig. 3. For any collec-
tion of nonempty setsB̂i ⊆ Bi, 1 ≤ i ≤ m, the f -
dissemination construction of Example 5.6 on the ‘super-
elements’B̂i ⊆ Bi (as in Example 4.8) yields a dissemi-
nation quorum system with a load of1mdm+2

2 e. If m = k2

for somek, the Grid construction of Example 5.7 achieves
a load of 3

√
m−2
m . �

5.2 Opaque masking quorum systems

Masking quorums impose a requirement that clients know
the fail-prone systemB , while there may be reasons that
clients should not be required to know this. First, it some-
what complicates the client’s read protocol, in particular,
when no concise description ofB exists. Second, by reveal-
ing the failure scenarios for which the system was designed,
the system also reveals the failure scenarios to which it is
vulnerable, which could be exploited by an attacker to guide
an active attack against the system. By not revealing the fail-
prone system to clients, and indeed giving each client only
a small fraction of the possible quorums, the system can
somewhat obscure (though perhaps not secure in any for-
mal sense) the failure scenarios to which it is vulnerable,
especially in the absence of client collusion.

In this section we describe one way to modify the mask-
ing quorum definition of Sect. 4 to beopaque, i.e., to elimi-
nate the need for clients to knowB . In the absence of the
client knowingB , the only method of which we are aware
for the client to reduce a set of replies from servers to a
single reply from the service is viavoting, i.e., choosing the
reply that occurs most often. In order for this reply to be the
correct one, however, we must strengthen the requirements
on our quorum systems. Specifically, suppose that the vari-
ablex is written with quorumQ1, and that subsequentlyx
is read with quorumQ2. If B is the set of arbitrarily faulty
servers, then (Q1 ∩ Q2) \ B is the set of correct servers that
possess the latest value forx (see Fig. 4). In order for the
client to obtain this value by vote, this set must be larger
than the set of faulty servers that are allowed to respond, i.e.,
Q2 ∩ B. Moreover, since these faulty servers can “team up”
with the out-of-date but correct servers in an effort to sup-
press the write operation, the number of correct, up-to-date
servers that reply must be no less than the number of faulty
or out-of-date servers that can reply, i.e., (Q2∩B)∪(Q2\Q1).
Finally, to effectively mask failures by anyB ∈ B in an
asynchronous environment, we add the availability require-
ment (O-Availability).

Definition 5.9 A quorum systemQ is an opaque masking
quorum systemfor a fail-prone systemB if the following
properties are satisfied.

O-Consistency1: ∀Q1, Q2 ∈ Q ∀B ∈ B : |(Q1 ∩ Q2) \
B| ≥ |(Q2 ∩ B) ∪ (Q2 \ Q1)|

B

Q2

Q1

>

≥ +O1:

O2:

Fig. 4. O-Consistency1 and O-Consistency2

O-Consistency2: ∀Q1, Q2 ∈ Q ∀B ∈ B : |(Q1 ∩ Q2) \
B| > |Q2 ∩ B|

O-Availability : ∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅

�

Note that O-Consistency1 admits the possibility of equality
in size between (Q1 ∩ Q2) \ B and (Q2 ∩ B) ∪ (Q2 \ Q1).
Equality is sufficient since, in the case that the faulty servers
“team up” with the correct but out-of-date servers inQ2, the
value returned from (Q1 ∩Q2) \B will have a higher times-
tamp than that returned by (Q2 ∩ B) ∪ (Q2 \ Q1). Therefore,
in the case of a tie, a reader can choose the value with
the higher timestamp. It is interesting to note that a strong
inequality in O-Consistency1 would permit a correct imple-
mentation of a single-reader singer-writer safe variable that
does not use timestamps (by taking the majority value in a
read operation).

