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Abstract 

We present new protocols for two parties to exchange 
documents with fairness, i.e., such that no party can gain 
an advantage by quitting prematurely or otherwise misbe- 
having. We use a third party that is L‘semi-trusted”, in the 
sense that it may misbehave on its own but will not con- 
spire with either of the main parties. In our solutions, dis- 
ruption by any one of the three parties will not allow the 
disrupter gain any useful new information about the docu- 
ments. Our solutions are efficient and can be based on any of 
several cryptographic assumptions (e.g., factoring, discrete 
log, graph isomorpbism). We also discuss the application of 
our techniques to electronic commerce protocols to achieve 
fair payment. 

1 Introduction 

A fair exchange protocol is a protocol by which two par- 
ties swap secrets without allowing either party to gain an ad- 
vantage by quitting prematurely or otherwise misbehaving. 
Though already a well-studied problem, fair exchange has 
recently experienced a resurgence of activity due to its util- 
ity in a number of emerging applications, among them being 
electronic payment protocols (e.g., [Ket95, KG95, CTS95]) 
and certified electronic mail protocols (e.g., pT94, ZG96, 
DGLW96]). In payment protocols, fair exchange can en- 
sure that a customer receives a document from a vendor if 
and only if the vendor receives payment from the customer. 
Similarly, fair exchange can ensure that a certified electronic 
mail is delivered to its destination if and only if a proof of 
that delivery is delivered to its sender. 

Early study yielded elegant but typically inefficient so- 
lutions to the fair exchange problem and the related “con- 
tract signing” problem [Blu81, Blu83, Yao86, LMB84, VV83, 
Cle89]. Also in this vein is recent work on “‘ripping” off- 
line electronic coins [Jak95]; this gives efficient two-party 
solutions to a problem related to fair purchase using off-line 
electronic cash, by removing the main financial incentive for 
cheating-but without guaranteeing fairness. Most recent, 
practical approaches employ one or more trusted parties to 
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achieve fair exchange (e.g., [Ket95, KG95, BT94, CTS95, 
ZG96, DGLW96]). This work, however, does not consider 
possible misbehavior by the trusted party, and thus may en- 
able the third party to learn the contents of documents being 
exchanged. 

In this paper we propose a different approach to fair ex- 
change. We use a third party that is “semi-trusted,” in 
the sense that it may misbehave on its own but does not 
conspire with either of the main parties. In our solutions, 
disruption by any one of the three parties will not allow the 
disrupter (or anyone else) gain any useful new information 
about the documents. Since the third party need not be 
fully trusted, the third party could even be a random mem- 
ber of the network. This option, fair exchange by “kindness 
of strangers”, provides a novel type of security that may be 
appealing for protocols on large public networks. Since mis- 
behavior by the randomly chosen third party is unprofitable 
and detectable, the only drawback is that the protocol may 
need to be repeated. Our solutions are efficient, requiring 
only four messages in the case of no disruptions. 

Fair exchange is not useful if a document holder can sub- 
stitute an arbitrary (and worthless) document for the one 
that is expected. In our solutions, we assume that each docu- 
ment holder possesses a one-way hash of the document it de- 
sires (or an encryption of the document and a one-way hash 
of the key). A protocol is considered fair if the documents 
(or keys) that are swapped are consistent with the known 
hash values. In some cases, this property yields stronger 
guarantees than those provided by existing systems that im- 
plement forms of fair exchange, such as NetBill [CTS95]: 
NetBill guarantees only that a vendor that provides a worth- 
less document can be detected after the exchange occurs, 
using mediation outside the scope of the protocol. Our pro- 
tocol, in contrast, verifies the consistency of each document 
with the hash value requested by the other party, and so the 
exchange will succeed only with the requested documents. 

Our assumption that a party knows the one-way hash of 
the document it desires is justified in protocols and applica- 
tions in which one party is responsible for revealing the input 
that produces a known output, already validated as part of 
the protocol or application, from a one-way function. Exam- 
ples include the S/KEY user authentication system [Hal94], 
the PayWord electronic payment scheme [RS95], on-line/off- 
line digital signatures @GM96], and applications of digi- 
tal timestamping [HS91]. More generally, consider a public 
database of tuples of the form tdesc;, euc;, f(K;), o<i> where 
desc; is a description of the contents of a data file (e.g., the 
title of a movie); enci is an encryption under a secret key 
Ki of the data file (e.g., a movie); f(Ki) is a one-way hash 
of K;; and u; is an authority’s signature on the preceding 
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information, which serves as the authority’s appraisal that 
the decryption of enc; using K; will indeed produce the de- 
scribed item. Then any documents in the database can be 
exchanged fairly. 

