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Summary. Quorum systems are well-known tools for en-
suring the consistency and availability of replicated data

assumptions, and present several example constructions
of such systems.

despite the benign failure of data repositories. In this pa-2. We explore two variations of masking quorum systems.

per we consider the arbitrary (Byzantine) failure of data
repositories and present the first study of quorum system

The first, calleddissemination quorum systenis suited
for services that receive and distribugelf-verifyingin-

requirements and constructions that ensure data availability formation from correct clients (e.g., digitally signed val-
and consistency despite these failures. We also consider the ues) that faulty servers can fail to redistribute but cannot

load associated with our quorum systems, i.e., the minimal

undetectably alter. The second variation, caltgghque

access probability of the busiest server. For services subject masking quorum systemis similar to regular masking

to arbitrary failures, we demonstrate quorum systems aver
servers with a load 0@(%), thus meeting the lower bound
on load for benignly fault-tolerant quorum systems. We ex-
plore several variations of our quorum systems and extend
our constructions to cope with arbitrary client failures.

Key words: Quorum systems — Byzantine failures — Repli-
cation — Fault tolerance

1 Introduction

A well known way to enhance the availability and efficiency
of replicated data is by usinguorums A quorum system
for a universe of data servers is a collection of subsets of
servers, each pair of which intersect. Intuitively, each quo-

quorums in that it makes no assumption of self-verifying
data, but it differs in that clients do not need to know
the failure scenarios for which the service was designed.
This somewhat simplifies the protocol by which clients
access the replicated data and, in the case that failures are
maliciously induced, reveals less information to clients
that could guide an attack attempting to compromise the
system.

. We explore theload of each type of quorum system,

where the load of a quorum system is the minimal ac-
cess probability of the busiest server, minimizing over
all strategies for picking quorums. We present a masking
guorum system with the property that its load over a total
of n servers isO(in), thereby meeting the lower bound
for the load of benignly-fault-tolerant quorum systems.
For opaque masking quorum systems, we prove a lower

rum can operate on behalf of the system, thus increasing its bound of 3 on the load, and present a construction that

availability and performance, while the intersection property

meets this lower bound and proves it tight.

guarantees that operations done on distinct quorums preserde For services that use masking quorums (opaque or not),

consistency.

In this paper we consider the arbitrary (Byzantine) failure
of clients and servers, and initiate the study of quorum sys-
tems in this model. Intuitively, a quorum system tolerant of
Byzantine failures is a collection of subsets of servers, each
pair of which intersect in a set containing sufficiently many
correct servers to guarantee consistency of the replicated
data as seen by clients. We provide the following contribu-
tions.

1. We define the class aihasking quorum systemsvith
which data can be consistently replicated in a way that
is resilient to the arbitrary failure of data repositories.

we show how to deal with faulty clients in addition to
faulty servers. The primary challenge raised by client fail-
ures is that there is no guarantee that clients will up-
date quorums according to any specified protocol. Thus,
a faulty client could leave the replicated data in an in-
consistent and irrecoverable state. We develop an update
protocol, by which clients update the replicated data, that
prevents clients from leaving the data in an inconsistent
state. The protocol has the desirable property that it in-
volves only the quorum at which an access is attempted,
while providing system-wide consistency properties.

