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Abstract

Distributed coordination is difficult, especially when
the system may suffer intrusions thal corrupt some
component processes. In this paper we introduce the
abstraction of a failure detector that a process can use
to (imperfectly) detect the corruption (Byzantine fail-
ure) of another process. In general, our failure detec-
tors can be unreliable, both by reporting a correct pro-
cess to be faulty or by reporting o faulty process to be
correct. However, we show that if these detectors sat-
isfy certain plausible properties, then the well-known
distributed consensus problem can be solved. We also
present a randomized protocol using failure detectors
that solves the consensus problem if either the requi-
site properties of failure detectors hold or if certain
highly probable events eventually occur. This work can
be viewed as a generalization of benign failure detectors
popular in the distributed computing literature.

1 Introduction

In this paper we consider how to defend the integrity
of a distributed system against an attacker that pene-
trates and corrupts some of its components. Primarily
we want to ensure that the composite system contin-
ues to function as intended despite the presence of cor-
rupted machines. In a stock trading application, for ex-
ample, this might mean ensuring that consistent and
timely data is displayed to users sitting at the other
correct (uncorrupted) machines in the system, or that
a transaction is consistently committed at all correct
machines. Central to achieving such integrity is dis-
tributed coordination, and the quintessential example of
a distributed coordination problem is consensus. Infor-
mally, in the consensus problem, each machine begins
with an input, and the goal is to execute a distributed
protocol by which all correct machines reach agreement
on one of the values input by some machine.
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In the distributed computing literature, failure de-
tectors have emerged as effective tools for analyzing the
behavior of distributed consensus algorithms that are
tolerant of crash faults. At each step of a computa-
tion, a failure detector provides a process with a list
of processes that it presently suspects to have crashed,
allowing the process to act on this information. In gen-
eral, these suspicions can be erroneous and can differ
from failure suspicions at other processes, consistent
with the failure detection techniques used in practice
(e.g., timeouts) that failure detectors were designed
to model. Chandra and Toueg showed, however, that
if the failure detectors satisfy certain properties, then
consensus can be solved [CT96], thereby circumventing
the impossibility result of [FLP85].

In this paper we extend the failure detectors
paradigm to environments in which component pro-
cesses may suffer intrusions by an attacker, and we
consider the consensus problem in this environment.
We model an intrusion into a process as the Byzantine
faslure of that process, i.e., the process can behave ar-
bitrarily maliciously. Intuitively, a failure detector for
such an environment should detect at least some forms
of Byzantine failures. However, the main difficulty in
defining failure detectors for Byzantine environments
is identifying which of the possible arbitrary behaviors
should be detected. More specifically, failure detec-
tors are defined according to their Completeness, i.e.,
their ability to detect actual failures, and according to
their Accuracy, i.e., their success in avoiding false fail-
ure detection [CT96]. One might try to define “Com-
pleteness” in the Byzantine environment to require the
detection of faulty processes by the other correct pro-
cesses. However, this notion is ill-defined when failures
are Byzantine, since, in particular, a Byzantine faulty
process may visibly behave like a correct one.

The approach we take is to capture the Byzantine-
faulty behavior only when it disrupts progress, and
defer handling other manifestations of intrusions to
the upper level consensus protocol. Thus, we de-



fine Completeness to require (eventual) detection of
those behaviors that may prevent progress. Intuitively,
progress may be prevented when a process is waiting
for a message from another process that will never ar-
rive. Thus, we simply require the detection of those
processes from which no messages will arrive. Our def-
inition makes use of an underlying reliable broadcast
primitive, which enables a process to send a message
in a way that ensures that all correct processes receive
the same message despite the arbitrary failure of some
members (up to a third). This primitive can be imple-
mented in our model, and thus without loss of gener-
ality, we assume that all communication within a pro-
tocol is carried via this primitive. We define a failure
detector class OS8(bz) for the Byzantine environment
that requires that every process from which no more
broadcast messages are received is eventually detected
as faulty by all the correct processes (Strong Complete-
ness), and that there exists a time after which some
correct process is never suspected by any of the cor-
rect processes (Eventual Weak Accuracy). We demon-
strate that OS(bz) suffices to solve consensus in an
asynchronous, Byzantine environment, with less than
a third of the system faulty.