The rest of the paper is organized as follows. Models 
and definitions are given in Sections 2-3. We present our 
protocol in Section 4 and an optimized version in Section 5. 
We discuss some variations in Section 6, and applications to 
electronic payment protocols in Section 7 (and Appendix A). 

2 Properties of fair exchange 

For a fair exchange, we assume an initial state in which 
party X holds a secret key Kx and party Y initially holds a 
secret key Ky. They wish to fairly exchange the two keys, 
with the help of a “semi-trusted” third party 2. We as- 
sume that all three parties know a one-way function f on 
the keyspace. We further assume that initially X lmows 
f(Ky) and Y knows f(Kx). A party is honest ifit follows 
the fair exchange protocol. At the end of the fair exchange, 
the following will be true: 

1. If all three parties are honest, then X learns Ky and 
Y learns Kx. 

2. If X and 2 are honest, then Y learns nothing useful 
about KX unless X learns KY. 

3. If Y and 2 are honest, then X learns nothing useful 
about Ky unless Y learns Kx. 

4. If X and Y are honest, then 2 learns nothing useful 
about KX or Ky. 

Throughout this paper, we assume that at most one of X, 
Y and 2 misbehaves (“l-resilience”). The properties above 
require nothing otherwise, and in fact our solutions give little 
protection when two parties conspire against a third. 

There are a number of notable omissions from the above 
properties. For example, it might seem that Properties 2 
and 3 should require that 2 learn nothing useful about Kx 
and Ky, respectively, and perhaps Property 4 should require 
that X learns Ky if and only if Y learns Kx. Such require- 
ments, however, dictate that an honest party not learn cer- 
tain things from a misbehaving party, which is difficult to 
enforce if the misbehaving party “conspires” with the hon- 
est party without the honest party’s consent. For example, 
X could misbehave and send information to (an honest) 2 
that would enable 2 to recover Ky, or a misbehaving 2 
might disrupt the exchange so that (an honest) X learns 
Ky without Y learning Kx. Beaver (Bea has pointed 
out similar ‘passive conspiracies” for more general multi- 
party protocols. It is debatable whether protection against 
passive conspiracies should be included in our basic model. 
Fortunately, it is easy to modify any fair exchange protocol 
to at least prevent an honest X from “accidentally” learn- 
ing Ky without Y learning Kx: At the end of the protocol, 
if X has learned Ky, then X sends KX to Y; and Y does 
similarly. This will complete any half-completed exchange, 
since under our assumptions X and Y must be honest when 
2’ is misbehaving. 

Other forms of disruption, unprofitable to the disruptor, 
are not covered by our basic model. Suppose 2 disrupts 
the protocol so that at the end neither X learns Ky nor 
Y learns Kx. Then, by assumption, X and Y are honest, 
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so they could simply exchange KX and Ky by themselves. 
Alternatively, they could agree to restart the protocol, per- 
haps with a different 2. Similarly, X or Y could disrupt 
the protocol so that neither key was exchanged, but this is 
neither profitable nor preventable. 

3 The one-way function 

The one-way function usedin our protocols must be of the 
form f : G + G where G is a group in which testing member- 
ship, computing the group operation and inverse, and sam- 
pling from a nearly uniform distribution are efficient. More- 
over, f is required to have the additional property that there 
exists an efficiently computable function F : G x G + G 
such that F(z,f(y)) = f(zy). A few examples of proposed 
one-way functions with this property are listed below. 

a Suppose that G = 2; where N is a product of two large 
, distinct primes, and that f is defined by f(z) = za mod 

N. Then F(z,y) = zay mod N has the property that 
F(m, f(y)) = f(zy). f is one-way under the assumption 
that N is hard to factor. 