It is not difficult to verify that an opaque masking quo-
rum system enables a client to obtain the correct answer
from the service. The write operation is implemented as de-
scribed in Sect. 3, and the read operation becomes:

Read. For a client to read a variablex, it queries servers
to obtain a set of value/timestamp pairsA = {<vu, tu>}u∈Q

for some quorumQ. The client chooses the pair<v, t> that
appears most often inA, and if there are multiple such pairs,
the one with the highest timestamp. The valuev is the result
of the read operation.

Opaque masking quorum systems, combined with the access
protocol described previously, provide the same semantics
as regular masking quorum systems. The proof is almost
identical to that for regular masking quorums.

Lemma 5.10 A read operation that is concurrent with no
write operations returns the value written by the last pre-
ceding write operation in some serialization of all preceding
write operations.

Below we give several examples of opaque masking quo-
rum systems (or just “opaque quorum systems”) and describe
their properties.

Example 5.11 (f -opaque) Suppose thatB = {B ⊆ U :
|B| = f} where n ≥ 5f and f > 0. Then, the quorum

210

systemQ = {Q ⊆ U : |Q| = d 2n+2f
3 e} is an opaque quorum

system forB , whose load is1
nd 2n+2f

3 e. �

The next theorem proves a resilience bound for opaque quo-
rum systems.

Theorem 5.12Suppose thatB = {B ⊆ U : |B| = f}. There
exists an opaque quorum system forB iff n ≥ 5f .

Proof. That n ≥ 5f is sufficient is already demonstrated
in Example 5.11 above. Now suppose thatQ is an opaque
quorum system forB . Fix any Q1 ∈ Q such that|Q1| ≤
n − f (Q1 exists by O-Availability); note that|Q1| > f
by O-Consistency2. ChooseB1 ⊆ Q1, |B1| = f , and some
Q2 ∈ Q such thatQ2 ⊆ U\B1 (Q2 exists by O-Availability).
Then|Q1∩Q2| ≤ n−2f . By O-Consistency2,|Q1∩Q2| ≥ f ,
and therefore there is someB2 ∈ B such thatB2 ⊆ Q1∩Q2.
Then

n − 3f ≥ |Q2 ∩ Q1| − |B2|
= |(Q2 ∩ Q1) \ B2|
≥ |(Q1 \ Q2) ∪ (Q1 ∩ B2)| (1)

= |Q1 \ Q2| + |B2|
≥ |B1| + |B2|
= 2f

Where (1) holds by O-Consistency1. Therefore, we have
n ≥ 5f . �

Example 5.13(Partition) Suppose thatB = {B1, . . . , B3k},
k > 1, is a partition ofU whereBi /= ∅ for all i, 1 ≤ i ≤ 3k.
Choose any collection of setŝBi ⊆ Bi, 1 ≤ i ≤ 3k, such
that |B̂i| = c for a fixed constantc > 0. Then, thef -opaque
construction of Example 5.11 on the ‘super-elements’{B̂i}
(as in Example 4.8), with universe size 3k and a threshold
assumptionf = 1, yields an opaque quorum system with
load 2k+1

3k . �

Unlike the case for regular masking quorum systems,
an open problem is to find a technique for testing whether,
given a fail-prone systemB , there exists an opaque quorum
system forB (other than an exhaustive search of all subsets
of 2U).

In the constructions in Examples 5.11 and 5.13, the re-
sulting quorum systems exhibited loads that at best were
constant as a function ofn. In the case of masking quorum
systems, we were able to exhibit quorum systems whose
load decreased as a function ofn, namely the grid quorums.
A natural question is whether there exists an opaque quo-
rum system for any fail-prone systemB that has load that
decreases as a function ofn. In this section, we answer this
question in the negative: we show a lower bound of1

2 on the
load for any opaque quorum system construction, regardless
of the fail-prone system.

Theorem 5.14The load of any opaque quorum system is at
least 1

2.