Our analysis complements a number of previously
studied failure detector classes for benign failure en-
vironments, including the weakest failure detector
for solving consensus in the crash-failure environ-
ment [CHT96], the weakest conditions allowing other
agreement problems to be solved in this model [GS96)],
and the weakest failure detector suitable for omission
failure environments [DFKM96).

A limitation of designing distributed protocols us-
ing ©S(b2) is that while OS(bz) can typically be re-
alized in practice (e.g., using carefully tuned time-
outs), there may be rare situations in which even
the weak requirements of ©S(bz) cannot be guaran-
teed. This impossibility immediately stems from the
basic impossibility result [FLP85] and the fact that
a Byzantine asynchronous environment, strengthened
with ©8(bz), allows solving consensus. On the other
hand, a known approach to circumventing the basic
impossibility result [FLP85] is to use randomization
(see [R83, B83, CD89]). The drawback in randomized
protocols is that there is no upper bound on the num-
ber of execution steps until a decision is made, and
in theory an infinite run is possible (albeit with prob-
ability zero). A hybrid approach [DM94, AT96] uses
both failure detection and randomization to get “the
best of both worlds”. Informally, a hybrid protocol en-
sures that if either the specified failure detection con-
ditions hold or one of the (probable) situations cre-
ated by randomizing techniques occur, then the pro-
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tocol terminates correctly. This approach is promising
as it enjoys the benefits of failure detectors that, in
most cases, behave as specified, and “falls back” onto
randomization techniques that guarantee eventual ter-
mination with probability one when bad failure sce-
narios occur. In this paper, we develop the first hybrid
protocol suitable for a Byzantine environment, which
terminates correctly if either failure detection meets
the specification of O8(bz) or if only Strong Complete-
ness holds and a (probable) situation, influenced by
randomization, finally occurs. Our approach builds on
previous hybrid protocols for the crash failure environ-
ment [DM94, AT96] and on techniques that combine
deterrninism and randomization in the synchronous en-
vironment [GP90, Z96].

2 Model

The system consists of a group of n processes,
P0,---yPn_1. Processes that follow their prescribed
protocol are called correct, and all other processes are
called faulty. Faulty processes may fail by crashing,
or may remain alive and behave arbitrarily, i.e., in-
cur Byzantine failures. We assume that at most | 231 |
processes may be faulty. Processes communicate via
message passing over authenticated, reliable communi-
cation channels, guaranteeing that a message sent be-
tween two correct processes eventually reaches its des-
tination, and ensuring that the sender of a message can
be verified by the receiver. We assume that the system
is asynchronous, i.e., there is no known bound on the
duration of computation steps or message transfer.

2.1 Reliable broadcast

In this section we describe a communication prim-
itive, called reliable broadcast, that processes use in
our protocol. As we discuss below, this protocol can
be implemented in the communication model described
in the previous paragraph, and so it constitutes merely
an abstraction to simplify the presentation, and not a
strengthening of our basic model.

A reliable broadcast service provides the processes
with two interface routines: bcast-send(m) for p to
broadcast a message m and bcast-receive(m, q) for p to
receive a broadcast message m from g. Reliable broad-
cast guarantees that all of the correct processes bcast-
receive the same sequence of broadcast messages from
each gsender despite the malicious effort of faulty pro-
cesses and even the sender. More precisely, broadcast
satisfies the following properties.

Integrity: For all p and m, a correct process executes



beast-receive(m, ¢) at most once and, if g is cor-
rect, only if g executed bcast-send{m).

