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Abstract

Replicated services accessed via quorurmcnable each access
to be performed at only a subset (quorum) of the servers,
and achieve consistency across accesses by requiring any two
quorums to intersect. Recently, bmasking quorum systems,
whose intersections contain at least 2b+l servers, have been
proposed to construct replicated services tolerant of barbi-
trary (Bymntine) server failures. In this paper we consider
a hybrid fault model allowing benign failures in addition to
the Byzantine ones. We present four novel constructions for
bmasking quorum systems in this model, each of which has
optimal load (the probability of access of the busiest server)
or optimal availability (probabllit y of some quorum surviv-
ing failures). To show optimalit y we also prove lower bounds
on the load and availabilityy of any bmasking quorum system
in this model.

1 Introduction

Quorum systems are well known tools for increasing the effi-
ciency of replicated services, as well as their availabllit y when
servers may fail benignly. A quorum system is a set of subsets
(quorums) of servers, every pair of which intersect. Quorum
systems enable each client operation to be performed only
at a quorum of the servers, while the intersection property
makes it possible to preserve consistency among operations
at the service.

Quorum systems work well for environments where servers
may fail benignly, However, when servers may suffer ar-
bitrary (Byzantine) failures, the intersection property does
not suffice for maintaining consist ency; two quorums may in-
tersect in a subset containing faulty servers only, who may
deviate arbitrarily and undetectable from their aasigned pro-
tocol. Malkhi end Reiter thus introduced masking quorums
systems [MR97], in which each pair of quorums intersects in
sufficiently many servers to mask out the behavior of faulty
servers. More precisely, a b-maaking quorum system is one in
which any two quorums intersect in 2b+ 1 servers, which suf-
fices to ensure consistency in the system if at most b servers
sufTer Byzantine failures.

In this paper we develop four new constructions for b
masking quorum systems. For the first time in this cent ext,
we distinguish between masking Byzantine fauks and sur-
viving a possibly larger number of benign faults. Our sys-
tems remain available in the face of any ~ crashes, where
~ maybe significantly larger than b (such a system is called
~-resilient). In addition} our constmctions demonstrate opti-
mality (ignoring constants) in two widely accepted measures
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of quorum systems, namely load and crash probability. The
load (C), a measure of best-case performance of the quorum
system, is the probabilityy wit h which the busiest server is
accessed under the best possible strategy for accessing quo-
rums. The crash probabllit y (F“) is the probabllit y, assuming
that each server crashes with probability p, that all quorums
in the system will contain at least one crashed server (and
thus will be unavailable). The crash probability is en even
more refined measure of availab~hy than f, as a good sys-
tem will tolerate many ftilure configurations with more than
f crashes. In proving optimality of our constructions, we
prove new lower bounds for the load end crash probabllit y
of masking quorum 8ystems.

The techniques for achieving our constructions are of in-
terest in themselves. TWO of the constructions are achieved
using a boosting technique, which can transform any regular
(i.e., benign fault-tolerant) quorum system into a masking
quorum system of an appropriately larger system. Thus, it
makes all known quorum construct iom available for Byzan-
tine environments (of appropriate sizes). In the analysis of
one of our best systems we employ strong results from per-
colation theory.

The properties of our quorum systems are summarized
in Table 1. Three of our systems—M-Grid, boost FPP, and
M-Path—are the first systems to demonstrate optimal load
for bmasking quorum systems. M-Path does so simr.dta-
neously with opt imel crash probabllit y for its resilience ~,
which the fourth (RT) also demonstrates.

The rest of this paper is structured as follows. We review
related work and preliminary definitions in Sections 2 and 3,
respectively. In Section 4 we prove bounds on the load and
crash failure probabllit y for bmasking quorum systems and
introduce quorum composition. ln Sections 5-7 we describe
our new constructions. We conclude in Section 8.

2 Related work

Our work borrows from extensive prior work in benignly
fault-tolerant quorum systems (e.g., [G1f79, Tho79, Mae85,
GB85, Hcr86, BG87, ET89, AE91r CAA92, NW94, PW97b]).
The notion of availability we use here (crash probability) is
well known in reliability theory [BP75] and has been applied
extensively in the analysis of quorum systems (cf. [BG87,
PW95, PW97a] and the references therein). The load of a
quorum system was first defined and analyzed in [NW94J,
which proved a lower bound of fl (~) on the load of any

quorum system (and, a fortiori, any masking quorum sys-
tem) over n servers. In proving load-optimelity of our con-

structions, we generalize this lower bound to fl( ~) for b
masking quorum systems.