Proof. O-Consistency1 implies that for anyQ1, Q2 ∈ Q ,
|Q1 ∩Q2| ≥ |Q1 \Q2|, and thus|Q1 ∩Q2| ≥ |Q1|

2 . Let w be
any strategy for the quorum systemQ , and fix anyQ1 ∈ Q .
Then, the total load induced byw on the elements ofQ1 is:

∑
u∈Q1

lw(u) =
∑

u∈Q1

∑
Qi3u

w(Qi)

=
∑
Qi

∑
u∈Q1∩Qi

w(Qi)

≥
∑
Qi

|Q1|
2

w(Qi)

=
|Q1|

2

Therefore, there must be some server inQ1 that suffers a
load at least12. �

We now present a generic construction of an opaque
quorum system forB = {∅} and increasingly large universe
sizesn, that has a load that tends to1

2 asn grows. We give
this construction primarily to show that in at least some cases
the lower bound of12 is tight; due to the requirement that
B = {∅}, this construction is not of practical use for coping
with Byzantine failures.

Example 5.15Suppose that the universe of servers isU =
{u1, . . . , un} wheren = 2` for some` > 2, and thatB =
{∅}. Consider then×n Hadamard matrixH(`), constructed
recursively as follows:

H(1) =

[−1 −1
−1 1

]

H(k) =

[
H(k − 1) H(k − 1)
H(k − 1) −H(k − 1)

]
, k ≥ 2

H(`) has the property thatH(`)H(`)T = nI, where I is
the n × n identity matrix. Using well-known inductive ar-
guments [14, Ch. 14], it can be shown that (i) the first row
and column consist entirely of−1’s, (ii) the i-th row and
i-th column, for eachi ≥ 2, has 1’s in n

2 positions (and
similarly for −1’s), and (iii) any two rows (and any two
columns)i, j ≥ 2 have identical elements inn2 positions,
i.e., 1’s in n

4 common positions and−1’s in n
4 common

positions.
We treat the rows ofH(`) as indicators of subsets ofU .

That is, letQi = {uj : H(`)[i, j] = 1} be the set defined
by the i-th row, 1 ≤ i ≤ n. Note thatQ1 = ∅ and that
u1 is not included in anyQi. We claim that the system
Q = {Q2, ..., Qn} is an opaque quorum system forB .
Using properties (i)–(iii) above, we have that|Qi| = n

2 for
each i ≥ 2; that eachui, i ≥ 2, is in exactly n

2 of the
setsQ2, . . . , Qn; and that for anyi, j ≥ 2, if i /= j then
|Qi ∩ Qj | = n

4 . From these, the O-Consistency1 and O-
Consistency2 requirements can be quickly verified, and a
load of

n
2

n−1 can be achieved, e.g., with a strategy that assigns
equal probability to each quorum.�

6 Faulty clients

So far, we have been concerned with providing a consis-
tent service to a set of correct clients. In this section, we
extend our treatment to address faulty clients in addition
to faulty servers. Since updates may now be generated by
faulty clients, we can make no assumption of self-verifying

211

1. If a server receives<update, Q, v, t> from a clientc, if t ∈ Tc, and if the server has not previously received fromc a message<update, Q′, v′, t′>
where eithert′ = t andv′ /= v or t′ > t, then the server sends<echo, Q, v, t> to each member ofQ.

2. If a server receives identical echo messages<echo, Q, v, t> from every server inQ, then it sends<ready, Q, v, t> to each member ofQ.
3. If a server receives identical ready messages<ready, Q, v, t> from a setB+ of servers, such thatB+ 6⊆ B for all B ∈ B , then it sends<ready, Q,

v, t> to every member ofQ if it has not done so already.
4. If a server receives identical ready messages<ready, Q, v, t> from a setQ− of servers, such that for someB ∈ B , Q− = Q \ B, then (i) if t is

greater than the timestamp it currently holds, then it updates its variable and timestamp tov andt, respectively, and (ii) regardless of whether it updates
the variable and timestamp, it sends an acknowledgment message toc whereTc 3 t.