Our guorum systems, if used in conjunction with ap-

We show necessary and sufficient conditions for the exispropriate protocols and synchronization mechanisms, can be
tence of masking quorum systems under different failureused to implement a wide range of data semantics. In this
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paper, however, we choose to demonstrate a variable suphey develop is a special case of our dissemination quorum
porting read and write operations with relatively weak se-systems, i.e., for a threshold of faulty servers.
mantics, in order to maintain focus on our quorum construc-  Since the initial conference publication of this work [23],
tions. These semantics implysafevariable [20], which a  several works that build upon its contributions have ap-
set of correct clients can use to build other abstractions, e.gpeared. A subsequent paper [27] is devoted to construc-
atomic, multi-writer multi-reader registers [18, 20, 21], con- tions of masking quorum systems for the special case of a
current timestamp systems [10, 17exclusion [2,9], and threshold of faulty servers. Bazzi [6] explored a variation of
atomic snapshot scan [1, 5]. our quorum systems for synchronous systems. Probabilistic
Our quorum systems can be used for building other pro-constructions for dissemination and masking quorum sys-
tocols in addition to shared read/write register emulation.tems are explored in [28] and [29], respectively. A practical
For example, in an ongoing effort [25], we use Byzantine effort for building a large-scale survivable data repository
guorum systems in constructing a large-scale, survivable semusing Byzantine quorums is described in [24], and the con-
vice supporting persistent data abstractions such as consestruction of a survivable consensus object in this context is
sus objects [24], locks and files. In addition, in Sect. 6, wedescribed in [25].
demonstrate how masking quorum systems can be used to
guarantee consistency and completion of updates, even those
executed by faulty clients. 3 Preliminaries
The rest of this paper is structured as follows. We begin
in Sect. 2 with a description of related work. In Sect.3 we 3.1 System model
present our system model and definitions. We present quo-
rum systems for the replication of arbitrary data subject towe assume aniverseU of servers,|U| = n, and an arbi-
arbitrary server failures in Sect. 4, and in Sect.5 we presentrary number of clients that are distinct from the servers. A
two variations of these systems. We then detail an accesguorum systemy C 2V is a non-empty set of subsets of
protocol for replicated services that tolerate faulty clients inU, every pair of which intersect. Eadf) € ¢ is called a
addition to faulty servers in Sect. 6. We conclude in Sect. 7.quorum
Servers (and clients) that obey their specifications are
correct A faulty server, however, may deviate from its spec-
2 Related work ification arbitrarily. Afail-prone system# C 2V is a non-
empty set of subsets @f, none of which is contained in an-
Our work was influenced by the substantial body of litera-other, such that somB € .2 contains all the faulty servers.
ture on quorum systems for benign failures and applicationg he fail-prone system represents an assumption characteriz-
that make use of them, e.g., [4,7,11-13,15,22, 31, 37]. Iring the failure scenarios that can occur, and could express
particular, our grid construction of Sect. 4 was influenced bytypical assumptions that up to a threshold of servers fall
grid-like constructions for benign failures (e.g., [7]), and we (e.g., the setd, ..., By could be all sets of servers), but
borrow our definition ofload from [31]. it also generalizes to allow less uniform assumptions. For ex-
Quorum systems have been previously employed in themple, servers in physical proximity to each other or in the
implementation of security mechanisms. Naor and Wool [32]same administrative domain may exhibit correlated proba-
described methods to construct an access-control service ubilities of being captured, or servers with identical hardware
ing quorums. Their constructions use cryptographic tech-and software platforms may have correlated probabilities of
nigues to ensure that out-of-date (but correct) servers carelectronic penetration. By exploiting such correlations (i.e.,
not grant access to unauthorized users. Agrawal and Btnowledge of the collection’?), we can design quorum
Abbadi [3] and Mukkamala [30] considered the confiden- systems that more effectively mask faulty servers.
tiality of replicated data despite the disclosure of the con- In the remainder of this section, and throughout Sects. 4
tents of a threshold of the (otherwise correct) repositoriesand 5, we assume that clients behave correctly. In Sect. 6 we
Their constructions used quorums with increased intersecwill relax this assumption (and will be explicit when we do
tion, combined with Rabin’s dispersal scheme [33], to en-so).
hance the confidentiality and availability of the data despite  We assume that any two processes (clients or servers)
some servers crashing or their contents being observed. Owan communicate over a point-to-point channel. If both end-
work differs from all of the above by considering arbitrarily points of the channel are correct, then this channel is both
faulty servers, and accommodating failure scenarios beyonduthenticated and reliable. That is, a correct process receives
a simple threshold of servers. a message from another correct process if and only if the
Herlihy and Tygar [16] applied quorums with increased other correct process sent it. However, we rdu assume
intersection to the problem of protecting the confidentiality known bounds on message transmission times; i.e., commu-
and integrity of replicated data against a threshold of arbi-nhication is asynchronous.
trarily faulty servers. In their constructions, replicated data is
stored encrypted under a key that is shared among the servers
using a threshold secret-sharing scheme [35], and each clieBt2 Access protocol
accesses a threshold number of servers to reconstruct the
key prior to performing (encrypted) reads and writes. ThisWe consider a problem in which the clients perform read
construction exhibits one approach to make replicated datand write operations on a variable that is replicated at
self-verifying via encryption, and thus the quorum systemeach server in the univerdé. A copy of the variabler is
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stored at each server, along with a timestamp valliémes-  protocol to be correct, we require that any read that is con-
tamps are assigned by a client to each replica of the variableurrent with no writes returns the last value written in some
when the client writes the replica. Our protocols require thatserialization of the preceding writes. This will immediately
different clients choose different timestamps, and thus eacimply safevariable semantics [20].
client ¢ chooses its timestamps from some globally-known
setT, that does not interse@.. for any other client’. The
timestamps il can be formed, e.g., as integers appended3.3 Load
with the name ot in the low-order bits. The read and write
operations are implemented as follows. A measure of the inherent performance of a quorum system
is its load [31], defined as follows: Given a quorum system
Write. For a clientc to write the value, it queries servers ¢/, anaccess strategy is a probability distribution on the
to obtain a set of timestamps = {<t, >}, for some quo-  elements ofZ; i.e., 3, w(Q) = 1. w(Q) is the prob-
rum @; chooses a timestamtpe 7. greater than the highest ability that quorum@ will be chosen when the service is
timestamp value iM and greater than any timestamp it has accessed. Load is then defined as follows:
chosen in the past; and sends the updatel> to servers o )
until it has received an acknowledgement for this updateDefinition 3.1Let a strategyw be given for a quorum system
from every server in some quoru@(‘ O = {Ql, e Qm} over a un_iverSEU. For an element, €
U, the load induced by onw is,,(u) = ZQEU w(Q;). The
Read. For a client to readr, it queries servers to obtain a load induced by a strategy on a quorum systeny is
set of value/timestamp paitd = {<v,, t,>},co for some SN —
quorumq@. The client then appliés a dete}rmicr%istic function Lu(@) = %%x{l,,,(u)}.
Eri;iuolg to A to obtain the resulResul{A) of the read op- Thesystem loador justload) on a quorum syster is
L(©) = min{ L.,(©)},
In the case of a write operation, each server updates its local v . .
variable and timestamp to the received valgest> only if ~ Where the minimum is taken over all strategies. O
t is greater than the timestamp currently associated with the
variable. In any case, it returns an acknowledgement to th
client.
Two points about this description deserve further discus

We reiterate that the load is a best case definition. The
foad of the qguorum system will be achieved only if an op-
timal access strategy is used, and only in the case that no
Tailures occur. A strength of this definition is that load is a

sion. First, the nature of the quorunis and the function :

T X o . property of a quorum system, and not of the protocol using
?esul?)tﬁre mtent;ﬁnally_ I?ﬂ ]}J?hsfpemfled, gjrtherdclarlflga- it. A comparison of the definition of load to other seemingly
ion of these are the point of this paper. Second, read and| . <iv\e definitions is given in [31].