Grids, which form the basis for our M-Grid constmction,
were proposed in [Mae85, CAA92, KRS93, MR97]. The tech-
nique of quorum composition, which we use in our RT and
boostFPP constructions, has been studied in [MP92, NM92,
Nei92] under various names such as “coterie join” and “re-
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System b< I f L FP
Threshold rMR971 I n/4 O(n – b) I 112 + O(bln~ I CXD(–~( f)) “ I-. —--....— -.——.. J 1 ! \
Grid [MR97] n/3 O(~n – b) rO(b/@) +1

—

I bo~tFPP I n14 I 0(%

n-?w

M-Grid fi/2 O(fi-ti) O(~b/n) t +1
+00

RT: O(n”) O(b) n ‘p exp~–fl(~)) ●

A) O(~b/n) t exp(–fl(b - log(n/b)))

M-Path (1 – O(l))fi I O(fi– @ O(~b/n) t exp(–tl(f)) “

t Optimal for k-masking systems.

“ Optimal for ~-resilient syctems.

~ E.g., a = 0.5 and ~ s 0.21 for RT(4, 3).

Table 1: Constructions in this paper (n = number of servers).

cursive majority”. Our M-Path construction generalises the
system of [WB92], coupled with the analysis of the Paths
construction of [NW94], and the recent system of [Baz96].

Several constructions of masking quorum systems were
given in [MR97] for a variety of failure models. For the model
we consider here—i e., any b servers may experience Bymm-
tine failures-that work gave two constructions. The prop-
erties of these constructions are included in the preceding
table for comparison with our results.

Hybrid failure models have been considered in other works
(e.g., [LR93, LR94, RB94]).

3 Preliminaries

We assume a uniuer~e U of servers, IUI = n, over which our
quorum systems will be constructed, Servers that obey their
specifications are corrsct. A faulty server, however, may de-
viate from its specification arbitrarily. We assume that up
to b servers may fail arbkrarily and that 4b < n, since this
is necessary for a &masking quorum system to exist [MR97].
Beginning in Section 3.2.2, we will also distinguish benign
(crash) failures as a particular failure of interest, end in gen-
eral there may be more than b such failures.

3.1 Quorum systems

Definition 3.1 A quorum system Q ~ 2U is a collection of
mbaeta of U, each pair of which intersect. Each Q E Q i~
called a quorum.

We use the following notation. The cardinality of the
smallest quorum in Q is denoted by c(Q) = min{lQl : Q c
Q}. The size of the smallest intersection between any two
quorums is denoted by ZS(Q) = min{[Q n RI : Q, R E Q}.
The degree of an element i E U in a quorum system Q is the
number of quorums that contain i: deg(i) = I{Q E Q : i E
Q}l.

Definition 3.2 A quorum .qptern Q is (s, d)-fair if IQl = s
for all Q ~ Q and deg(i) = d for aii i E U. Q is called fair
if it is (s, d)-fair for some a and d.

Definition 3.3 A aet T is a transversal of a quorum nyl-
tem Q if T ~ Q # 0 for every Q ~ Q. The cardinality of
the smallest transversal is denoted by ~7(Q) = min{lTl :

T is a transversal of Q}.

Regular quorum systems, with 2X(Q) = 1, are insuffi-
cient to guarantee consistency in case of Byzantine failures.

Malkbi and Reiter [MR97] defined several varieties of quo-
rum systems for Byzantine environments, which are suitable
for different types of services. In this paper we focus on
ma~king quorum ayatema.

Definition 3.4 [MR97] The resiliency f of a quorum system
Q is the lawe~t k ~uch that for eue~ set K c U, IKI = k,
there eziste Q G Q such that K n Q = 0.

Remark: The resiliency of any quorum system Q is ~ =
MT(Q) – 1.

Definition 3.5 [MR97] A quorum sy~tem Q ia a bmesking
quorum system if it ia resilient to f > b failures, and obeys
the foilowing consistency requirement:

VQl,Q~CQ:lQlnQ212Zb+l.

Remark: hformally, if we view the service es a shared vari-
able which is updated and read by the clients, then the re-
siliency requirement of Definition 3.4 ensures that no set of
b ~ f faulty servers will be able to block update opera-
tions (e.g., by causing every update transection to abort).
The consistency requirement of Definition 3.5 ensures that
read operations can mask out any fault y behavior of up to b
servers, provided that the algorithm given in [MR97] is used,

Lemma 3.8 Let Q be a quorum agntem. Then Q in b-maaking
if both the following conditions hold:

1. MT(Q) zb+l,

2. ZS(Q) ~ 2b+ 1.

Proof: Assume that Mr( Q) > b+ 1. To see that Q is resilient
to b failures, note that if there exists some K such that K n
Q # 0 for all Q E Q, then K is a transversal. By the
minimality we have IKI ~ b+ 1, and we are done. Condition 2
is obvious. •l

Corollary 3,7 Let Q be a quorum system, and let
b = min{MT(Q) – l,z~}. Then Q is b-masking.

