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The Design and Implementation
of a Secure Auction Service

Matthew K. Franklin and Michael K. Reiter

Abstract—We present the design and implementation of a distributed service for performing sealed-bid auctions. This service
provides an interface by which clients, or “bidders,” can issue secret bids to the service for an advertised auction. Once the bidding
period has ended, the auction service opens the bids, determines the winning bid, and provides the winning bidder with a ticket for
claiming the item bid upon. Using novel cryptographic techniques, the service is constructed to provide strong protection for both the
auction house and correct bidders, despite the malicious behavior of any number of bidders and fewer than one-third of the servers
comptrising the auction service. Specifically, it is guaranteed that 1) bids of correct bidders are not revealed until after the bidding
period has ended, 2) the auction house collects payment for the winning bid, 3) losing bidders forfeit no money, and 4) only the
winning bidder can collect the item bid upon. We also discuss techniques to enable anonymous bidding.

Index Terms—Distributed systems, security, Byzantine failures, electronic commerce, sealed-bid auctions, verifiable signature sharing.

1 INTRODUCTION

ECHNOLOGY has replaced many human procedures

with electronic ones. Unfortunately, much of the tradi-
tion, culture, and law that has been developed to provide
protection in human procedures cannot readily be adapted
to afford the same protection in electronic procedures. The
study of cryptographic protocols can be viewed as a techni-
cal response to this loss of more traditional means of pro-
tecting ourselves. Indeed, Diffie has argued that communi-
cation security is “the transplantation of fundamental social
mechanisms from the world of face to face meetings and
pen and ink communication into a world of electronic mail,
video conferences, electronic funds transfers, electronic
data interchange, and, in the not too distant future, digital
money and electronic voting” [1].

As this statement hints, one human procedure whose
protections are threatened by electronic advances is com-
merce. While many proposals have been put forward to
guide the transition to electronic commerce (e.g., [2], [3], [4]),
most of these proposals provide for only simple transactions
involving little negotiation or competition among buyers and
sellers. In contrast, many financial vehicles, such as auctions,
exchanges, and general markets, do not conform to this sim-
plistic view of commerce. We believe that the transition to
electronic commerce should not preclude such vehicles, but
rather should make them more accessible.

We have begun an effort to examine some of these finan-
cial vehicles to understand what is required to adequately
implement them in electronic systems. In this paper we
present an approach to implement one such vehicle,
namely sealed-bid auctions. A sealed-bid auction is one in
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which secret bids are issued for an advertised item, and
once the bidding period closes, the bids are opened and the
winner is determined according to some publicly known
rule (e.g., the highest bidder wins). Sealed-bid auctions are
used, for example, in the auctioning of mineral rights to
US. government-owned land, in the sale of artwork and
real estate, and in the auctioning of government procure-
ment contracts [5].

Our study of sealed-bid auctions is motivated not only
by their practical importance, but also by the novel security
problems that they pose. First, central to the fairness of a
sealed-bid auction is the secrecy of sealed bids prior to the
close of the bidding period. That is, the timing of the disclo-
sure of bids is crucial. Second, auctions require nonrepu-
diation mechanisms to ensure that payment can be col-
lected from winning bidders—as evidenced by the fact that
in a recent FCC auction of interactive video and data serv-
ice licenses, 13 winning bidders defaulted on their bids,
forcing a second auction to be held [6]. Third, due to se-
crecy requirements surrounding sealed-bid auctions, it may
be difficult for outsiders to have confidence in the validity
of the auction. Fourth, some types of sealed-bid auctions
should enable bidders to remain anonymous. These prob-
lems are only exacerbated when one considers the imple-
mentation of auctions in distributed computer systems, or
the possibility of a corrupt insider in the auction house col-
laborating with bidders.

In this paper we present a secure distributed auction
service that supports the submission of monetary bids for
an auction and ensures the validity of the outcome, despite
the malicious collaboration of arbitrarily many bidders and
fewer than one-third of the auction servers comprising the
service. Our auction service addresses all of the security
issues mentioned above. In particular, the auction service is
guaranteed to declare the proper winning bidder, and to
collect payment in the form of digital cash from only that
bidder. It is guaranteed that no bid is revealed prior to
the close of the bidding period. Moreover, it is possible for

0098-5589/96$05.00 ©1996 IEEE



FRANKLIN AND REITER: THE DESIGN AND IMPLEMENTATION OF A SECURE AUCTION SERVICE 303

bidders to submit anonymous bids. The resilience of our
service to malicious auction servers can be leveraged to
provide resilience to malfeasant auction house insiders. If
each individual is allowed access to fewer than one-third of
the servers (e.g., through spatial and administrative sepa-
ration), then corrupting an insider provides no advantage
to a bidder in the auction. This reduces the incentive for
“buying off” insiders in the auction house.

Our focus in this work is on an efficient and practical
approach to performing auctions. We have implemented a
prototype of our service to demonstrate its feasibility. The
performance of this implementation indicates that our ap-
proach is feasible using off-the-shelf workstations for auc-
tion servers, even for large auctions involving hundreds of
bids. In order to achieve this level of performance, our
service employs a range of old and new cryptographic
techniques, the secure and efficient integration of which
was the primary challenge in this work. The resulting sys-
tem demonstrates novel and efficient methods for protect-
ing electronic currency in competitive environments. It also
provides insights into addressing similar issues in other
competitive financial vehicles such as other types of auc-
tions (which have already made an appearance on the In-
ternet [7]), markets, and electronic gaming,.