l Suppose that G = 2; where p is a prime such that 
p - 1 has a large prime factor q, and that f is defined 
by f(z) = g2 modp where g has order q in 2;. Then 
F(+, y) = y” mod p has the property that F(z, f(y)) = 
f(zy). f is one-way if it is difficult to compute discrete 

logarithms with respect to g,p. 

l Consider the group G of bijective functions z : 

CL..., n} + (1,. ..,n} (i.e., the group of all permu- 
tations of {l,. . . , n}) with a group operation of com- 
position (i.e., zy = m o y). Fix a set E C (1,. . . ,n} X 

n} and for any group member Z, let m(E) = 
f$j ‘z(3!)> : ti, j> E E} and f(z) = z(E). Then, 
F(~,Y! = MY) = {<4~(i)),4~($)> : <i,j> E E:) 
has the property that F(z, f(y)) = f(zy). f is one-way 
under the assumption that <{I,. . . , n}, E> is a “hard 
graph” pC86], i.e., that it is computationally infeasible 
to determin e an isomorphism between it and a random 
isomorphic copy of it. 

More generally, it is possible to construct a one-way func- 
tion f of the necessary form from any (not necessarily cer- 
tified) one-way group action [BYgO]. The first and third 
constructions above are reasonably efficient; e.g., the first, 
with a 768bit N, is only roughly one order of magnitude 
slower than the Secure Hash Algorithm [NBS93], based on 
tests performed with the Cryptolib library [LMS93]. The 
construction based on discrete logarithms with a 768.bit p, 
however, is another two orders of magnitude slower still, i,e,, 
roughly 1000 times slower than SHA. 

Our protocols constrain X to exchange a preimagc of the 
hash value f(Kx) held by Y before the start of the proto- 
col, and Y is similarly constrained. Without knowing any- 
thing more about the protocols, it is easy to see that X can 
attack the protocols if it can find a & # Kx such that 
f(&) = f(Kx); it can then simply run the protocol with 
2x. One defense is for f to be determined after Xx, e.g., 
as an appropriate function of the document encrypted with 
Kx, provided that it is difficult to determine a frx after 
the fact such that f(&) = f(Kx) (a stronger requirement 
than one-wayness, but a weaker requirement than colllsion- 
freedom). This is possible because our protocols place no 



requirement that the same f is used for both X and Y. An- 
other defense is simply to require f to be collision-free, as 
it is in the construction based on discrete logarithms. For 
the construction based on factoring, only trivial collisions 
of the form {z, -z} can be found, but these can be easily 
detected and overcome in our protocols. The construction 
based on graph isomorphism may not be collision-free, as 
a collision could be constructed from an automorphism of 
<{l,..., n},E>, i.e., a nontrivial permutation m such that 
m(E) = E. For simplicity, we will present our protocols 
using the same function f for both X and Y, and when con- 
venient we will refer to f as being collision-free. The reader 
should be aware, however, that both of these assumptions 
can be relaxed in some cases. 

4 The basic fair exchange protocol 

Intuitively, our exchange protocol works by sharing Kx 
between Y and 2 using a 2-out-of-2 veriIiable secret sharing 
scheme [CGMA85, Fel87], and similarly sharing KY between 
X and 2. The properties of f described in Section 2 enable 
2 to verify that this sharing has been performed correctly 
(without revealing KX or KY to 2) and, if so, Z sends its 
shares of Kx and KY to Y and X respectively. 

Below we describe the protocol as a sequence of rounds, 
each consisting of multiple messages. We use the notation 
X + Y : m to denote that X sends m to Y. We assume that 
messages are private and authenticated, and that message 
replay and redirection attacks are countered with the usual 
techniques (e.g., identities of the sender and receiver in each 
message, time of transaction, nonces). 

1. In the first round, X chooses 01 at random (from the 
domain off) and sends it to Y: 

X+Y : Xl (1) 

Similarly, Y chooses yr at random at sends it to X: 

Y+X : y1 (2) 

2. When X receives yr, it sends: 

x+z : f(Kx), f(K~),Kxx?, I (3) 

Similarly, when Y receives tr, it sends: 

Y+Z : WY), f(Kx), KYY?, f(4 (4) 

3. If Z receives 

~X,PX,-iX,JX 

from X and 

aY,PYtrYtJY 

from Y, it verifies that 

. ax =PY = F(-ix,Sy), and 

l aY = P⌧ = F(ru,C⌧). 