3.2 Measures

The goal of using quorum systems is to increase the avail-
ability of replicated services and decrease their access costs.
A natural question is how well any particular quorum sys-
tem achieves these goals, and moreover, how well it compares
with other quorum systems. Several measures will be of in-
terest to us.
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3.2.1 Load

A measure of the inherent performance of a quorum system is
its load. Naor and Wool define the load of a quorum system
as the frequency of accessing the busiest server using the best
possible strategy [NW94]. More precisely, given a quorum
system Q, an access strategy w is a probability distribution
on the elements of Q; i.e., ~Q~Q w(Q) = 1. The value

w(~) z O is the frequency of choosing quorum Q when the
service is accessed. The load is then defined as follows:

Definition 3.6 Let a #trotegy w be given for a quorum sys-
tem Q = {Ql, . . . . Q~} over a universe U. For an element
u ~ U, the load induced by w on u is l~(u) = ~Qiau w(Qi).
The load induced by a strategy w on a quorum a~atem Q is
G(Q) = maxU~u{lW (u)}. The system load on a quorum
sy~tem Q i~ L(Q) = minW{& (Q)}, where the minimum is
taken over all atrategiea.

We reiterate that the load is a best case definition. The
load of the quorum system will be achieved only if an optimal
access strategy is used, and only in the case that no failures
occur. A strength of this defidtion is that the load is a
property of a quomm system, and not of the protocol using
it.

Recall that c(Q) denotes the cardinality of the smallest
quorum in Q. The following result will be useful to us in the

sequel (recall Definition 3.2).

Proposition 3.9 [NW94] LetQ be a fair quorum system.
Then L(Q) = c(Q)/n.

3.2.2 Availability

By definition a bmasking quorum system can mask up to b
arbitrary (Byzantine) failures. However, such a system may
be resiIient to more benign fdures. By benign failures we
mean any failures that render a server unresponsive, which
we refer to as craahes to distinguish them from Byzantine
failures.

The resiliency f of a quorum system provides one measure
of how many crash failures a quorum system is guamnteed to

survive, and indeed this measure has been used in the past
to differentiate among quorum systems [BG86]. However, it
is possible that an f-resilient quorum system, though vul-
nerable to a few failure configurateions of ~ + 1 failures, can
survive many contlgurations of more than ~ failures. One
way to measure this property of a quorum system is to as-
sume that each server crashes independcntl y with probabllit y
p and then to determine the probability FP that some qu-
mm survives with no faulty members. This is known as crash
probability and is formally defined as follows:

Definition 3.10 A##ume that each server in the system cra-

ahes independently with probabilitpp. For every quorum Q c
Q iet &Q be the event that Q is hit, i.e., at least one element
i G Q has cmuhed. Let cra#h(Q) be the event that all the
quorums Q E Q were hit, i.e., craah(~) = AQEQ ~Q. Then
the sy~tem craJh probability is F,(Q) = P(cradL(Q)).

We would like FP to be as small as possible. A desirable

asymptotic behavior of F’p is that Fp + O when n + cm for
all p < l/2, and such an FP is called Condorcet (after the
Condorcet Jury Theorem [Con]).

4 Building Blocks

In this section, we prove several theorems which will be our
basic tools in the sequel. Fh-st we prove lower bounds on the
load and availability of &masking quorum systems, against
which we measure all our new constructions. Then we prove
the properties of a quorum composition technique, which we
later use extensively.

4.1 The Iocd and availability of masking quorum systems

We begin by establishing a lower bound on the load of b
masking quorum systems, thus tightening the lower bound
on general quorum systems [NW94] as presented in [MR97].

Theorem 4.1 Let Q be a b-maaking quorum ag~tem. Then

L(Q) 2 nulz{~, ~}.

Proof: Let w be any strategy for the quorum system Q, and
fi QI E Q such that IQI I = c(Q). Summing the loads in-
duced by w on all the elements of Ql, and using the fact that
any two quorums have at least 2b + 1 elements in common,
we obtain:

~ ~(2b+ l)W(Qi) = 2b+ 1.

Q<

Therefore, there exists some element in QI that suHers a load
of at least ~.

IQ, I
Similarly, summing the total load induced by w on all

of the elements of the universe, and using the minimality of
c(Q), we get:

Therefore, there exists some element in U that stiers a load
of at least *. El

Corollary 4.2 Let Q be a b-maaking quorum Jyatem. Then
L(Q) > ~, and equalitg holds if c(Q) = ~~ri.
•1

Remark: Corollary 4.2 shows that the threshold construc-
tion of [MR97] in fact has optimal load when b = fl(n). E.g.,
when b z n/4 the obtained load is x 0.75, but for such sys-
tems we can only hope for a constant load ofs l/ti = 0.707.
However the load of the threshold construction is always
~ 1/2, which is far from optimal for smaller values of b.

On the other hand, the grid-based construction of [MR97]
does not have optimal load. It has quorums of size O(b@)
and load of roughly 2b/@. In the sequel we show systems
which significantly improve this: some of our new constmc-
tions have quorums of size O(w) and optimal load.