Fig. 5. An update protocol

data, and thus use masking quorum systems (Sect. 4) to im-
plement the service. We focus on ensuring the consistency
of the data stored at the replicated service as seen by correct
clients only.

A difficulty in handling faulty clients is that a faulty
writer might send different updates to different servers and
may fail to contact a full quorum. We therefore modify the
write protocol to prevent clients from leaving the service in
an inconsistent state, and to guarantee that updates propagate
to (at least) a full quorum. We maintain availability of the
service despite the possibly malicious behavior by any num-
ber of clients, so that a correct client can always complete a
write operation with as little as one available quorum.

The treatment here provides a single-writer multi-reader
safe variable semantics (ignoring reads by faulty clients).
Since the initial conference publication of this work [23],
single-writer objects with stronger semantics in the case of
faulty clients have been constructed using Byzantine quo-
rums and have been used to solve the distributed consensus
problem [24]. Other work has extended the treatment here
to provide multi-writer variables [25]. An alternative and
general correctness condition for shared objects accessed by
faulty clients has been developed in [26], which our protocol
here also satisfies. For brevity, however, here we continue
in the framework of the previous sections.

The write protocol performed by a client is changed in
that a writer computes the timestamp locally, without con-
sulting the servers, and in that it denotes the quorum it at-
tempts to access in the update request. We replace the write
operation of Sect. 3 by the following:

Write. For a clientc to write the valuev, it chooses a times-
tampt ∈ Tc greater than any value it has chosen before, and
then performs the following two steps: (i) it chooses a quo-
rum Q and sends an update message<update, Q, v, t> to
each server inQ, and (ii) if after some timeout period, it has
not received an acknowledgement from every server inQ,
it repeats (i) (and (ii)).

Every server that receives anupdate message from a
client engages in an “update” protocol to guarantee unique-
ness of the value associated with a timestamp and its propa-
gation to a full quorum. The protocol is presented in Fig. 5.

In order to argue correctness for this protocol, we have to
adapt the definition of operation precedence and operation
duration to allow for the behavior of a faulty client. The
reason is that it is unclear how to define when an operation
by a faulty client begins or ends, as the client can behave
outside the specification of any protocol. We make use of
the following terminology:

Definition 6.1 We say that a serverdeliversan update<v, t>
when it receives<ready, Q, v, t> from each server in the set
Q− = Q \ B for some fail-prone setB (step 4 of the update
protocol in Fig. 5). �

We now say that a write operation that writesv with
timestampt begins when the first correct server receives
<update, Q, v, t>, and ends when all correct servers in some
quorum have delivered the update. Note that by this defini-
tion, a write operation by a faulty client could last arbitrar-
ily long, and could overlap other writes by the same client.
Nevertheless, carrying over the remainder of the precedence
definition, we have that the write protocol together with the
update protocol in Fig. 5 implement a single-writer multi-
reader safe variable:

Lemma 6.2 A correct process’ read operation that is con-
current with no write operations returns the value written by
the last preceding write operation in some serialization of all
preceding write operations.

To prove this lemma, we need the following properties of
our protocol:

Lemma 6.3 A correct server delivers<v, t> only if some
correct server previously received<update, Q, v, t>.

Proof. To deliver <v, t>, a correct server must receive a
ready message from some correct server. Moreover, the first
<ready, Q, v, t> message from a correct server is sent only
after it receives<echo, Q, v, t> from each member ofQ.
Since, a correct member sends<echo, Q, v, t> only if it
first receives<update, Q, v, t>, this proves the lemma.�

Lemma 6.4 (Agreement) If a correct server delivers<v, t>
and a correct server delivers<v′, t>, thenv = v′.