write operations need to exchange messages with a full quo-
rum of servers. For example, the read operation requires a
client to obtain a setd containing value/timestamp pairs
from every server in some quorund). This requirement

stems from our lack of synchrony assumptions on the nety, yig section we introduceasking quorum systemshich
yvc;}rk. n gener?jl, the only way that a client can know that ¢4 he ysed to mask the arbitrarily faulty behavior of data
It has accesse ev_er;o;rect Server |ga (}]uorum |skto ac-  repositories. To motivate our definition, suppose that the
cess every server in the quorum. Our framework guaranepjicated variabler is written with quorum@:, and that
tees the a\(a|labll|ty of a quorum at any moment, and Fhussubsequentlyt is read using quorum),. If B is the set of

by attempting the operation at multiple quorums, a clientgyiarly faulty servers, then the following is obtained by
can eventually make progress. In some cases, the client Cgii, ying from(,: the correct value for is obtained from
achieve progress by incrementally accessing servers until it 2 server in@1 N Q2)\ B (see Fig. 1): out-of-date values

obtains responses from a quorum of them. are obtained fromQ . ;
: 2\ (Q1 U B); and arbitrary values are
In Sects. 4 and 5, we will argue the correctness of the,paineq fromg, N B. In order for the client to obtain the
above protocol—instantiated with quorums andResul()

. : . ! : correct value, the client must be able to identify the most
funct|_0n that we will define—according to the following se- up-to-date value/timestamp pair as one returned by a set of
mantics; a more formal treatment of these concepts can bggyers that could not all be faulty. This yields requirement
found in [20]. We say that a read operatibeginswhen — \; consistency below. In addition, since communication is
the client initiates the operation arehdswhen the client oy nchronous and thus accurate failure detection is not pos-
d‘?te”.””'”es the reaq result; an operation to write value sible, in order for a client to know it completes an operation
with timestampt beginswhen the client initiates it aneinds it 4| the correct servers of some quorum, it must be able
when all correct SEIVETS I Some quorum have rgcelved &, obtain responses from a full quorum. Therefore, for avail-
update<v,t>. An operationop; precedesan operatiomp,  apjlity we require that there be no set of faulty servers that
if op; ends beforep, begins (in real time). Ibp; does not

intersects all quorums.
precedeop, and op, does not precedep,, then they are
calledconcurrent Given a set of operations, serialization  Definition 4.1 A quorum systeng is a masking quorum
of those operations is a total ordering on them that extendsystemfor a fail-prone system# if the following properties
the precedence ordering among them. Then, for the abovare satisfied.

4 Masking quorum systems
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B 0 Proof. Let W denote the set of write operations preceding
the read. The read operation will return the value written
in the write operation inl¥ with the highest timestamp,
since, by the construction of masking quorum systems, this
value/timestamp pair will appear id’ and will have the
highest timestamp imd’ (any pair with a higher timestamp
will be returned only by servers in sonte € .%). So, it suf-
fices to argue that there is a serialization of the writeB/in
in which this write operation appears last, or in other words,
that this write operation precedes no other write operation
Fig. 1. Reading from a masking quoruf, in W. This is immediate, however, as if it did precede an-

other write operation i/, that write operation would have

a higher timestamg]

Q2

M-Consistency. VQ1,Q2 € ¢ VB1,B> € .78 : (Q1N

Q2)\ B Z B, This lemma implies that the protocol above implements
a multi-writer multi-reader safevariable [20]. A failure
M-Availability : VB €.23Q e ¢ : BNQ=10 value (L) may be returned when some write overlaps a

read operation. From safe variables multi-writer multi-reader
atomic variables can be built using well-known construc-
00 tions [18,20,21].
_ ) A necessary and sufficient condition for the existence of
For example, in the case that at mgsservers can fail, 3 masking quorum system (and a construction for one, if it

M-Consistency guarantees that every pair of quorums interexists) for any given fail-prone system® is given in the
sect in at least 2+ 1 elements, and thus ifi+ 1 correct  fo|lowing theorem:

ones. If a read operation accepts only a value returned by at
leastf + 1 servers, then any accepted value was returned byheorem 4.3Let.# be a fail-prone system for a universe
at least one correct server. U. Then there exists a masking quorum system @riff
More generally, the masking quorum system require-C ={U\ B : B € .77} is a masking quorum system fof.
ments enable a client to obtain the correct answer from the
service despite the Byzantine failure of any fail-prone set.p
The write operation is implemented as described in Sect. 3t
To obtain the correct value of from a read operation, the
client reads a set of value/timestamp pairs from a quoru
Q, discards values that are returned from dslye .72 or
subsets thereof, and chooses among the remaining values t

one with the highest timestamp. This guarantees correctne -Availability, any masking quorum system fo%? must

of the returned yalue/tlmestamp pair, Whlfh was received, i quorum), C Q1, Q, C Q. However, for any such
from some setB™ C @ of servers, whereB™ is not con- ;oA e 7 ; / /

tained i B ¢ 7% and theref ; tain at | th,QZ, it is the case that; NQ5)\ B’ C (Q1NQ2)\ B’ C
ained in any™ € .4 and therefore must contain at least g violating M-Consistency. Therefore, there does not exist

one correct server. Furthermore, it is easy to see that if th masking quorum system for? under the assumption that
most recent write has completed in quord then all of ¢ is not a masking quorum system fog?. [
the servers i) N Q" \ B will return this most up-to-date '

value, and since by definitio@ N Q' \ B is not contained Corollary 4.4 Let.7 be a fail-prone system for a univer&e

in any B’ € .72, this value will be returned by the read op- Then there exists a masking quorum system#diff for all

eration. The read operation is thus as follows: B1, By, B3, By € .78, U € B1UB,U B3U By. In particular,
suppose that? = {B C U : |B| = f}. Then, there exists a

Read. For a client to read a variable, it queries servers masking quorum system fot? iff n > 4f.

to obtain a set of value/timestamp paits= {<vy,, t,>}ueq

for some quorun@. The client computes the set

roof. Obviously, if ¢ is a masking quorum system fof?,
hen one exists. To show the converse, assume ¢has

not a masking quorum. Since M-Availability holds (& by
Monstruction, there exid:, Q» € ¢ andB’, B” € .72, such
hat (Q]_QQQ)\B/ C B”. Let B = U\Ql andB, = U\Qz
the construction o7, we know thatB;, B, € .72. By

Proof. By Theorem 4.3, there is a masking quorum fat

iff © ={U\ B: B € .2} is a masking quorum for7.