If so, z sends: 

z+⌧ : ^Iy 

Z+Y : ^I⌧ 

(5) 
(6) 
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Correctness can be argued as follows. If all three parties 
are honest, then at the end of the protocol X can compute 
KY = ~yyr, and Y can compute KX = 7~x1. If X and Z 
are honest, then Y learns nothing useful from the execution 
of the protocol unless Z sends 7x in the third round. But 
if this happens, then in the third round Z also sends 7~ 
to X such that f(vyyr) = f(Ky). But then either X can 
compute KY from ry, yr or Y has found a collision of f 
at f(Ky). Since the protocol is symmetric between X and 
Y, the case where Y and Z are honest is identical to the 
case where X and Z are honest. Finally, when X and Y 
are honest, then Z does not learn useful information about 
KX or KY. More specifically, Z can simulate its view from 
f(Kx), f(Ky) alone, by choosing ‘yx,yy at random from 
the domain off, and computing by = F(-l;;‘, f(Kx)), 6x = 

F&l, I). 

5 An optimized protocol 

In this section, we describe the optimized version of our 
fair exchange protocol. The intuition behind the optimiza- 
tion is as follows. Flow (2) is eliminated by having X choose 
its own share yr of KY, and having X include this choice 
in flow (1). Flow (3) is eliminated by having X encrypt 
the relevant information in the public key of Z and then 
send it to Z through Y by including it in flow (1). In fact, 
it suflices to encrypt only some of this information, and to 
hash the rest using a cryptographically strong hash function. 
Flow (5) is replaced by a later flow from Y to X, although 
an exchange between X and Z is used as a fail-safe option 
if Y misbehaves. 

In the description of the protocol below, we assume that 
the third party Z has a private key known only to itself, 
and that X knows the corresponding public key. We denote 
the encryption of m with Z’s public key by Ez(m), and 
the decryption of m with Z’s private key by D,(m). The 
function h below is assumed to be a cryptographically strong 
hash function that is lmown to all parties. 

1. X chooses xl and yr at random (from the domain of 
f), computes x:2 = KxxT1, and sends 

X+Y : ~:~,Y~,~~(~~),~(~(Y~)II~(~x)II~(~Y)II~~~ 

2. When Y receives 

Xl,Yl,%P 

it computes ye = Kyy;’ and sends 

Y+Z : ~z,or,p,f(~~),f(x~),f(Kx),f(K~) 

3. When Z receives 

Y2,O,T,&%C 

it verifies that 

l e = P(Dz(a), 6) 

l t = F(Y2,7) 

. P = wrll4ICII~zbN 
If so, Z accepts the exchange, sends 

Z+Y : De(a) 

and subsequently will give yz to any party that can 
present Dz(a). IfZ does not accept, Z sends amessage 
to Y reporting that it rejected. 

-- _____ 



4. If Y receives a message containing a value n such that 
F(q, f(z1)) = f(Kx), then it sends 

Y+X : y2 

Otherwise, Y informs X that the exchange failed. 

5. If X receives from Y a value 0 such that F(0, f(yr)) = 
f(Ky), then it terminates the protocol. Otherwise, it 
sends as to 2 in an effort to retrieve yz. 

Note that there is a benefit of partial anonymity for X, since 
X and Z have no contact unless the exchange is disrupted. 

The function h should be “like a random oracle”. In par- 
ticular, h(f(yl)llf(Kx)llf(Ky)llmz) should not leak infor- 
mation about mz, or else a cheating Y might learn Xx after 
Step 1. If X has a signing key and Z knows the correspond- 
ing verifying key, and if we did not care about the anonymity 
of X, then h(f(y1)llf(Kx)llf(K~)llzz) could be replaced 
by the signature of X on f(yr)]]f(Kx)]]f(Ky). Then Step 
5 would be modified so that Z gives y2 to any party that 
demonstrates knowledge of the signing key of X. 