Agreement: If p and ¢ are correct and p exe-
cutes bcast-receive(m,r), then g executes bcast-
receive(m, ).

Validity: If p and ¢ are correct and p executes bcast-
send(m), then g executes bcast-receive(m, p).

Source Order: If p and ¢ are correct and both ex-
ecute bcast-receive(m,r) and beast-receive(m’,r),
then they do so in the same relative order and,
if r is correct, in the order in which r executed
bcast-send(m) and bcast-send(m').

Causal Order: If p and ¢ are correct and p exe-
cutes bcast-receive(m, r) before executing bcast-
send(m'), then ¢ executes bcast-receive(m,r) be-
fore executing bcast-receive(m’, p).

Note that Agreement and Source Order together im-
ply that for any ! and any process r, the I’th bcast-
receive from r is the same at all correct processes.
Causal Order is weaker than causal ordering proper-
ties typically defined in the literature (e.g., [BSS91]);
this weaker definition is necessitated by our consid-
eration of Byzantine failures. There are several ef-
ficient protocols for implementing Integrity, Agree-
ment, Validity, and Source Order in our system model
(without using failure detectors or randomization};
see [BT85, Rei94, MR96]. Any of these can be ex-
tended using standard techniques to implement Causal
Order (e.g., [BSS91]; also see [RG95]). Our specifica-
tion of reliable broadcast is thus weaker than that for
consensus, which we define in Section 3.

Henceforth, we use bcast-send/bcast-receive as the
sole means of communication among processes, and de-
fine the failure detector class OS(bz) accordingly.

2.2 Failure detectors

Each process has access to a local failure detector
module that provides it with a list of suspected pro-
cesses. This list may change over time and can be dif-
ferent at different processes. If a process p is presently
on process ¢’s failure detector list, then we say that ¢
suspects p.

The first step toward characterizing failure detec-
tion in the system is to identify which of the possible
arbitrary failures needs to be detected. The approach
we take here is to identify those failures that may pre-
vent progress in the system and require that they be
detected. For purposes of liveness detection, we as-
sume that in any (infinite) run of the system, a cor-
rect process bcast-sends infinitely many messages. The
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type of failure that we then attempt to detect is one
in which only finitely many messages are ever bcast-
received from some process. All other failures are de-
ferred for handling by the upper level application.

To be precise, we define quiet processes as follows:

Definition 1 If in an infinite run, some correct pro-
cess beast-receives only a finite number of messages
from p, then p is quiet in that run. Otherwise, p is
loud.

Note that in particular, correct processes are loud,
and crashed processes are quiet. Faulty processes that
do not participate correctly in the reliable broadcast
protocol, thus preventing their own messages from be-
ing bcast-received at correct processes, are quiet. How-
ever, processes that broadcast messages not conform-
ing to the upper level protocol are not necessarily quiet;
fortunately, though, those messages could be detected
by the upper level protocol.

The definition of quiet/loud processes serves us in
defining the properties of failure detection as follows:

Strong Completeness: Eventually every quiet pro-
cess is permanently suspected by every correct
process.

Eventual Weak Accuracy: There is a time after
which some correct process is not suspected by
any other correct process.

The class of failure detectors defined by these two prop-
erties is called eventually strong, denoted OS(bz). Note
that faulty processes need not be suspected by OS(bz2),
unless they are quiet. The manner in which these
properties might be implemented is not of concern in
this paper. We note, however, that timeouts on bcast-
receives will typically provide these properties in most
realistic systems.

3 Consensus using OS(b2)

In this section, we construct a protocol that uses
the OS(bz) failure detector to solve consensus in an
asynchronous environment with Byzantine failures, i.c.,
here we assume that the system is equipped with a
failure detector of class ©S(bz). This protocol demon-
strates the sufficiency of ©OS(bz) for solving the con-
sensus problem in this model.