Proof. As argued in the previous lemma, for a correct server
to deliver <v, t>, <echo, Q, v, t> must have been sent by
all servers inQ. Similarly, <echo, Q′, v′, t> must have been
sent by all servers inQ′. Since every two quorums intersect
in (at least) one correct server, and since any correct server
sends<echo, ∗, v̂, t> for at most one value ˆv, v must be
identical tov′. �

Proof of Lemma 6.2.Let W denote the set of write oper-
ations preceding the read. Note that by Lemma 6.4, any
value/timestamp pair inW is well defined, i.e., the same
value corresponds to any timestamp at all correct servers
that deliver it. By definition, every write inW was deliv-
ered to a full quorum, and by assumption and Lemma 6.3,
no correct server has delivered any write outsideW . There-
fore, by the construction of masking quorum systems, the

212

read operation will return the value written in the write op-
eration inW with the highest timestamp. So, it suffices to
argue that there is a serialization of the writes inW in which
this write operation appears last, or in other words, that this
write operation precedes no other write operation inW . This
results, however, from the fact that there is a single writer
and that servers echo an update request only if its timestamp
is higher than the one they have in store, and so any later
write operation has a higher timestamp.�

In addition, we argue liveness and completeness of our pro-
tocol as follows:

Lemma 6.5(Propagation) If a correct server delivers<v, t>,
then eventually there exists a quorumQ ∈ Q such that every
correct server inQ delivers<v, t>.

To prove this lemma, we make use of the following fact:

Lemma 6.6 If Q is a masking quorum system over a uni-
verseU with respect to a fail-prone systemB , then∀Q ∈
Q ∀B1, B2, B3 ∈ B , Q 6⊆ B1 ∪ B2 ∪ B3.

Proof.Assume otherwise for a contradiction, i.e., that there is
a Q ∈ Q andB1, B2, B3 ∈ B such thatQ ⊆ B1 ∪B2 ∪B3.
By M-Availability, there existsQ′ ∈ Q , Q′ ∩ B1 = ∅. Then,
Q∩Q′ ⊆ B2∪B3 and thus (Q∩Q′)\B2 ⊆ B3, contradicting
M-Consistency.�
Proof of Lemma 6.5.According to the protocol, the correct
server that delivered<v, t> received a message<ready, Q,
v, t> from each server inQ− = Q \B for someQ ∈ Q and
B ∈ B . Since, for someB′ ∈ B , (at least) all the members
in Q− \ B′ are correct, every correct member ofQ receives
<ready, Q, v, t> from each of the members ofB+ = Q−\B′.
Since,∀B′′ ∈ B , Q−\B′ 6⊆ B′′ (by Lemma 6.6), theready
messages fromB+ cause each correct member ofQ to send
such aready message. Consequently,<v, t> is delivered by
all of the correct members ofQ. �

Lemma 6.7(Validity) If a correct clientc sends<update, Q,
v, t> to every server inQ and all servers inQ are correct,
then eventually a correct server delivers<v, t>.

Proof. Since both the client and all of the members ofQ are
correct,<update, Q, v, t> will be received andechoed by
every member inQ. Consequently, all the servers inQ will
send<ready, Q, v, t> messages to the members ofQ, and
will eventually deliver<v, t>. �

7 Conclusions

The literature contains an abundance of protocols that use
quorums for accessing replicated data. This approach is ap-
pealing for constructing replicated services as it allows for
increasing the availability and efficiency of the service while
maintaining its consistency. Our work extends this success-
ful approach to environments where both the servers and the
clients of a service may deviate from their prescribed behav-
ior in arbitrary ways. We introduced a new class of quorum
systems, namelymaskingquorum systems, and devised pro-
tocols that use these quorums to enhance the availability of

systems prone to Byzantine failures. We also explored two
variations of our quorum systems, namelydisseminationand
opaque maskingquorums, and for all of these classes of quo-
rums we provided various constructions and analyzed the
load they impose on the system.