The correctness of the protocol can be argued as follows. 
If all parties behave honestly, then Kx and Ky are ex- 
changed correctly. If X and Z behave honestly, then Y 
learns Kx only if Z sends 22 in Step 3. Z does this only 
if its tests in Step 3 succeed and thus only if Z holds the 
missing share yz that is needed by the party that computed 
~(f(y1)ll~(~x)ll~(~~)~~~z). Then this party will be able 
to present ms to Z to retrieve ys and reconstruct KY. If the 
party that computed h(f(y~)llf(Kx)llf(K~)lImz) is Y itself, 
and Z accents. then Y knew both zc2 and Us beforehand. and 
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so receives no new information from Z. If Y and Z behave 
honestly, then X learns KY only if it receives ys from Y or 
Z. This will happen only if Z’s tests in Step 3 succeed. If 
these tests succeed, then Z sends 22 to Y in Step 3, and this 
will be the missing share of the value Kx that Y wanted. 
Lastly, if X and Y behave honestly, then Z does not learn 
useful information about Kx or KY, since it does not see 
shares 11 or yr. 

6 Protocol variations 

In this section we explore a number of variations to our 
protocols described in Sections 4 and 5. 

6.1 Kindness of strangers 

An interesting variation of the protocol of Section 5 is for 
Z to be chosen at random by X and/or Y. This gives a fast 
fair exchange between X and Y unless X or Y can collude 
with a random party on the network. If Z is unavailable, 
or uncooperative, then X and Y will discover this and can 
repeat the protocol. For example, X could choose Z based 
on a hash of elements of the fnst message from X to Y (e.g., 
all except Ez(ms), which is dependent on Z). By including a 
nonce or a timestamp in the hash, it is likely that a different 
Z will be chosen for each repetition on a large network. 

It is even possible to reward the third party when the 
exchange is successful. A simple method is for X and Y to 
each send a “tip” to Z after a successful exchange. This 
solution guarantees Z one or two coins when at most one of 
X and Y misbehave. More elaborate methods can guarantee 
Z a tip of constant amount if and only if the exchange is 

successful, and whether or not one of the parties misbehaves. 
For example, X can ‘tip” an off-line coin [Jak95] into two 
pieces, encrypt one of them using Z’s public key, and then 
send both pieces (one encrypted, one not) to Y. Y will pass 
on to Z only the encrypted piece. Z verifies that it got a 
good half of a coin (else she rejects the exchange). Then 
either X or Y or both will send the other piece to 2 at 
the end of a successful exchange. Other solutions can be 
based on a “‘fair transfer” of Z’s tip using the techniquea 
of this paper. We note that it seems to be difficult for X 
to maintain her anonymity from Z without risking Z’a tip 
when Y misbehaves. 

6.2 Unlinkability 

In our protocol, the third party Z learns no useful infor- 
mation about the exchanged keys. However, if the same key 
K is exchanged more than once through the same Z, then Z 
can link these exchanges (since f(K) is the same) and poo- 
sibly determine a set of parties that are accessing the same 
(unknown) key. Such %&ability problems” are addressed 
in some electronic commerce protocols by adding random 
“salt” values [BGH+95]. We can address it by having X 
and Y blind [Cha81] the keys that are exchanged. Specifi- 
cally, X can choose random values rx, ry at the start of the 
protocol, and compute f(rxKx),f(ryKy). X and Y cnn 

then exchange I?x = rxKx and &y = ryKy (if X includes 
rx, PY in the first message to Y) with the same guarantees as 
in the original protocol (assuming f is collision-free). Since 

&, ky are drawn from a nearly uniform distribution, com- 
mon exchanges cannot be linked by Z. 

6.3 Generalizations 

As discussed in Section 4, our protocol uses a 2-out-of- 
2 verifiable secret sharing scheme to share Kx between Y 
and Z, and similarly for Ky. Straightforward generaliza- 
tions can be based on n-out-of-n secret sharing (using any 
of the constructions for f), and to t-out-of-n secret shar- 
ing (using the discrete log construction and a discrete log 
based verifiable secret sharing scheme [Ped92]). This can, 
for example, be used to solve variations of fair exchnngc by 
distributing the role of one or more of the parties. Other 
generalizations can address exchanges among multiple doc- 
ument holders along the lines of the problems considered by 
Ketchpel and Garcia-Molina [KG95]. 