There are many variations of the consensus problem.
The one we adopt in this paper is the following. Each
correct process begins execution with a binary value,
and a correct process completes the protocol by irrevo-
cably deciding on a binary value. A consensus protocol
ensures that the following properties are satisfied:



1. Every correct process decides on a value.

. All correct processes decide on the same value, called
the consensus value.

. If all of the correct processes hold the same value
at the beginning of the protocol, then this is the
consensus value.

Our protocol for solving consensus is a variation on
the Paxos consensus protocol [L89], using a revolving
leader scheme and adapted for the Byzantine failure
environment using techniques from [BT85]. The pro-
tocol proceeds in rounds that are asynchronous, i.e.,
rounds may overlap. In each round, a single process
is the leader. All messages are labeled with the round
for which they are intended. Throughout the protocol,
each process p; maintains a variable v; that initially
contains its input value.

Roughly speaking, a round operates as follows. It
begins by each process p; broadcasting a message con-
taining v; and the round-counter. When the leader has
collected [2%+1] such messages, it chooses the value
that appears in |231] + 1 of the messages (and thus
that was held by some correct process), and broad-
casts a message suggesting that value for the consensus
value. All of the processes then respond with mes-
sages containing a positive or negative acknowledg-
ment to the suggested consensus value, where a pro-
cess broadcasts a negative acknowledgment if it sus-
pects the leader faulty. All processes collect [2%tL] of
these acknowledgment messages. If a process obtains
|25] + 1 positive acknowledgments, then it changes
its v; to the suggested value. Each process then en-
ables the next round. Moreover, if a process ever
bcast-receives [2241] positive acknowledgments for
that round’s suggested value, then it immediately de-
cides on that value and terminates the protocol (but
continues participating in the underlying broadcast
protocol). Figure 1 describes the algorithm executed
by p; in pseudo-code. Initially, round number zero is
enabled.

The correctness of this protocol depends critically
on processes accepting only well-formed messages, as
defined below. Throughout Figure 1, we stipulate that
if a process detects a non-well-formed message from p,
then it permanently adds p to its suspects list. This
prevents a correct process from waiting indefinitely,
e.g., in step 3, for a particular message from some
other faulty process. For brevity’s sake, even though
all messages are broadcast to all processes, not every
well-formed bcast-received message is explicitly used
in the protocol by every process (except for using it to
determine well-formedness; see below).
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1. Invoke bcast-send({A1,r,v;)).

.If r mod n = i (i.e., I'm the leader), and well-formed
messages (Al,r, *) are bcast-received from [2%#1]
processes, then let v be the value that appears in
at least |231] + 1 of the messages. Execute bcast-
send((L1,r,v)).

. Wait until either a well-formed message (L1,r,v) is
bcast-received from the leader or until the leader
is suspected faulty, whichever occurs first. In
the former case, set »; to v and execute bcast-
send((A2,r,v, ACK)). In the latter case, execute
bcast-send({A2,r, L, NACK)).

. Once well-formed messages (A2, r,*, ACK/NACK)
have been bcast-received from [2241] different pro-
cesses, if | %52 ] + 1 of these messages are of the form
(A2,r,v, ACK) for a common v, set v; = v. In any
case, enable round r + 1.

.If ever well-formed messages (A2,r,v, ACK) are
beast-received from [2%+1] processes for a common
value v, then decide v and terminate the protocol.

Figure 1. Consensus protocol using ©S(bz);
Round r at process p;

A well-formed message is one that is neither mal-
formed, out-of-order, or unjustifiable, defined as fol-
lows:

1. A malformed message is one that is internally incon-
sistent with the protocol specification, i.e., a message
that the sender would never generate in any run in
which it were correct.