Our work leaves a number of intriguing open challenges
and directions for future work. One is to characterize the
average performance of our quorum constructions and their
load in less-than-ideal scenarios, e.g., when failures occur.
Also, in this work we described only quorum systems that
are uniform, in the sense that any quorum is possible for both
read and write operations. In practice it may be beneficial
to employ quorum systems with distinguishedread quorums
and write quorums, with consistency requirements imposed
only between pairs consisting of at least one write quorum.
Although this does not seem to improve our lower bounds on
the overall load that can be achieved, it may allow greater
flexibility in trading between the availability of reads and
writes.

Acknowledgments.We are grateful to Andrew Odlyzko for suggesting the
use of Hadamard matrices to construct opaque masking quorum systems
with an asymptotic load of12 . We also thank Yehuda Afek and Michael
Merritt for helpful discussions, and Vassos Hadzilacos and Rebecca Wright
for many helpful comments on earlier versions of this paper. An insightful
comment by Rida Bazzi led to a substantial improvement over a previous
version of this paper.

References

1. Afek A, Attiya H, Dolev D, Gafni E, Merritt M, Shavit N: Atomic
snapshots of shared memory. Journal of the ACM 40(4):873–890

2. Afek Y, Dolev D, Gafni E, Merritt M, Shavit N: A bounded first-in
first-enabled-solution to thel-exclusion problem. In: Proceedings of
the 4th International Workshop on Distributed Algorithms, LNCS 486,
Springer 1990

3. Agrawal D and El Abbadi A: Integrating security with fault-tolerant
distributed databases. Comput J 33(1):71–78

4. Agrawal D, El Abbadi A: An efficient and fault-tolerant solution for
distributed mutual exclusion. ACM Transactions on Computer Systems
9(1):1–20 (1991)

5. Anderson JH: Composite registers. Distrib Comp 6(3):141–154 (1993)
6. Bazzi RA: Synchronous Byzantine quorum systems. In: Proceedings

of the 16th ACM Symposium on Principles of Distributed Computing,
pp 259–266 (1997)

7. Cheung SY, Ammar MH, Ahamad M: The grid protocol: A high per-
formance scheme for maintaining replicated data. In: Proceedings of
the 6th IEEE International Conference on Data Engineering, pp 438–
445, 1990

8. International Telegraph and Telephone Consultative Committee
(CCITT): The Directory – Authentication Framework, Recommenda-
tion X.509, 1988

9. Dolev D, Gafni E, Shavit N: Toward a non-atomic era:l-exclusion as
a test case. In: Proceedings of the 20th ACM Symposium on Theory
of Computing, pp 78–92, May 1988

10. Dolev D, Shavit N: Bounded concurrent time-stamp systems are con-
structible. SIAM Journal of Computing, to appear. Also in: Proceedings
of the 21st ACM Symposium on the Theory of Computing, pp 454–
466, 1989

11. El Abbadi A, Toueg S: Maintaining availability in partitioned repli-
cated databases. ACM Transactions on Database Systems 14(2):264–
290 (1989)

12. Garcia-Molina H, Barbara D; How to assign votes in a distributed
system. Journal of the ACM 32(4):841–860 (1985)

213

13. Gifford DK: Weighted voting for replicated data. In: Proceedings of the
7th ACM Symposium on Operating Systems Principles, pp 150–162,
1979

14. Hall, Jr. M: Combinatorial Theory. 2nd Edn. Interscience Series in
Discrete Mathematics, New York: Wiley 1986

15. Herlihy H: A quorum-consensus replication method for abstract data
types. ACM Transactions on Computer Systems 4(1):32–53 (1986)

16. Herlihy MP, Tygar JD: How to make replicated data secure. In: Ad-
vances in Cryptology – CRYPTO ’87 Proceedings, Lecture Notes
in Computer Science 293, pp 379–391, Berlin Heidelberg New York:
Springer 1988

17. Israeli A, Li M: (Bounded time-stamps. Distrib Comput 6(4):205–209
(1992)

18. Israeli A, Shaham A: Optimal multi-write multi-reader atomic register.
In: Proceedings of the 11th ACM Symposium on Principles of Distrib
Comput, pp 71–82, 1992