A ={<v,t> : 3B*CQ[VBe.Z[B "¢ B] A By construction/ is a masking quorum iff M-Consistency
VueB [vu=vAt, =11} holds for¢, i.e., iff for all By, B, Bs, B4 € .7

The client then chooses the psip, t> in A’ with the highest (U\B) N (U B2))\ Bs £ Ba
timestamp, and choosesas the result of the read operation; <= U \ (B1U B2) € B3 U By
if A’ is empty, the client returns. (a null value, which <= U ¢ B1UB,U B3 U By.

indicates that the read failed). O

Lemma 4.2A read operation that is concurrent with no write The existence criterion for masking quorum systems
operations returns the value written by the last precedingidentified by Theorem 4.3 characterizes all possible masking
write Operatlon in some serialization of all pFECEdIng write Systems for the fa"-prone Syste@_ In particu|ar, the sys-
operations. tem ¢ in Theorem 4.3 islominated(in the sense of [12])
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by any other masking quorum systefi for .72, in that for Note that by choosingZ = {0} (i.e., f = 0) in the
everyQ € ¢ there must exist)’ € ¢’ such thatQ’ C Q. example above, the resulting construction has a load of
While this provides a characterization of masking quorumO(ﬁ), which asymptotically meets the bounds given in

systems for any fail-prone system®, it does not help in  Theorem 4.5. In general, however, this construction yields

constructing ones to meet any specific requirements. Garciag |gad of O(-L), which is not optimal: Malkhi et al. [27]
Molina and Barbara [12] present techniques for enumerat- v o
"

ing a certain class of (non-Byzantine) quorum systems. Theishow a lower bound of/ =~ on the load of any masking

methods are not directly applicable for enumerating maskingyorum system forz = {B C U : | B| = f}, and provide a

guorum systems, and we leave as an open research topic tegnstruction whose load matches that bound.
guestion of efficiently mechanizing masking quorum gener-

ation. A separate paper [27] provides constructions that are
optimal in load and various availability measures for any
threshold failure assumption up to the maximumg#.

The following theorem was proved in [31] for benign-
failure quorum systems, and holds a fortiori for masking
quorums (as a result of M-Consistency). l€t’) denote ¥
the size of the smallest quorum ¢f.

Theorem 4.5[31] If ¢ is a quorum system over a universe

of n elements, ther.(¢) > max{@, C(n@}, and thus, .
1
L(Q) = vn' Fig. 2. Grid constructionk x k =n, f =1 (one quorum shaded)

Below we give several examples of masking quorum

systems and describe their properties. Example 4.8(Partition) Suppose that”? = {B;, ..., B, },

Example 4.6 (f-masking Suppose that = {B C U : m > 4, is a partition ofU where B; # () for all 4, 1 <

|B| = f}, n > 4f. Note that this corresponds to the usual i < m. This choice of.%? could arise, for example, in a
threshold assumption that up { servers may fail. Then, wide area network composed of multiple local clusters, each
the quorum systeny = {Q C U : |Q| = [%}} is a  consisting of someB;, and expresses the assumption that at
masking quorum system fa#?. M-Consistency is satisfied any time, at most one cluster is faulty. Then, any collection
because any):, @, € ¢ will intersect in at least 2+ 1  of nonempty set$3; C B;, 1 < i < m, can be thought of as
elements. M-Availability holds becaus{é”zz—f”] <n-f. ‘super-elements’ in a universe of size, with a threshold

A strategy that assigns equal probability to each quorunssumptionf =1 (see Fig.3). Therefore, the following is a
induces a load oft [™*2*1] on the system. By Theorem masking quorum system fors:

4.5, this load is in fact the load of the systelm. .
{UBZ- cIC{l,...,m}, |I|= (m;?']}

i€l

The following example is interesting since its load de- ¢=
creases as a function of, and since it demonstrates a
method for ensuring system-wide consistency in the facéMl-Consistency is satisfied because the intersection of any
of Byzantine failures while requiring the involvement of two quorums contains elements from at least three se#g.in
fewer than a majority of the correct servers. These advanM-Availability holds since there is n® < .7 that intersects
tages are dramatic whenis sufficiently large, e.g., hundreds all quorums. A strategy that assigns equal probability to each
of servers. quorum induces a load 97% (’%3} on the system regardless
of the size of eact3;, and again Theorem 4.5 implies that
this is the load of the system.

If m = k? for somek, then a more efficient construction
can be achieved by forming the grid construction from Ex-
ample 4.7 on the ‘super eIemen{s@i}, achieving a load of

Example 4.7 (Grid quorum3 Suppose that the universe of
servers is of sizev = k? for some integer: and that 2 =
{B CU:|B|=f} 3f+1< /n. Arrange the universe
into a+/n x /n grid, as shown in Fig. 2. Denote the rows
and columns of the grid byr; and C;, respectively, where