Our next propositions show lower bounds on the crash
probability FP in terms of MT(Q) and b.
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Proposition 4.3 Let Q be a quorum system. Then FP(Q) ~
~M~(QJ = ~~tl for any p E [% 1].

PrOOj: Consider a minimal transversal T with ITI = MT(Q).
If all the elements of T crash then every quorum contains a
crashed element, so F’(Q) ~ PMT( ~). ❑

Proposition 4.4 Let Q be a b-masking quorum uy#tem. Then
FP(Q) ~ pC(QJ-zb for any p ● [0, 1].

Proof: Let Q E Q be a minimal quorum with IQI = c(Q),
and consider Z C Q, 121 = 2b. Since Q is bmasking then
lRn Qlz2b+l forany RSQ, andsol(Q\2?)n Rl >1
and Q \ Z is a transversal. Therefore MT(Q) < C(Q) – 2b,
which we plug into Proposition 4.3. ❑

The next proposition is less general than Proposition 4.4,
however it is applicable for most of our constructions and it
gives a much tighter bound.

Proposition 4.!5 Let Q be a b-maaking quorum system such
that MT(Q) s (ZS(Q) + 1)/2. Then FP(Q) > Pb+l for anv
PEIO,l].

Proof: If M7(Q) < (ZS(Q) + 1)/2 then from Corollary 3.7
we have that b + 1 = MT(Q), which again we plug into
Proposition 4.3. ❑

4.2 Quorum system composition

Quorum system composition is a well known technique for
building new systems out of existing components. We com-
pose a quorum system S over another system 7? by replacing
each element of S with a distinct copy of ??. In other words,
when element i is used in a quorum S E S we replace it with
a complete quorum from the i’th copy of 72. Using the termi-
nology of reliabMty theory, the system S o ‘R has a modular
decomposition where each module is a copy of 7?. Formally:

Definition 4.6 Let S and 7? be two quorum systemn, over
universes of size.! ns and nli, re.?pectively. Let RI, . . . . %~
be ns copies of R over disjoint universes. Then the compo-
sition of S over 7t i8

SO’R=
{u }

Ri:S~S, Ri~Riforalli~S ~

The next theorem summarizes the properties of quorum com-
position.

Theorem 4.7 Let S and 7? be two quorum ayrntema, and let

Q= S07?. Then

● The universe 8ize in na = nSnR.

● The minimal quorum size is c(Q) = c(S) C(X).

● The minimal intersection size is ZS(Q) = ZS(S)ZS(7?).

● The minimal tranaveraal mize in

M7(Q) = MT(S) M7(7?).

● The load is .C(Q) = C(S) Z(7?).

● Denote the craah probabilit~ functions of S and 7? by
s(p) = FP(S) and r(p) = FP(R). Then FP(Q) =

4,(P)).

Figure 1: The multi-grid construction, n = 7 x 7, b = 3,
with one quorum Bhaded.

Proof Sketch: The behavior of the combinatorial parameters
c(Q), ~s(Q) and MT(Q) is obvious. ‘The strategy which
achieves the optimal load for Q is the following: pick a quo-
rum S E S using the optimal strategy for S. Then for each
element i in this S, pick a quorum R; E R-i using the opti-
mal strategy for (the i’th copy of) 72. It is easy to see that
the composite strategy is indeed optimal. The behavior of
FP(Q) is standard in reliability theory (cf. [BP75]). ❑

The multiplicative behavior of the combinatorial param-
eters in composing quorum systems provides a powerfid tool
for “boosting” existing constructions into larger systems with
possibly improved characteristics. Below, we use quorum
composition in two cases, and demonstrate that this tech-
nique yields improved constructions over their basic building
blocks, for appropriately larger system sizes. In particular, in
Section 6 we show a composition that allows us to transform
any regular quorum construction into a (larger) h masking
quorum system.

5 Simple systems

In this section we show two types of constructions, the multi-
grid (denoted M-Grid) and the recursive threshold (RT).
These systems significantly improve upon the original con-
structions of [MR97], however both are still suboptimal in
some parameter: M-Grid has optimal load but can mask
only up to b = O(@) failures and has poor crash probabil-
ity; and RT can mask up to b = O(n) failures and has near
optimal crash probabilityy, but has suboptimal load.

In Sections 6 and 7 we present systems which are superior
to the M-Grid and RT. Nonetheless, we feel that the simplic-
ity of the M-Grid and RT syst ems, and the fact that they are
suitable for very small universe sizes, are what makes them
appealing.

5.1 A multi-grid

We begin with the M-Grid system, which achieves an optimal
load among bmasking quorum systems, where b ~ (X –
1)/2. The idea of the construction is as follows. Arrange
the elements in a W x @ grid. A quorum in a multi-grid
consists of any choice of ~ rows and ~ coiumns, as
shown in Figure 1. Formally, denote the rows and columns
of the grid by Ri and Ci, respectively, where 1 S’ i < W.
Then, the quorum system is
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Figure 2: An RT(4, 3) system of depth h = 2, with one
quorum shaded.