7 Applications to electronic payment 

As mentioned in Section 1, fair exchange is useful in elec- 
tronic payment protocols. We discuss some of these appli- 
cations in this section. 

7.1 Micropayment schemes 

Our fair exchange protocol can be easily integrated with 
payment schemes in which payment is made by the cua- 
tomer revealing the input that produces a known output 
from a one-way function, such as in PayWord [RSSS] (or 
PayTree [JY96]). This allows for fair purchase of a digital 
document with a PayWord coin, or for the fair exchange of 
two PayWord coins. In such uses, the vendor receiving the 
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PayWord coin would not even require an independent “ap- 
praisal” of the hash value prior to the exchange, as the prior 
digital signature of the customer on that hash value (dic- 
tated by the PayWord protocol) suEices to enable the ven- 
dor to be compensated by presenting the input that produces 
that hash value. It remains to be seen, however, whether the 
overhead of our fair exchange protocol would be too exces- 
sive to meet the performance demands of a micropayment 
protocol like PayWord. 

7.2 On-line payment schemes 

Many electronic payment protocols have an on-line 
party that authorizes each sale: e.g., the “clearer” 
in iKP [BGH+95] and the “currency server” in Net- 
Cash [MN93]. In these schemes, the customer often pays 
for goods before laowing they will be received. At best, 
the customer gets a convincing “receipt” that can be used 
to complain when the vendor fails to deliver. However, this 
receipt could be useless if the vendor has disappeared. 

It is often possible to incorporate a fair exchange into the 
payment protocol, using the on-line authority as our semi- 
trusted third party. In fact, only “half” of the fair exchange 
needs to be incorporated into the purchase protocol, so that 
the key of the vendor (party Y in our fair exchange) gets 
shared between the customer (party X) and the on-line au- 
thority (party 2); the protocol is presented in Appendix A. 
This can be done for many electronic payment protocols 
(e.g., zKP, NetCash) without increasing the number of flows 
among the participants. For the purchase of digital goods, 
this can give the customer a strong alternative to receipt- 
based protection. We caution that doing so does not mag- 
ically decrease the trust that must be placed in the on-line 
authority, who is already fully trusted (in some sense) for the 
integrity of the purchase. However, although fully trusted 
for their financial duties, these on-line authorities need not 
be trusted with the contents of the digital goods themselves. 

8 Conclusion 

We have shown efficient solutions to fair exchange in the 
semi-trusted third-party setting, with applications to elec- 
tronic payment schemes. It would be interesting to consider 
other models in which fairness can be achieved efficiently. It 
would also be interesting to Ford other applications for “kind- 
ness of stranger” protocols, which may be quite effective in 
practice on large public and semi-public networks. 

References 

[Bee901 

[BGH+95] 

[Blu81] 

D. Beaver. Security, fault tolerance, and communica- 
tion complexity in distributed systems. Ph.D. The- 
sis, Harvard University, May 1990. 

M. Bcllarc, J. A. Garay, It. Heuser, A. Herzberg, H. 
Krawczyk, M. Steiner, G. Tsudik, and M. Waidner. 
XP-A family of secure electronic payment proto- 
cols (extended abstract). In Proceedings of the 1st 
USENIX Workshop on Electronic Commerce, July 
1995. 

M. Blum. Three applications of the oblivious trans- 
fer: Part I: Coin flipping by telephone; Part II: How 
to exchange secrets; Part III: How to send certified 
electronic mail. Department of EECS, University of 
California, Berkeley, CA, 1981. 

(Blu83] 

[BC86] 

[BT94] 

[BY901 

[ChaSl] 

[Cha85] 

[CFN88] 

[CGMA85] 

[Cle89] 

[CTS95] 

(DGLW96] 

[EGM96] 

[Fe1871 

[Ha1941 

[HS91] 

[Jak95] 

[JY96] 

pet951 

5 

M. Blum. How to exchange (secret) keys. ACM 
Transactions on Computer Systems 1:175-193,1983. 

G. Brassard and C. Crepeau. Non-transitive transfer 
of confidence: A perfect zero-knowledge interactive 
protocol for SAT and beyond. In Proceedings of the 
27th IEEE Symposium on Foundations of Computer 
Science pages 188-195,1986. 