1< i < /n. Then, the quorum system Wm3 O
) = . - 1+ C R = + "
& {C’g U ngJIRz Ly c{1...vn} 1| = 2f 1} 5 Variations

is a masking quorum system for?. M-Consistency holds 5.1 Dissemination quorum systems

since every pair of quorums intersect in at leagt+2l ele-

ments (the column of one quorum intersects tifie-2 rows  As a special case of services that can employ quorums in
of the other), and M-Availability holds since for any choice a Byzantine environment, we now consider applications in
of f faulty elements in the grid,2+1 full rows and a column  which the service is a repository for self-verifying infor-
remain available. A strategy that assigns equal probability tanation, i.e., information that only clients can create and to
each quorum induces a Ioad@w, and again by  which clients can detect any attempted modification by a
Theorem 4.5, this is the load of the systdm. faulty server. A natural example is a databaseulblic key
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U
B B, B B, Bs
- Fig. 3. Partition{ By, Bp, Bs, Ba, Bs}, B;'s shaded
By B, Bs By Bs ig. 3. Partition{B1, By, B3, B4, Bs}, B;'s shade

certificatesas found in many public key distribution sys- the read operation.

tems (e.g., [8,19, 36]). In its simplest form, a public key

certificate is a structure containing a name for a user and It is important to note that timestamps must be included

a public key, and represents the assertion that the indicateals part of the self-verifying information, so they cannot be

public key can be used to authenticate messages from thendetectably altered by faulty servers. In the case of the ap-
indicated user. This structure is digitally signed (e.g., [34]) plication described above, existing standards for public key
by a certification authorityso that anyone with the public certificates (e.g., [8]) already require a real-time timestamp
key of this authority can verify this assertion and, providing in the certificate.

it trusts the authority, use the indicated public key to au- The following lemma states correctness of the above pro-
thenticate the indicated user. Due to this signature, it is notocol using dissemination quorum systems. The proof is al-
possible for a faulty server to undetectably modify a cer-most identical to that for masking quorum systems.

tificate it stores. However, a faulty servean undetectably 5 2 read tion that i twith i
suppress a change from propagating to clients, simply b}emma -<A I€ad operation that Is concurrent with no write
operations returns the value written by the last preceding

ignoring an update from a certificgtion authority. _This could write operation in some serialization of all preceding write
have the effect, e.g., of suppressing the revocation of a ke)éperatigns P 9

that has been compromised.
As can be expected, the use of digital signatures to verpue to the assumption of self-verifying data, we can also
ify data decreases the cost of accessing replicated data. Tsrove in this case the following property.
support such a service, we employigsemination quorum . . .
systemwhich has weaker requirements than masking quol-emma 5.3 A read operation that is concurrent with one
rums, but which nevertheless ensures that in application§ more write operations returns either the value written by
like those above, self-verifying writes will be propagated to the last p(ecedlr]g write operation in some serlahzatlon' of
all subsequent read operations despite the arbitrary failure gl preceding write operations, or any of the values being
some servers. To achieve this, it suffices for the intersectiofvritten in the concurrent write operations.

of every two quorums to not be co_ntained in any set of po-  The above lemmata imply that the protocol above im-
tentially faulty servers (so that_a written value can propagatememems aregular variable [20]. Theorems analogous to
to a read). This leads to requirement D-Consistency belowina ones given for masking quorum systems above are eas-

And, supposing that operations are required to continue iRy qerived for dissemination quorums. Below, we list these
the face of failures, then due to the lack of accurate failure,ggits without proof.

detection, there should be quorums that a faulty set cannot

disable; this yields requirement D-Availability below. Theorem 5.4Let.72 be a fail-prone system for a universe
U. Then there exists a dissemination quorum systemAbor

Definition 5.1 A quorum syster@ is a dissemination quo- iff @ = {U\B ‘Be !/)’} is a dissemination guorum system

rum systenfor a fail-prone systemz? if the following prop-  for.%.

erties are satisfied. ] . .
Corollary 5.5 Let.# be a fail-prone system for a universe

D-Consistency VQ1,Q2 € ¢ VB € .81 Q1NQ2 ¢ B U. Then there exists a dissemination quorum system#bor
o ‘ iff for all By, By, B3 € .2, U € B1UB,U Bs. In particular,
D-Availability : VB € 2 3Q € ©: BNQ =0 suppose that”? = {B C U : |B| = f}. Then, there exists a
dissemination quorum system fa® iff n > 3f.

O Below, we provide several example constructions of dissem-

A dissemination quorum system will suffice for propa- Ination quorum systems.

gating self-verifying information as in the application de- Example 5.6 (f-disseminatioh Suppose that”? = {B C
scribed above. The write operation is implemented as det/ : |B| = f}, n > 3f. Note that this corresponds to the
scribed in Sect. 3, and the read operation becomes: usual threshold assumption that up foservers may fail.

. . _ . Then, the quorum syster¥ = {Q C U : |Q| = [} is
Read. For a client to regd a varlabl;g, it queries servers . jissemination quorum system fof with load 1 [*/*1].
to obtain a set of value/timestamp pais= {<v, t,>}ueco nl 2 0
for some quorun@). The client then discards those pairs that
are not verifiable (e.g., using an appropriate digital signaturéeexample 5.7 (Grid) Let the universe be arranged in a grid
verification algorithm) and chooses from the remaining pairsas in Example 4.8 above, and le? = {B C U : |B| = f},
the pair<v, t> with the largest timestamp. is the result of  2f + 1 < /n. Then, the quorum system
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()\:{CjUURiIL{j}C{l'”\/ﬁ}’I:f+1} B Ql

i€l

is a dissemination quorum system fof. The load of this
system is{*2vn=(f+1) +2Wf—(f 1) g

Example 5.8(Partition) Suppose that”? = {B;, ..., B},

m > 3, is a partition ofU as in Fig.3. For any collec-

tion of nonempty setsB; C B;, 1 < i < m, the f- Qs
dissemination construction of Example 5.6 on the ‘super-
elements’B; C B; (as in Example 4.8) yields a dissemi- 01
nation quorum system with a load &f[2%2]. If m = k2 -
for somek, the Grid construction of Example 5.7 achieves

a load of%. O

+ I

>

Fig. 4. O-Consistencyl and O-Consistency?2

O-Consistency2 VQ1,Q, € O VB € .7 : |(Q1NQ2)\
Bl > Q2N B|
O-Availability : VBe.Z23Qe ¢ : BNnQR=10