M-Grid(b) =

{
Ucj”u )Ri:J,I~{l...fi},lJl=lI[=~ .
jEJ ieI

Proposition 5.1 The multi-grid M-Grid(b) is a b-masking
quorum system for b < (K - 1)/2.

Prooj: Conoider two quorums R, S E M-Grid(b). If they have
either a row or a column in common, then IR n S1 Z X >
2b + 1 and we are done. Otherwise the intersection of S’s
columns with R’s rows is disjoint from the intersection of R’s
columns with S’s rows, so IRrl S! ~ 2~~i~ > 2b+ 1.
Therefore consistency holds.

Resiliency holds since f = MT(M-Grid(b)) – 1 = fi –
~ ~ b. Therefore M~(M-Grid(b)) ~ b+ 1, and Lemma
3.6 finishes the proof.

Proposition 5.2 L{M-Grid(b)) s 2@.

Proot: Skce M-Grid(b) is fair we can use Proposition 3.9 to
get C(M-Grid(b)) = c(M-Grid(b))/n. ❑

Remark: The load of M-Grid(b) is within a factor of W
from the optimal load which can be achieved for b x fi/2.

A disadvantage of the M-Grid system is its poor asymp-
totic crash probability. If crashes occur with some constant
probability p then any conilguration of crashes with at least
one crash per row disables the system. Therefore, as shown
by [KC91, WO096],

F’P(M-Grid) ~ (1 – (1 – p)~)fi 4 1.
n+m

5.2 Recursive threshold systems

A recursive threshold system RT(k, f) of depth his built by
taking a simple building block, which is an t-of-k threshold
system (with k > 1 > k/2), and recursively composing it
over itself to depth h. In the sequel, we often omit the depth
parameter h when it has no effect on the discussion. The
RT systems generalize the recursive majority constructions
of [MP92], the HQS system of [Kum91] is em RT(3, 2) system,
and in fact the threshold system of [MR97] can be viewed as
a trivial RT(4b + 1, 3b + 1) system with depth h = 1. As
an example throughout this section we will use the RT(4, 3)
system, depicted in Figure 2.

Proposition 5.3 An RT(k, 4) system of depth h ig a fair

quorum qptern, with n = kh elements, quorums of size
c(RT(k, ~)) = fh, intersection size of ZS(RT(k, /)) = (21 –
k)h, and minimal transversals o~ size M’T(RT(k,f)) = (k -
l+l)h.

Prooj: The basic l-of-k system is symmetric (and therefore
fair), with c(l-of-k) = /, MT(&of-k) = k – -1 + 1, end
ZS(&of-k) = 2f – k. The combinatorial parameters are com-
puted by activating Theorem 4.7 h times, and the composi-
tion preserves the fairness. 0

Plugging this into Corollary 3.7 we obtain

Corollary s.4 An RT(k, .C) system (of any depth) is a b-
manking quorum sgatem for

b = min{(nl”sk(z~-k) – 1)/2, nlOsk(k-t+’) – 1}. ❑

In the 3-of-4 example we have 3X(3-of-4) = MT(3-of-4) =
2 and c(3-of-4) = 3. Therefore for the whole system (to
depth log, n) we get c(RT(4, 3)) = n]”s’s = n0”7s, with
ZS(RT(4, 3)) = MT(RT(4, 3)) = W and thus b = (K –
1)/2. Note that the basic 3-of-4 system is not even l-masking
since intersections of size 2 are too small, however already
from h = 2 (i.e., n = 16) we obtain a masking system.

Proposition 5.5 The load f,(RT(k, t)) = n-tl-l”cb’).

Proof: Since RT(k, t) is fair we carI use Proposition 3.9 to get
L(RT(k, k)) = .(RT(k,l))/n. ❑

Remark: In general the load is suboptimal for this con-
struction. For instance, in the RT(4, 3) system we obtain
C(RT(4, 3)) = n-o’zl. However for b = (A – 1)/2 we could

hope for a load of /_= n-o”as.

Proposition 5.6 There ezida a unique critical probability
O <p. < 1/2 for which

Proof: Let g(p) be the crash probability function of the l-of-k
system and let F’(h) = FP(IW(k, .C)of depth h) denote the
crash probability for the RT(k, t) system of depth h. Then
F’(h) obeys the recurrence

F’(h) = { ;!F(h - 1))’ ; ~ ~: (1)

Now g(p) is a reliability function, and therefore it is “S-
shaped” (see [BP75] ). This implies that there exists a unique
critical probability O < PC < 1 for which g~e) = PC, SUCh

that g(p) < p when p < PC and g(p) > p when p > p. (and
[PW95] shows that for quorum systems such es RT in fact
p. < 1/2). Therefore if P < P. then repeated aP@catioD
of recurrence (1) would decrease F(h) arbitrarily close to O,
and when p > pc the limit is 1. ~

proposition 5.? 1/p < 1/ (4!1) andt < k then ~’(RT(k, ~))

< e~(–fl(nl”sk(k-l+l) )), which is optimal ~or systems with
resiliency ~ = n*Ock(k-i+l).