. An out-of-order message is a message that the sender
sends either too early or too late in its sequence of
messages. More precisely, our protocol prescribes an
exact sequence of message types to be sent per round
for each process, and this sequence should never be
intertwined with those the process sends in another
round. So, if a process p bcast-receives from g ei-
ther (i) round r messages out of sequence or mul-
tiple times, (ii) messages for round r after bcast-
receiving messages from ¢ for some round r’ > r,
or (iii) messages for round r before bcast-receiving
all prescribed messages from g for all rounds =’ < »,
then p has detected out-of-order messages from g.
Detecting out-of-order messages is essential to en-



suring progress, because it prevents a faulty process
from sending infinitely many messages in a single
round or skipping a round altogether, leaving other
processes waiting on its messages.

. An unjustifiable message is one that its sender, if
correct, could not possibly have sent based upon
the messages that it bcast-received prior to send-
ing it. That is, by Causal Order, a process p that
executes bcast-receive(m, q) has also bcast-received
every message that ¢ had bcast-received when g exe-
cuted bcast-send(m) (provided that g is correct). If
it is impossible that ¢ correctly constructed m based
on what it previously bcast-received—i.e., m is in-
consistent with the messages that p bcast-received
by the time p executes bcast-receive(m,q)—then p
has detected an unjustifiable message from ¢. In
particular, the (L1, r, v) message in Figure 1 is justi-
fiable only if v appears in [’—‘—;—l-J + 1 well-formed Al
messages by the time it is bcast-received. To make
p’s determination of whether m is justifiable more
efficient, ¢ could include in m explicit references to
messages that justify m.

A proof of correctness for this protocol involves an
intricate induction on round numbers and steps. Be-
low, we provide an intuitive sketch of the proof.

Theorem 1 Any two correct processes that decide, de-
cide on the same value.

Proof. (Sketch) Suppose that p decides on v in round 7,
g decides v' in round ', and, without loss of generality,
that » < r' (the case r = 7/ is trivially satisfied). For
p to decide v in round r, p must have bcast-received
[2221] messages of the form (A2,r,v, ACK). This
implies that every correct process p; bcast-delivers at
least ["T“lj +1 (A2,r,v,ACK) (and no more than
| 251| A2 messages with value other than v), and thus,
v; = v when it enables round r + 1 and. Using a sim-
ple induction, this hold when p; enables round »' > r.
Thus the well-formed L1 message sent by the leader of
round 7' must be of the form (L1, 7', v, A) for some A4,
and the result follows. O

Theorem 2 Eventually all correct processes decide.

Proof. (Sketch) First note that if round » is enabled
at p, where p is correct, and p does not decide in a
round ' < r, then round » + 1 is eventually enabled at
p. Second, note that if any correct process decides at
some round r, then eventually the bcast-receives that
caused it to decide will cause all of the other correct
processes to decide as well. Let ¢ be some time after
which some correct process p is never suspected by any
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other correct process; t is guaranteed to exist by Even-
tual Weak Accuracy. Assume that no correct process
decides until some time ¢/ > ¢, at which round r is
enabled at all correct processes and for which p is the
leader. By assumption, since p did not decide before
round r, p sends a (well-formed) L1 message in round r
and all correct processes reply with an ACK message,
thus causing all correct processes to decide. O

Theorem 3 If all the correct processes hold the same
value v at the beginning of the protocol, then v is the
consensus value.

Proof. {Sketch) If all correct processes hold the same
value v at the beginning of the protocol, then an induc-
tion similar to Theorem 1’s shows that v; = v at every
correct process p; when any round is enabled. Thus, v
is the only value that could be the consensus value. O

4 A hybrid protocol

In this section, we present a hybrid consensus proto-
col that uses both a failure detector and randomization
techniques. The protocol is guaranteed to terminate if
either the failure detector satisfies the requirements of
O8(bz), or if only Strong Completeness holds and cer-
tain probable scenarios, which are influenced by ran-
domization, finally occur. In other words, if the pro-
cesses have access to a failure detector in class OS(bz)
then the protocol is guaranteed to terminate, and in
addition, if the processes have access to a source of ran-
dom bits then the protocol is guaranteed to terminate
with probability 1, even if Eventual Weak Accuracy
does not hold (Strong Completeness is typically easy
to satisfy, e.g., using timeouts).