5.2 Opaque masking quorum systems

Masking quorums impose a requirement that clients know

the fail-prone systemz?, while there may be reasons that

clients should not be required to know this. First, it some- O

what complicates the client’s read protocol, in particular,

when no concise description o exists. Second, by reveal- Note that O-Consistencyl admits the possibility of equality

ing the failure scenarios for which the system was designed Size between@; N Q) \ B and Q2N B) U (Q2 \ Q1).

the system also reveals the failure scenarios to which it i€€quality is sufficient since, in the case that the faulty servers

vulnerable, which could be exploited by an attacker to guideteam up” with the correct but out-of-date serversjp, the

an active attack against the system. By not revealing the failvalue returned from@: N Q>) \ B will have a higher times-

prone system to clients, and indeed giving each client onlytamp than that returned by)¢ N B) U (Q2 \ Q1). Therefore,

a small fraction of the possible quorums, the system carin the case of a tie, a reader can choose the value with

somewhat obscure (though perhaps not secure in any fothe higher timestamp. It is interesting to note that a strong

mal sense) the failure scenarios to which it is vulnerablejnequality in O-Consistencyl would permit a correct imple-

especially in the absence of client collusion. mentation of a single-reader singer-writer safe variable that
In this section we describe one way to modify the mask-does not use timestamps (by taking the majority value in a

ing quorum definition of Sect. 4 to epaque i.e., to elimi-  read operation).

nate the need for clients to knowg. In the absence of the It is not difficult to verify that an opaque masking quo-

client knowing.#, the only method of which we are aware rum system enables a client to obtain the correct answer

for the client to reduce a set of replies from servers to affom the service. The write operation is implemented as de-

single reply from the service is vieoting i.e., choosing the scribed in Sect. 3, and the read operation becomes:

reply that occurs most often. In order for this reply to be the

correct one, however, we must strengthen the requirementsead. For a client to read a variable, it queries servers

on our quorum systems. Specifically, suppose that the varito obtain a set of value/timestamp paits= {<vy, t,>}ueq

able z is written with quorum@q, and that subsequently ~ for some quorun@. The client chooses the padw, t> that

is read with quorun@,. If B is the set of arbitrarily faulty —appears most often i, and if there are multiple such pairs,

servers, then@1 N Q>) \ B is the set of correct servers that the one with the highest timestamp. The value the result

possess the latest value for(see Fig.4). In order for the of the read operation.

client to obtain this value by vote, this set must be larger

than the set of faulty servers that are allowed to respond, i.e @paque masking quorum systems, combined with the access

Q2N B. Moreover, since these faulty servers can “team up”protocol described previously, provide the same semantics

with the out-of-date but correct servers in an effort to sup-as regular masking quorum systems. The proof is almost

press the write operation, the number of correct, up-to-datédentical to that for regular masking quorums.

servers that reply must be no less than the number of fault

or out-of-date servers that can reply, i. B)U . Xe_mma 5.1QA read operation that is.concurrent with no
Finally, to effectively mask failur%g bf);(rjﬁ )e (%Z\Ir? <l';\)n write operations returns the value written by the last pre-

asynchronous environment, we add the availability require-cefjing write_operation in some serialization of all preceding
ment (O-Availability). write operations.

Definition 5.9 A quorum systeng is an opague masking Below we give several examples of opaque masking quo-
quorum systenfor a fail-prone systemz if the following ~ rum systems (or just “opaque quorum systems”) and describe
properties are satisfied. their properties.

O-Consistencyl VQ1,Q2 € O VB € .72 1 |(Q1NQ2) \ Example 5.11(f-opaqu@ Suppose that#z = {B C U :
B| > |(Q:2NnB)u(Q2\ Q) |B| = f} wheren > 5f and f > 0. Then, the quorum
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system¢ = {Q C U : |Q| = [2%:2]} is an opaque quorum > ()

Z Z w(Q;)

system for.%2, whose load ist [2%£2/]. [J uEQ uEQ1Qidu

The next theorem proves a resilience bound for opaque quo- = Z Z w(Qi)
rum systems. Qi uweEQNQ;
Theorem 5.12Suppose that? = {B C U : |B| = f}. There > @w(@)
exists an opaque quorum system fat iff n > 5f. Qi

Proof. That n > 5f is sufficient is already demonstrated = |Q721‘

in Example 5.11 above. Now suppose tiatis an opaque

quorum system forz?. Fix any Q1 € ¢ such that|Q;| < Therefore, there must be some serverin that suffers a

n — f (Q1 exists by O-Availability); note thatQ;| > f  load at least. O

by O-Consistency2. ChoosB; C Q1, |Bi| = f, and some ) )

Q> € ¢ such that), C U\ By (Q exists by O-Availability). We now present a generic construction of an opaque
Then|Q:NQ2| < n—2f. By O-Consistency2Q:NQ,| > f, ~ quorum system for = {0} and increasingly large universe
and therefore there is soni® € .7 such thatB, C Q1NQ,.  Sizesn, that has a load that tends foasn grows. We give

Then this construction primarily to show that in at least some cases
the lower bound of% is tight; due to the requirement that
n—3f > 1Q2NQ1| — |By| .7 = {0}, this construction is not of practical use for coping
= (Q2N Q1) \ B with Byzantine failures.
2 @1\ Q2) U (Q1N B2 1) Example 5.15Suppose that the universe of serverdjis
= Q1 \ Q2| + B2 {us,...,u,} wheren = 2¢ for some¢ > 2, and that# =
> |Bi| + | B2 {0}. Consider thex x n Hadamard matrix{ (¢), constructed
= 2f recursively as follows:

Where (1) holds by O-Consistencyl. Therefore, we haveH(l) = [_1 _1]
n>5f 0 -11
H(k—-1) Hk-1)

Example 5.13(Partition) Suppose that? = { B, ..., Ba }, H(k) = {H(k C ) —H(k - 1)

k > 1, is a partition of/ Whereﬁ,; #(@foralls, 1<i<3k.
Choose any collection of set8; C B;, 1 < < 3k, such  H(¢) has the property that (¢)H(¢)” = nl, where[ is
that|B;| = ¢ for a fixed constant > 0. Then, thef—opague the n x n identity matrix. Using well-known inductive ar-
construction of Example 5.11 on the ‘super-elemefis; } guments [14, Ch. 14], it can be shown that (i) the first row
(as in Example 4.8), with universe sizé and a threshold and column consist entirely of1’s, (ii) the i-th row and
assumptionf = 1, yields an opaque quorum system with i-th column, for eachi > 2, has 1's in3 positions (and
load 21, O similarly for —1's), and (iii) any two rows (and any two
) ) columns)i,j > 2 have identical elements i§ positions,

Unlike the case for regular masking quorum systemsje  1's in 2 common positions and-1's in 2 common

an open problem is to find a technique for testing whetherpqsitions.

given a fail-prone system?, there exists an opaque quorum e treat the rows ofi(¢) as indicators of subsets 6.
system for.%2? (other than an exhaustive search of all subsetsrpat s, letQ; = {u; : H({)[i,j] = 1} be the set defined
of 27). o by thei-th row, 1 < i < n. Note thatQ; =  and that

In the constructions in Examples 5.11 and 5.13, the re+;; is not included in anyQ,. We claim that the system
sulting quorum systems exhibited loads that at best were;; = (), .. @Q,} is an opaque quorum system for.
constant as a function of. In the case of masking quorum ysing properties (i)(iii) above, we have thag;| = 2 for
systems, we were able to exhibit quorum systems whos@ach; > 2; that eachu;, i > 2, is in exactly 2 of the
load decreased as a functionsafnamely the grid quorums.  sets(,, ..., Q,; and that for anyi,j > 2, if i ;g j then
A natural question is whether there exists an opaque quUorQ, N Q| = %'. From these, the O-Consistencyl and O-

rum system for any fail-prone syster# that has load that  consistency2 requirements can be quickly verified, and a

decre_ase; as a funct.|on'mf In this section, we answer this load of% can be achieved, e.g., with a strategy that assigns
guestion in the negative: we show a lower boun(%«n‘n the equal probability to each quorurfl

load for any opaque quorum system construction, regardless
of the fail-prone system.

],k>2

Theorem 5.14The load of any opaque quorum system is at6 Faulty clients
leasts.

2 So far, we have been concerned with providing a consis-
Proof. O-Consistencyl implies that for any:, Q> € €,  tent service to a set of correct clients. In this section, we
Q1N Q2] > |Q1\ @2, and thugdQ1 N Q2| > ‘%1'. Letw be  extend our treatment to address faulty clients in addition
any strategy for the quorum systefn, and fix anyQ; € . to faulty servers. Since updates may now be generated by
Then, the total load induced hy on the elements af); is: faulty clients, we can make no assumption of self-verifying
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1. If a server receivesupdate, Q, v, t> from a clientc, if ¢t € T., and if the server has not previously received frem messageupdate, Q’, v/, t'>
where eithert’ =t andv’ # v or t’ > t, then the server send®cho, Q, v, t> to each member of).

2. If a server receives identical echo messagesho, Q, v, t> from every server irQ, then it sendsready, Q, v, t> to each member of).

3. If a server receives identical ready messageady, Q, v, t> from a setB* of servers, such thaB* ¢ B for all B € .72, then it sendsready, Q,
v, t> to every member of) if it has not done so already.

4. If a server receives identical ready messageeady, Q, v, t> from a setQ~ of servers, such that for somé € .2, Q— = Q \ B, then (i) if t is
greater than the timestamp it currently holds, then it updates its variable and timestarapde, respectively, and (ii) regardless of whether it updates
the variable and timestamp, it sends an acknowledgment messagehiereT, > t.

Fig. 5. An update protocol

data, and thus use masking quorum systems (Sect. 4) to inbefinition 6.1 We say that a serveteliversan update<v, t>
plement the service. We focus on ensuring the consistencwhen it receivesready, @, v, t> from each server in the set
of the data stored at the replicated service as seen by corre@~ = @ \ B for some fail-prone seB (step 4 of the update
clients only. protocol in Fig.5). O

A difficulty in handling faulty clients is that a faulty ) ) ) )
writer might send different updates to different servers and, e now say that a write operation that writeswith
may fail to contact a full quorum. We therefore modify the timestampt begins when the first correct server receives
write protocol to prevent clients from leaving the service in <update, @, v,t>, and ends when all correct servers in some
an inconsistent state, and to guarantee that updates propag&éerum have delivered the update. Note that by this defini-
to (at least) a full quorum. We maintain availability of the 0N, & write operation by a faulty client could last arbitrar-
service despite the possibly malicious behavior by any numily 1ong, and could overlap other writes by the same client,
ber of clients, so that a correct client can always complete Alevertheless, carrying over the remainder of the precedence
write operation with as little as one available quorum. definition, we have that the write protocol together with the

The treatment here provides a single-writer multi-readef!Pdate protocol in Fig. 5 implement a single-writer multi-
safe variable semantics (ignoring reads by faulty clients)reader safe variable:
Since the initial conference publication of this work [23],
single-writer objects with stronger semantics in the case ot
faulty clients have been constructed using Byzantine quos
rums and have been used to solve the distributed consens
problem [24]. Other work has extended the treatment her
to provide multi-writer variables [25]. An alternative and To prove this lemma, we need the following properties of
general correctness condition for shared objects accessed loyir protocol:
faulty clients has been developed in [26], which our protocol . .
here also satisfies. For brevity, however, here we continué€mma 6.3 A correct server deliverscw, > only if some
in the framework of the previous sections. correct server previously receivedipdate, Q, v, t>.