Proof: Let g(p) and F(h) be as in the proof of Proposition 5.6.
Any configuration of at least k – .?+ 1 crashes disables the
.&of-k system, so

9(P) = jj ~)d(l -P)k-j.
j=k–1+1

By Lemma A.2 (see Appendix) we have that

()k k–1+1
9(P)< ~_lp -
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Plugging this into (1) gives that

()
I+(k-l+l)+.-+(k-ttl) h-i

F(h) < k
Jk-f+l)h

!–1

[( Hk
(h-f+ l)*

<
/–lp

If p < I/ (1~1) then the last expression decays to zero with

h, so FP(RT(k,l)) < exp(–$l(n~”~’tk-~+l))).
The lower bound of Proposition 4.3 shows that

F’P(RT(k, /)) ~ p“’”gk(’-’)’) ,

so our analysis is tight. •l

For the RT(4, 3) s~stem a direct calculation shows that
g(p) = 6P2 – BPS + 3P ~d P. = 0.Z3ZA. Therefore Proposi-
tion 5.6 guarantees that when the element crash probabilityy
is in the range p <0.2324 then FP ~ O when n -+ 00. Fiu-
thermore, when p < 1/6 then Proposition 5.7 shows that the

decay is rapid, with F“(RT(4, 3)) < (6p) ‘i, which is optimal.

6 Boosted finite projective planes

In this section we introduce a family of &masking quorum
systems, the boonted finite projective planes, which we de-
note by boostFPP. A boostFPP system is a composition
of a finite projective plane (FPP) over a threshold system
(Thresh).

The first component of a boostFPP system ie a finite
projective plane of order q (a good reference on FPP’s is
[Ha186]). It is known that FPP’s exist for q = P’ when p
is prime. Such an FPP has nF = qz + g + 1 elements, and
quorums of size c(FPP) = q + 1. This is a regular quorum
system, i.e., it has intersections of size ZS(FPP) = 1. The
minimal transversals of an FPP are of sine A4T(FPP) = q+ 1
(in fact the only transversals of this size are the quorums
themselves). The load of FPP was analyzed in [NW94] and
shown to be L(FPP) = ~ X I/&, which is optimal for
regular quorum systems.

The second component of a boostFPP is a Thresh system,
with nT = 4b+ 1 elements and a threshold of 3b+ 1. This is a
b-masking quorum system in itself, with XS(Thresh) = 2b+l,
A4T(Thresh) = b + 1 and a load of L(Thresh) = 3/4.

Proposition 6.1 Let boostFPP(q, b) =
FPP(q) o Thresh(3b + 1 of 4b + 1). ‘Then the composed sys-
tem has n = (4b + l)(qa + q + 1) elements, with quorums
of size c(boostFPP(q, b)) = (3b + 1)(q + 1), intersections of
size XS(boostFPP(q, b)) = 2b + 1 and minimal tranmer~ah
of size MT(boostFPP(q, b)) = (b + l)(q + 1). !l’herefom
boostFPP(q, b) ia a b-masking quorum #yStem.

Prooj: We obtain the combinatorial parameters by plugging
the values of the component systems into Theorem 4.7. By
Corollary 3.7 we have that the system can mask min{(b +
l)(g + 1) – l, b)} = b failures. ❑

Proposition 6.2 Z(boostFPP(q, b)) N ~, which is optimal

for b-maaking quorum s~atem~ with n z 4bq2 elements.

Proof: boostFPP(q, b) is a fair quorum system since both its
components are fair, so by Proposition 3.9 we have

L(boostFPP(q, b)) =
c(boostFPP (q, b))

n
(3b+ l)(q+ 1) 3——

(4b + l)(q’ + q + 1)= ~“

On the other hand, for bmasking systems with n s 4bq2
elements the lower bound of Theorem 4.1 gives

Note that the optimality of the load holds for any choice
of q and b. Therefore when the number of servers (or el-
ements) increases, the boostFPP(q, b) system can scale up

using different policies while maintaining load optimality.

There are two extremal policies:

1. FIX q and increase b; then the system can mask more
failures when new servers are added, however the load
on the servers does not decrease.

2. FIX b and increase q; then the load decreases when new
servers are added, but the number of failures that the
system can mask remains unchanged,

It is important to note that systems of arbitrarily high
resiliency can be constructed using the first policy since b
can be chosen independently of q. In particular, we can
choose b = g“ for any a >0. Then the resulting system has

*
nx4bq2=4b* , and so b x (~)*, thus asymptotically
approaching the resiliency upper bound of ~.