We begin with a high level description of the proto-
col, which is a variation on the protocol above (Fig-
ure 1). As above, the protocol operates in logical
rounds, each having one designated process as leader;
the leader revolves among all of the processes over the
rounds. To distinguish messages in the protocol below
from the ones in Figure 1, we denote their type field
with an overhead bar, as in Al.

Each process p; again begins round r by broadcast-
ing a message containing v; and the round counter. As
we will see below, to be justifiable, ¥; must appear in
|251] + 1 of certain messages bcast-received in round
r—1. Once p; collects [2%"—1] of these messages, if all of
the messages contain the same value v (they will if any
correct process decided v in a round r' < r), then p;
sets v; to v; otherwise v; is set to L. If the leader p; now
has v; = L, it sets v; to a random value. In any case,
it broadcasts a message containing v;. Each process



pi waits until it either bcast-receives this message from
the leader, in which case it sets v; to the leader’s value,
or until it suspects the leader, in which case it sets v; to
a random value if v; = L. Process p; then broadcasts
a message containing v;, and waits to collect [22F1]
of these messages from other processes. Among these
messages, there will be at least L"T"lj + 1 containing
a value v; p; sets v; to v and enables the next round.
Finally, if a process ever bcast-receives [22+1] of these
messages containing the value v, it decides on this value
and terminates the protocol (but continues participat-
ing in the underlying broadcast protocol). Figure 2
below contains a pseudo-code description of the hybrid
consensus protocol executed at process p;. Initially,
round number zero is enabled.

1. Invoke bcast-send({AI,r,v;)).

2. Wait until well-formed messages (AI,r,v;) have
been bcast-received from a set P of [-z%fl] processes.
Then set

v Vp; EP:v;=v
v; — ¢ random value otherwise, and rmodn =1
1 otherwise
3. If r mod n = ¢ (i.e., I'm the leader), perform bcast-

send((L1, r, v)).

. Wait until a well-formed message (L1, r, v) is bcast-
received from the leader, or until the leader is sus-
pected faulty, whichever occurs first. In the former
case, set v; to v. Otherwise, if v; = L, then set v;
to a randomly drawn value. Finally, execute bcast-
send({A2, r, v;)).

. Once well-formed messages (A2, r, %) have been
beast-received from [2%+L] processes, set v; equal
to the value v that occurs in at least |251] + 1 of
these messages. Enable round » + 1.

. If ever well-formed messages (A2, r, v) are bcast-
received from [22}1] processes for a common value
v, then decide v and terminate this protocol.

Figure 2. Hybrid consensus protocol using
O8(bz); Round r at p;

As in the protocol of the previous section, the pro-
cesses in this protocol look for malformed, out-of-order,
or unjustifiable messages. In this protocol, a message
(Al,7,0) is justifiable for » > 0 onmly if [251]+1
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well-formed messages of the form (A2,7 — 1,0) were
bcast-received in the previous round (and similarly for
(A1,7,1)). Round 0’s Al messages are justified sim-
ilarly by A0 messages exchanged during a one-time
preparatory step, executed at the start of the pro-
tocol, as depicted in Figure 3. A message (LI, r,0)
or (Ef, r,0) is justifiable only if some well-formed A1
message for round 7 of the form (A1, r,0) was bcast-
received (and similarly for (L1,r,1) and (A2, r, 1)).

0a. Invoke bcast-send((A0, 0, v;)).

Ob. Wait until well-formed messages (A0,0, *) have
been beast-received from [ 22+1] processes, and set
v; to the value that appears in at least |231] +1
of them.

Figure 3. Preparatory step for round 0 at pro-
cess p;

Theorem 4 Let p and q be two correct processes that
decide on v, and v', respectively. Then v =v'.