The write protocol performed by a client is changed in Proof. To deliver <v,t>, a correct server must receive a

that_ a writer computes the timestamp locally, without qon-ready message from some correct server. Moreover, the first
sulting the servers, and in that it denotes the quorum it at-

; .<ready, ), v, t> message from a correct server is sent onl
tempts to access in the update request. We replace the wn%éte; >|/t %cgive%echo % v.t> from each member of) y
operation of Sect. 3 by the following: e '

Since, a correct member sendscho, @, v, t> only if it
first receives<update, Q, v, t>, this proves the lemmal

emma 6.2 A correct process’ read operation that is con-
urrent with no write operations returns the value written by
he last preceding write operation in some serialization of all
receding write operations.

Write. For a cliente to write the valuey, it chooses a times-
tampt € T, greater than any value it has chosen before, and emma 6.4 (Agreemeny If a correct server deliversw, t>
then performs the following two steps: (i) it chooses a quo-and a correct server deliversy’, t>, thenv = v'.

rum @ and sends an update messaggdate, Q,v,t> to

each server i), and (ii) if after some timeout period, it has Proof. As argued in the previous lemma, for a correct server

not received an acknowledgement from every servefjn to deliver<v,¢>, <echo, Q, v, t> must have been sent by
it repeats (i) (and (ii)). all servers inQ. Similarly, <echo, Q’, v/, ©> must have been

sent by all servers id)’. Since every two quorums intersect

Every server that receives apdate message from a in (at least) one correct server, and since any correct server
client engages in an “update” protocol to guarantee unique?end$<60h0,/*, 0, t> for at most one value, v must be
ness of the value associated with a timestamp and its propadentical tov’. [J
gation to a full quorum. The protocol is presented in Fig. 5. . i

In order to argue correctness for this protocol, we have toprOOf of Lemma 6.2Let V' denote the set of write oper

. ; .—ations preceding the read. Note that by Lemma 6.4, any
adapF the definition of operation precedence anq Operatlo(}alue/timestamp pair itV is well defined, i.e., the same
duration to allow for the behavior of a faulty client. The PR

. o . - value corresponds to any timestamp at all correct servers
reason is that it is unclear how to define when an operatio P y P

by a faulty client begins or ends, as the client can behavg-hat deliver it. By definition, every write i} was deliv-

outside the specification of any protocol. We make use Ofered to a full quorum, and by assumption and Lemma 6.3,
€ specit i yPp ' no correct server has delivered any write outdile There-
the following terminology:

fore, by the construction of masking quorum systems, the
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read operation will return the value written in the write op- systems prone to Byzantine failures. We also explored two
eration inW with the highest timestamp. So, it suffices to variations of our quorum systems, namdigseminatiorand
argue that there is a serialization of the writedlinin which opaque maskinguorums, and for all of these classes of quo-
this write operation appears last, or in other words, that thisums we provided various constructions and analyzed the
write operation precedes no other write operatioWinThis  load they impose on the system.
results, however, from the fact that there is a single writer ~ Our work leaves a number of intriguing open challenges
and that servers echo an update request only if its timestam@nd directions for future work. One is to characterize the
is higher than the one they have in store, and so any lateaverage performance of our quorum constructions and their
write operation has a higher timestanip. load in less-than-ideal scenarios, e.g., when failures occur.
Also, in this work we described only quorum systems that
In addition, we argue liveness and completeness of our proare uniform, in the sense that any quorum is possible for both

tocol as follows:

Lemma 6.5(Propagatiohlf a correct server deliversv, t>,
then eventually there exists a quord@ne ¢ such that every
correct server inQ) delivers<uv, t>.

To prove this lemma, we make use of the following fact:

Lemma 6.6If ¢ is a masking quorum system over a uni-
verseU with respect to a fail-prone syster®?, thenv@ <
(/' NBi1,B2,Bs € .7,Q < B1UB>U Ba.

Proof. Assume otherwise for a contradiction, i.e., that there is
aQ € ¢ and By, B,, Bs € .77 such that) C B;UB,U Ba.

By M-Availability, there existsQ’ € &7, Q' N By = (. Then,
QNQ’ C B,UBzand thus@QNQ’)\ B, C Bs, contradicting
M-Consistency[

Proof of Lemma 6.5According to the protocol, the correct
server that deliveredwv, t> received a messageeady, Q,

v, t> from each server i)~ = @\ B for someQ € ¢ and
B € .%. Since, for some3’ € .77, (at least) all the members
in @~ \ B’ are correct, every correct member@freceives
<ready, @, v, t> from each of the members &f* = Q~\ B’.
SinceVB" € .22, Q~\ B’ € B"” (by Lemma 6.6), theeady
messages fronB* cause each correct member®@fto send
such aready message. Consequentkyy, t> is delivered by
all of the correct members @p. O

Lemma 6.7 (Validity) If a correct clientc sends<update, @,
v, t> to every server ir) and all servers inQ) are correct,
then eventually a correct server delivess, t>.

Proof. Since both the client and all of the membergpare
correct,<update, ), v, t> will be received andechoed by
every member ir). Consequently, all the servers ¢ will

send<ready, @, v, t> messages to the members@f and
will eventually deliver<wv, t>. [

7 Conclusions

read and write operations. In practice it may be beneficial
to employ quorum systems with distinguishre@d quorums
andwrite quorums with consistency requirements imposed
only between pairs consisting of at least one write quorum.
Although this does not seem to improve our lower bounds on
the overall load that can be achieved, it may allow greater
flexibility in trading between the availability of reads and
writes.
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