Fhmlly we analyze the crash probability of boostFPP.
The following proposition chows that boostFPP has good
availability as long as p < 1/4.

Proposition 6.3 Ij p < 1/4 then FP(boostFPP(q, b)) g
exp(–fl(b – log g)).

Proof: We start by estimating FP(Thresh). Let #cmJhed
denote the number of crashed elements in a universe of size
4b+l. Let~=~– p,thus 0<~<1 when p< l/4.
Then using the Chernoff bound we obtain

F“(Thresh) = P(#cmshed ~ b +1)

= lP’(#crashed ~ (p+ ~)(4b + 1))

se –2(4b+l)# ~ e–b(l-4)#/2 (2)

Next we estimate FP(FPP). Let QO E FPP be some quorum.
Then

FP(FPP) = 1 – P(3Q E FPP : Q is alive) s

1 – P(QO is alive) = 1 – (1 –p)q+’ ~ (q+ l)p. (3)

Using Theorem 4.7 we plug (2) into (3) to obtain

Fp(boostFPP(q, b)) s (g+l)e-b(l-4p)’12 = e-n(b- ‘“sq). ❑

Remarks:

● In general the crash probability is not optimal; since
MT(boostFPP(q, b)) N bq then the lower bound of
Proposition 4.3 shows we could hope for a crash prob-
abilityy of exp(– 13(bq)). Nevertheless if q is constant
then F’p is asymptotically optimal, and if b > q then
the gap between the upper and lower bounds is small.
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Figure 3: A multi-path construction on a 9 x 9 grid,
b=4, with onequorumahaded.

● The final estimate we get for F“ (boostFPP ) seems poor,
as the bound is higher than the crash probability of the
Thresh components. However this is not an artifact of
over-estimates in our analysis. Rather, it is a result
of the property that the crash probabilityy of FPP is
higher than p, and in fact FP(FPP) ~ 1 as shown by
[RST92, WooM]. In this light it is not surprhing that
boostFPP does not have an optimal crash probability.

t The requirement p < 1/4 is essential for this system; if
p > 1/4 then in fact F’(boostFPP) + 1 as n ~ 00.

7 The multi-path system

Here we introduce the construction we call the Multi-Path
system, denoted by M-Path. The elements of this system are
the vertices of a triangulated square A x A grid, and a
quorum consists of i= disjoint paths from the left side
to the right side of the grid (LR paths) and <~ disjoint
top-bottom (TB) paths (see F@re 3).

The M-Path system has several characteristics similar to
the basic M-Grid system of Section 5, namely an ability
to mask b = O(@ failures, and optimal load. Its major
advantage is that it also has an optimal crash probabfity
F“. Moreover, it is the only construction we have for which
FP + O as n + cm when the individual crash probability p is
arbitrarily close to 1/2. We are able to prove this behavior
of FP using results from Percolation theory [Kes82, Gri89].
Remark: The system we present here is based on a trian-
gular lattice, with elements corresponding to vertices, as in
[WB92, Bew96]. We have also constructed a second system
which is baaed cm the square lattice with elements corre-
sponding to the edges, as in [NW94]. The properties of this
second system are almost identical to those of M-Path, so we
omit it.

Proposition 7.1 M-Path(b) has minimal quorums of size

c(M-Path) s 2~m, minimal intersections of size
ZS(M-Path) ~ 2b + 1, and minimal transversals of size
A4T(M-Path) = X – ~ + 1. Therefore M-Path is a
b-ma~king quorum system for b s fi – ~nl 14.

l%aof: Let Q1, Qa E M-Path(b). Then the ~~” LR paths
of Q1 intersect the ~~ TB paths of QZ in ~ 2b + 1
elements, since the LR and TB paths are disjoint. As in
the M-Grid system we have that MT(M-Path(b)) = @ –
~ + 1, so when b ~ 6- /%a114 it follows that
M’T(M-Path(b)) ~ b + 1 and we are done. ❑

Proposition 7.2 ~(M-Path(b)) s 2 ~, which is opti-
mal.

Proof: The strategy only uses straight line LR and TB paths.
It picks ~2fi of the X rows uuiformly at random and
likewise for the columns. Clearly the load equals the proba-
bllit y of accessing some element in position i, j, which is

L(M-Path) < F’(row i chosen) + P(column j chosen)

‘ 2(%J=)’L=J
—— 2dm/~.

By Corollary 4.2 this is optimal. ❑

Proposition 7.3 FP(M-Path(b)) s exp(–il(fi – W)) for
ang p < 1/2, which is optimal for qptema with re~ilienc~

f=o(fi-~).

%oof: We use the notation PP(&) to denote the probability
of event C defined on the ~d when the individual crash
probability is p. A path is called “open” if all its elements
are alive.