Proof. (Sketch) Let p decide in round r, ¢ decide in 7',
and without loss of generality, assume 7' > r (the case
' = r is trivially satisfied). For p to decide on the value
v in some round r, p must bcast-receive [2%+1] well-

formed messages of the form (A2, r,v). Therefore, in
round 7+ 1, and by simple induction, any ' > r, every
well-formed Al message contains the value v. There-
fore, the only possible consensus value from round r
and on is v, and thus v = v. O

Lemma 1 For any round r in which all the correct
processes participate and the leader is correct, there is a
positive probability that all the correct processes broad-
cast identical A2 messages (causing o decision on that
value to eventually occur).

Proof. (Sketch) Let p; and p; be any two correct pro-
cesses that participate in round r. If at the end of step
2, v # L and v; # 1, and neither v; nor v; was chosen
at random in step 2, then v; = vj; let v denote this
common value (if it exists). If the leader p; of round
chooses v; at random in step 2, then it has a positive
probability of setting vy = v. Moreover, every other
correct process p; that has v; = L at the end of step 2
and that suspects the leader faulty has a positive prob-
ability of setting v; = v in step 4. Therefore, there is a
positive probability that all correct processes send the
same A2 messages in step 4. O



Lemma 2 Lett be some time after which some correct
process p; 18 never suspected by any other correct pro-
cess. Let r be a round that is enabled after time t, for
which p; 18 the leader, and in which all the correct pro-
cesses participate. Then all the correct processes decide
at round r (at the latest).

Proof. (Sketch) By assumption, all the correct pro-
cesses bcast-receive a well-formed L1 message from p;
in round r and broadcast well-formed A2 messages con-
taining the same value. Eventually, the bcast-receives
of these messages will cause every correct process to
decide on that value. O

Theorem 5 Assume that either all correct processes
are equipped with failure detectors that satisfy the prop-
erties of OS(bz), or all correct processes are equipped
with unbiased random bit generators and failure detec-
tors that satisfy Strong Completeness. Then in any
ezeculion of the protocol above, eventually all correct
processes decide (with probability 1).

Proof. (Sketch) First, note that if any correct process
decides at round », then eventually the bcast-receives
that caused the decision will cause all of the correct
processes to decide as well. Second, note that every
correct process executing round r eventually either de-
cides or enables round r + 1. The theorem now follows
immediately from Lemmata 1 and 2. O

Theorem 6 If all the correct processes hold the same
value v at the beginning of the protocol, then v is the
consensus value.

Proof. (Sketch) If all correct processes hold the same
value v at the beginning of the protocol, then an induc-
tion similar to Theorem 4’s shows that v; = v at every
correct process p; when any round is enabled, and thus,
every well-formed Al message contains v. Therefore,

v is the only value that could be the consensus value.
a

5 Optimizations

The protocols presented above were designed to
demonstrate solvability, without taking into account
performance considerations. These protocols, and in
particular the hybrid consensus protocol, can be opti-
mized in several ways.

We begin by considering the behavior of the hybrid
protocol in the (common) case where the system is pre-
dictable. For example, in many practical situations, a
failure detector can be tuned so as to make very few
mistakes, and it is therefore desirable to have a protocol
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that terminates quickly when each correct process’ fail-
ure detector is ¢deal—i.e., when a process is suspected if
and only if no more messages will ever be bcast-received
from that process. In the protocol above, however, it
may take several rounds until a round whose leader is
correct executes (and then it terminates), even when
the failure detector behaves ideally. To achieve early
termination in this case, we replace step 1 of the hybrid
protocol with the following:

1a. Invoke bcast-send((A1',r,v;)).

1b. Wait until well-formed messages (A1’,,v;) have
been bcast-received from a set P of processes such
that |P| > [2241], and all processes not in P are
suspected. Then set v; = 0 if at least |251] + 1
of these messages contain 0, and v; = 1 otherwise.

lc. Invoke bcast-send({AI,r, v;)).