A. Bahreman and J. D. Tygar. Certified electronic 
mail. In Proceedings of the 199.4 Internet Society 
Symposium on Network and Distributed System Se- 
cutity, February 1994. 

G. Bressard and M. Yung. One-way group actions.In 
Advances in Cryptology-CRYPT0 ‘90 Proceedings 
(Lecture Notes in Computer Science 537), pages 94- 
107, Springer-Verlag, 1991. 

D. Chaum. Untraceable electronic mail, return ad- 
dresses and digital pseudonyms. Communications of 
the ACM 24~84-88, 1981. 

D. Chaum. Security without identification: transac- 
tion systems to make big brother obsolete. Commu- 
nications of the ACM 28(10), October 1985. 

D. Chaum, A. Fiat, and M. Naor. Untraceable elec- 
tronic cash. In Advances in Cryptology-CRYPT0 
‘88 Proceedings (Lecture Notes in Computer Science 
403), pages 319-327, Springer-Verlag, 1990. 

B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. 
Verifiable secret sharing and achieving simultaneity 
in the presence of faults. In Proceedings of the 26th 
IEEE Symposium on Foundations fo Computer Sci- 
ence, pages 383-395,1985. 

R. Cleve. Controlled gradual disclosure schemes for 
random bits and their applications. In Advances 
in Cryptology-CRYPT0 ‘89 Proceedings (Lecture 
Notes in Computer Science 435), pages 573-588, 
Springer-Verlag, 1990. 

B. Cox, J. D. Tygar, and M. Sirbu. NetBill security 
and transaction protocol. In Proceedings of the fst 
USENIX Workshop on Electronic Commerce, July 
1995. 

R. H. Deng, L. Gong, A. A. Lazar, and W. Wang. 
Practical protocols for certified electronic mail. Jour- 
nal of Network and Systems Management 4(3), 1996. 

S. Even, 0. Goldreich, and S. Micah. On-line/off-line 
digital signatures. Journal of Cryptology 9(1):35-67, 
1996. 

P. Feldman. A practical scheme for non-interactive 
verifiable secret sharing. In Proceedings of the 28th 
IEEE Symposium on Foundations of Computer Sci- 
ence, pages 427-437, October 1987. 

N. M. Haller. The S/KeyTM one-time password sys- 
tem. In Proceedings of the Internet Society Sympo- 
sium on Network and Distributed Systems, 1994. 

S. Haber and W. S. Stornetta. How to time-stamp 
a digital document. Journal of Cryptology 3(2):99- 
111,199l. 

M. Jakobsson. Ripping coins for a fair exchange. In 
Advances in Cryptology-EUROCRYPT ‘95 (Lec- 
ture Notes in Computer Science 921), pages 220-230, 
1995. 

C. Jutla and M. Yung. PayTree: Amortized- 
signature for flexible micropayments. In Proceed- 
ings of the Second USENIX Workshop on Electronic 
Commerce, pages 213-221,1996. 

S. Ketchpel. Transaction protection for information 
buyers and sellers. In Proceedings of the Dartmouth 
Institute for Advanced Graduate Studies ‘95, 1995. 



[KG951 S. Ketchpel and H. Garcia-Molina. Making trust ex- 
plicit in distributed commerce transactions. Stanford 
Digital Library Project Working Paper SIJX-WP- 
1995-0018, October 12, 1995. 

pMS93] 3. B. Lacy, D. P. Mitchell, and W. M. Schell. Gyp- 
tolib: Cryptography in software. In Proceedings of 
the 4th USENIX Security Workshop, pages 1-17, 
October 1993. 

PMm41 M. Luby, S. Micali, and C. Rackoff. How to si- _. 
multaneously exchange a secret bit by flipping a 
symmetrically-biasedcoin.In Proceedings of the 25th 
IEEE Symposium on Foundations of Computer SC& 
ence, pages ll-21,1984. 

[NBS931 

[MN931 

Secure Harh Standard. National Bureau of Stan- 
dards FE’S Publication 180, 1993. 

G. Medvinsky and C. Neuman. NetCash: A design 
for practical electronic currency on the Internet. In 
Proceedings of the 1st ACM Conference on Com- 
puter and Communications Sew&y, pages 102-106, 
1993. 