19. Lampson B, Abadi M, Burrows M, Wobber E: Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer
Systems 10(4):265–310 (1992)

20. Lamport L: On interprocess communication (part II: algorithms). Dis-
trib Comput 1:86–101 (1986)

21. Li M, Tromp J, Vitanyi PMB: How to share concurrent wait-free vari-
ables. Journal of the ACM, to appear

22. Maekawa M: A
√

n algorithm for mutual exclusion in decentral-
ized systems. ACM Transactions on Computer Systems 3(2):145–159
(1985)

23. Malkhi D, Reiter M: Byzantine quorum systems. In: Proceedings of
the 29th ACM Symposium on Theory of Computing, pp 569–578, May
1997

24. Malkhi D, Reiter M: Survivable consensus objects. In: Proceedings of
the 17th IEEE Symposium on Reliable Distributed Systems, October
1998

25. Malkhi D, Reiter M: Secure and scalable replication in Phalanx. In:
Proceedings of the 17th IEEE Symposium on Reliable Distributed Sys-
tems, October 1998

26. Malkhi D, Reiter M, Lynch N: A correctness condition for memory
shared by Byzantine processes. Submitted for publication 1998

27. Malkhi D, Reiter M, Wool A: The load and availability of Byzantine
quorum systems. In: Proceedings of the 16th ACM Symposium on
Principles of Distrib Comput, pp 249–257, August 1997

28. Malkhi D, Reiter M, Wright R: Probabilistic quorum systems. In: Pro-
ceedings of the 16th ACM Symposium on Principles of Distrib Com-
put, pp 267–273, August 1997

29. Malkhi D, Reiter M, Wool A, Wright R: Probabilistic Byzantine quo-
rum systems. Brief announcement in: Proceedings of the 17th ACM
Symposium on Principles of Distributed Computing, June 1998

30. Mukkamala R: Storage efficient and secure replicated distributed
databases. IEEE Transactions on Knowledge and Data Engineering
6(2):337–341 (1994)

31. Naor M, Wool A: The load, capacity, and availability of quorum sys-
tems. SIAM Journal of Computing 27(2):423–447 (1998)

32. Naor M, Wool A: Access control and signatures via quorum secret
sharing. In: Proceedings of the 3rd ACM Conference on Computer
and Communications Security, pp 157–168, March 1996

33. Rabin MO: Efficient dispersal of information for security, load balanc-
ing, and fault tolerance. Journal of the ACM 36(2):335–348 (1989)

34. Rivest R, Shamir A, Adleman L: A method for obtaining digital sig-
natures and public-key cryptosystems. Communications of the ACM
21(2):120–126 (1978)

35. Shamir A: How to share a secret. Communications of the ACM
22(11):612–613 (1979)

36. Tardo JJ, Alagappan K: SPX: Global authentication using public key
certificates. In: Proceedings of the 1991 IEEE Symposium on Research
in Security and Privacy, pp 232–244, May 1991

37. Thomas RH: A majority consensus approach to concurrency control
for multiple copy databases. ACM Transactions on Database Systems
4(2):180–209 (1979)

Dahlia Malkhi received her Ph.D., M.Sc. and B.Sc. degrees in 1994, 1988,
1985, respectively, from the Hebrew University of Jerusalem, Israel. She is
currently a member of the Secure Systems Research Department at AT&T
Labs-Research in Florham Park, New Jersey, USA. Her research interests
include all areas of distributed systems and security.

Michael Reiter received his B.S. degree in mathematical sciences from the
University of North Carolina in 1989, and the M.S. and Ph.D. degrees in
computer science from Cornell University in 1991 and 1993, respectively.
He is presently a member of the Secure Systems Research Department at
AT&T Labs-Research in Florham Park, New Jersey, USA. His research
interests include all aspects of security and fault-tolerance in distributed
systems.