Let LR be the event “there exists an open LR path in

the grid”, and let LRh be the event “there exist k open LR
paths”. A failure conjuration in M-Path(b) is one in which
either ~~ open LR paths or ~~ open TB paths do
not exist. By symmetry we have that

F’(M-Path(b)) s 2PP(LR~) = 2(1–PF(LR~)). (4)

Fix some p’ such that p < p’ < 1/2. Then by Theorem B.3
(see Appendix) we have that

~ p s-l

()
1 – Pp(LR~) < = [1 - IFPJ(LR)]. (5)Pi–p

Plugging the bound on PPJ(LR) from Theorem B.1 into (5)
and (4) yields

()

m-l

FP(M-Path(b)) s 2 ~ ~–+(P’)fi
P’-P

= Ze-wfi+(m-l)h (S)

for some function @(p’) >0. Now ~ = O(nl” ), so for
large enough n we can certainly write

F,(M-Path(b)) g exp(–fl(fi – W)).

This is optimal by Proposition 4.3. •!
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8 Conclusion

We have presented four novel constructions of b-masking quo-
rum systems. For the first time in this context, we considered
the resiliency of such systems to crash failures in addition to
their tolerance of (possibly fewer) Byzantine failures. Each
of our constructions is optimal in either its load or its crash
probability. Moreover, one of our const~ctions, namely M-

Paths, is optimal in both measures. Two of our constructions
are achieved using a novel boosting technique that makes all
known benign fault-tolerant quorum constructions available
for Byzantine environments (of appropriate sizes). In prov-
ing optimalit y of our constructions, we also contribute lower
bounds on the load and crash probability of any bmasking
quorum system.
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Appendix

A Combinatorial Lemmas

Lemma A.1 Let O < i, d ~ k be integers. Then

(’L) ()@ ‘;d.

Proof:

(Ji) _ k!cf!(k – d)! (k -d)! d!
—_

(t)
(d+i)!(k -d- i)!k! = (k -d- i)! (d+i)!

(k-d)!

()

k–d ❑

< (k-d -i)!i!= i

Lemma A.2 Let O ~ d ~ k be integers and let p E [0, 1].
Then

k

X() ();#(l-P) ’-J < : Pd.
;=’

Proof:

k

X() ()
k ($) ._k#(l -P)k-J = : P’~ @ ‘(l -P)’-’,

j=’ J

so it suffices to show that the lest sum is ~ 1. But using
Lemma A.1 we get

~ &Jj-’(l-P)k-’ = g -P’(I -P)’-d-i
d d

~ X(kid)p’-)k-d-i‘~+(l--p)l’-d=l❑
i=o

B Theorem- of Percolation Theory

In this section we list the definition and results that are
used in our analysis of the M-Path system, following [Kcs82,
Gri89] ,

The percolation model we are interested in is as follows.
Let Z be the graph of the (infinite) triangle lattice in the
plane. Assume that a vertex is closed with probability p end
open with probability 1– p, independently of other vertices.
This model is known as site percolation on the triangle lat-
tice. Another natural model, which plays a minor role in
our work, is the bond percolation model. In it the edges are
closed with probability p.

A key idea in percolation theory is that there exists a
critical probability, p., such that graphs with p < p< efilbit
qualitatively different properties than graphs with p > P..

For example, Z with p < p. has a single connected (open)
component of infinite size. When p > PC there is no such
component. For site percolation on the triangle p. = 1/2
[Kes80].

The following theorem showB that when the probability p
for a closed vertex is below the critical probability, the prob-
ability of having long open paths tends to I exponentially
fast. Recall that LR is the event “there exists an open LR
path in the fi x 4 grid”. Then [Men86] (see also [Gri89]
p. 287) implies

Theorem B.1 I/p < 1/2 then PP(LR) ~ 1 – e-+tp)fi, ~or
some +(p) >0 independent of n.

Remark: The dependence of@ on p is such that +(p) -+ O
when p -t 1/2. However for p s 1/4 we can use the estimate
of Bazzi [Baz96] which shows that PP(LR) ~ 1 – O(e–o”’fi).

Definition B.2 Let & be an event defined in the percolation
model. Then the interior of& with depth r, denoted I,(t), is
the set of all configurations in & which are Jtill in & even if
we perturb the stated of up to r vertices.

We may think of Ir (&) es the event that & occurs and is
‘stable’ with respect to changes in the states of r or fewer
vertices. The definition is useful to us in the following situa-
tion. If LR is the event “there exists en open left-right path
in a rectangle DW, then it follows that Zr(LR) is the event
“there are at least r + 1 disjoint open left-right paths in D“.

Theorem B.3 [ACC+ 83] Let & be an increasing event and
let r be a positive integer. Then

()
r

1 – Pp(Ir(E)) < * [1 – ~,’(t)l

whenever O < p < p’ < 1.

The theorem amounts to the assertion that if & is likely
to occur when the crash probabllit y is p’, then 1,(&) is likely
to OCCLWwhen the crash probability p is smeller than p’.
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