[Ped92] T. Pedersen. Non-interactive and information- 
theoretic secure verifiable secret sharing. In Ad- 
vances in Cryptology-CRYPT0 ‘91 Proceedinggs 
(Lecture Notes in Computer Science 576), pages 
129-140, Springer-Verlag, 1992. 

[FE951 Ft. Rivcst and A. Shamir. PayWord and MicroMint- 
Two simple micropayment schemes. Manuscript, 
1995. 

[VV83] U. Vazirani and V. Vazirani. Trapdoor pseudo- 
random number generators, with applications to pro- 
tocol design. In Proceedings of the 24th IEEE Sym- 
posium on Foundations of Computer Science, pages 
23-30, 1983. 

(Yao86] A. Yao. How to generate and exchange secrets. In 
Proceedings of the 27th IEEE Symposium on Foun- 
dations of Computer Science, pages 162-167,1986. 

[ZG96] J. Zhou and D. Gollman. A fair non-repudiation pro- 
tocol. In Proceedings of the 1996 IEEE Symposium 
on Security and Privacy, pages 55-61, May 1996. 

A Fair on-line purchase 

In this appendix, we describe a variation of our exchange 
protocol for making electronic payment. To be consistent 
with the literature on payment protocols, we will adjust our 
terminology. A customer C wishes to purchase a secret key 
Kv initially held by a vendor V, using an electronic payment 
protocol with an on-line authority A. We assume that all 
three parties know a one-way function f on the keyspace (of 
the form described in Section 3), and that initially C knows 
f(Kv). At the end of the fair purchase, in addition to the 
security properties required for basic electronic payment, the 
following will be true: 

1. If all three parties are honest, then C learns Kv, and 
V is credited for the purchase. 

2. If C and A are honest, then V will not be credited for 
the purchase unless C learns Kv. 

3. If V and A are honest, then C learns nothing useful 
about Kv unless V is credited for the purchase. 

4. If C and V are honest, then A learns nothing useful 
about Kv. 

Again, we henceforth assume that at most one of C, V, 
and A misbehaves, as the properties above require nothing 
otherwise. 

Our protocol requires that C be able to generate an au- 
thenticator UC(~) for a message m such that on-line author- 
ity A can authenticate m as having come from C without 
receiving it directly from C. If C possesses a private key and 
A knows the corresponding public key, then cc(m) could be 
C’s digital signature on m. If A and C share a PIN that is 
unique to the customer, and if C possesses a public key for 
A, then uc(m) could be the encryption of PlNllmunder d’s 
public key. 

The protocol operates as follows: 

1. C chooses a random y (in the domain of f) and sends 

c+v : Y> f(y), WV), 4f(~)IIfWv)) 

2. When V receives 

Yl %PlY 

it computes o = Kvy-l and sends 

V+d : ~,%P,r 

3. A verifies that 

l @ = F(z,a), and 

l a and /3 came from C (using 7) 

If so, A sends an acceptance message to V and will 
subsequently give z to C upon direct request, e.g., after 
C identXes itself to A using its private key or PIN. 
Otherwise, A sends a rejection message to V. 

4. V notifies C of A’s decision or if V timed out on A. If 
A accepted, then V sends KV to C. 

5. If C does not receive Kv (i.e., a value consistent with 
f(Kv)) from V, it requests the missing share z from 
A, from which it can reconstruct Kv. 

This can be incorporated into many electronic payment pro- 
tocols without increasing the number of flows among the 
participants, e.g., zXP and NetCash. When incorporated, 
A would verify the conditions for ordinary acceptance of a 
purchase, in addition to the test in Step 3 above. 

We now argue that this protocol meets our goals. If V 
misbehaves, then this will lead to rejection by A unless z is 
indeed the missing share of the key that the customer wants. 
In this case, C can claim this missing share z from A. If 
C misbehaves, and the purchase is rejected, then it learns 
no relevant information about KV from either V (who only 
responds with the standard rejection of the underlying pur- 
chase protocol) or A (who will not reveal m after rejection). 
If C misbehaves and the purchase is accepted, then C will 
only learn information that it has paid for. Lastly, if A mis- 
behaves, it will never learn anything useful about Kv, as it 
never receives y. 
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