Briefly, using the optimization above, an A1’ mes-
sage is justifiable as Al before, whereas a message
(A1,7,0) is now justifiable if |231| + 1 well-formed
messages of the form (A1’,r, 0) were bcast-received in
round r (and similarly for (AI,r,1)).

It is easy to verify that these steps do not violate
any of the correctness claims made for the protocol. In
addition, the modified protocol maintains:

Theorem 7 Lett be a time after which all correct pro-
cesses’ failure detectors are ideal. Then the modified
protocol terminates (at the latest) at the end of the first
asynchronous round following t.

Aguilera and Toueg [AT96] describe another com-
mon situation, where very few or no failures occur, the
leader of the first round is correct, and few enough (or
no) false failure detections are made so that the first
leader is not suspected by any correct process. In such
a case, the hybrid protocol above terminates after one
round (with four phases of message-exchanges).

Finally, we consider the behavior of the protocol in
extreme situations in which the ©8(bz) failure detector
properties are not satisfied. In this case, the random-
izing techniques we apply assure that the probability
that the protocol terminates approaches unity as more
rounds are executed. However, the expected number of
rounds until termination in the hybrid protocol above
is fairly high (O(n2")). This can be improved using
techniques for distributed coin tossing. To employ such
methods, a process replaces the random bit drawing
of steps 2 and 4 of the hybrid protocol with calls to
a coin-toss procedure, returning a binary value that is



expected to become identical at all of the correct pro-
cesses within some known number of invocations. Ben-
Or gave a method for tossing a coin in an asynchronous
environment with up to ¢t < 4/n Byzantine faulty pro-
cesses [B83], that is expected to produce such a unan-
imous coin toss within a constant number of invoca-
tions. He later improved this with another protocol
that is resilient to up to ¢t < % Byszantine failures [B85].
Canetti and Rabin [CR93] used an asynchronous ver-
ifiable secret sharing scheme to achieve a coin-tossing
protocol resilient to | 23| Byzantine failures that has
constant time expected termination with overwhelm-
ing probability. Another technique to speed up ter-
mination is to use precomputed random bits at run-
time. Methods to distribute shares of secret bits using
a trusted dealer have been suggested by Rabin [R83]
and Toueg [T84].

6 Conclusions

In this paper, we have shown how to build prac-
tical consensus protocols for environments that may
suffer intrusions by an attacker. Since consensus un-
derlies a large class of distributed coordination prob-
lems, our protocols provide insight into a practical ap-
proach to achieve distributed coordination despite the
participation of corrupted machines. We demonstrated
that unreliable failure detectors can be used to achieve
consensus in such environments, provided that certain
(weak) constraints hold. In most reasonable practical
settings, the deterministic protocol we presented termi-
nates fairly quickly, i.e., as soon as the system is stable
enough for one correct process to be unsuspected by
all of the other correct processes (Eventual Weak Accu-
racy). To cope with scenarios in which even these weak
constraints fail, we incorporated randomization tech-
niques and produced a hybrid protocol that is guaran-
teed to succeed with probability one even when failure
detection is continually erroneous.

Our protocols were designed to cope with up to
['—'g—lj Byzantine failures of participating servers. In
practice, other failure assumptions may hold, includ-
ing less uniform ones. In the future, we plan to extend
the treatment here to deal with other Byzantine fail-
ure assumptions by employing Byzentine quorum sys-
terms [MR97] to derive the consistency and liveness of
our protocols, thus replacing the uniform requirement
thresholds of [2—"3‘*1'] and I_I‘—;—]LJ + 1 in our protocols.

An open problem left by this work is characterizing
the weakest conditions (equivalently, the weakest fail-
ure detector) allowing consensus to be solved in Byzan-
tine environments.
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