The rest of this paper is organized as follows. In Section
2, we describe the security policy that should govern a
sealed-bid auction. In Section 3, we give preliminary defi-
nitions that will be used in the paper. In Section 4, we de-
scribe a new cryptographic primitive called verifiable signa-
ture sharing, which is an important enabler for the efficient
implementation of secure auctions. We present our auction
protocol in Section 5, and discuss its security and perform-
ance in Sections 6 and 7, respectively. We modify our pro-
tocol to protect bidder anonymity in Section 8, and con-
clude in Section 9.

2 SECURE AUCTIONS

Informally, a sealed-bid auction consists of two phases of
execution. The first is a bidding period, during which arbi-
trarily many bidders can submit arbitrarily many sealed
bids to the auction. At some point the bidding period is
closed, thus initiating the second phase in which the bids are

opened and the winner is determined and possibly an--

nounced. In general, the rule by which the winner is deter-
mined can be any publicly known, deterministic rule. When
convenient, however, we assume that this rule dictates that
the highest bidder be chosen the winner.

As mentioned in Section 1, there are numerous possibili-
ties for corruption and misbehavior in a sealed-bid auction.
Possibly the most difficult to counter are those that involve
the misbehavior of insiders in charge of executing and over-
seeing the auction (e.g., employees of the auction house),
especially when this behavior involves collaboration with
certain bidders. Below are several examples of behavior that
could yield an improper auction, many of which may be very
feasible in a naive electronic implementation of auctions.

e Prior to the close of the bidding period, an insider
opens submitted bids and informs a collaborator of
their amounts (so the collaborator can submit a bid
for the minimum amount needed to win the auction).

¢ An insider manipulates the closing time of the bid-
ding period. For example, an insider attempts to pre-
maturely close the bidding period in an effort to ex-
clude some bids.

¢ Bids for one auction are diverted to a second auction
with an earlier closing time, causing their amounts to
be revealed prematurely to an insider.

o After the close of the bidding period, a bidder ar-
ranges to withdraw a bid or insert a bid, in collabora-
tion with an insider.

¢ An insider awards the auction item to someone other
than the winning bidder (and goes undetected be-
cause bids are not made public).

¢ An insider collects payment from losing bidders (e.g.,
by informing each that it won), or collects payment
from the winning bidder but fails to provide the
means for that bidder to obtain the item bid upon.

¢ The winning bidder refuses to pay the auction house
(e.g., by disclaiming the bid or claiming that it lacks
sufficient funds).

It is worth noting that in a naive electronic implementation
of a sealed-bid auction, some of the above problems could
arise simply due to the benign failure of the auction service
or a bidding process. For example, the next-to-last problem
could arise if the auction service is not fault-tolerant, col-
lects money from the winning bidder, and then fails before
granting the item to the bidder. Similarly, the last problem
could arise if a bidding process submits a bid and then fails.
Our auction service prevents the above behaviors and
most other “attacks” on auctions of which we are aware,
despite the malicious behavior of arbitrarily many bidders
and fewer than one-third of the auction servers comprising
the service. We describe the properties provided by our
auction service in two categories, namely Validity proper-
ties and Secrecy properties. Below and throughout this pa-
per, a process (bidder, server, etc.) is said to be correct if it
always follows the specified protocols. A faulty process,
however, may deviate from the specified protocols in any
fashion whatsoever; i.e., “Byzantine” failures are allowed.

2.1 Validity

1) The bidding period eventually closes, but only after a
correct auction server decides that it should be closed.

2) There is at most one winning bid per auction, dictated
by the (deterministic) publicly known rule applied to
the well-formed bids received before the end of the
bidding period.

3) The auction service collects payment from the win-
ning bidder equal to the amount of the winning bid.

4) Correct losing bidders forfeit no money.

5) Only the winning bidder can collect the item bid upon.

2.2 Secrecy
1) The identity of a correct bidder and the amount of its
bid are not revealed to any party until after the bid-
ding period is closed.

In addition, our auction protocol can be modified to allow
for the submission of anonymous bids.

One class of attacks that our auction service does not ad-
dress are those that involve collaboration among bidders to
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“fix” the price that wins the auction. For example, bidders
could collude to bid no more than a certain amount. We
also do not address attacks in which messages to and from
bidders are intercepted, delayed, or otherwise manipulated
in transit. For example, we do not guarantee that a bid
submitted by a correct bidder will be included in the auc-
tion (although it will be if it is received intact before the
close of the bidding period). We emphasize, however, that
the attacks discussed in this paragraph have no effect on
the Validity or Secrecy properties described above.

3 PRELIMINARIES

In this section we review some primitives that are used in
our auction protocol. The following notation will be used in
the remainder of the paper. The encryption of m with a
public key K is denoted (1), , and the decryption of m with

private key K" is denoted (m}Kil . The digital signature of a
message m by a process P (i.e., with P’s private key) is de-
noted op(m). We will introduce additional notation in the
following sections as necessary.

3.1 Group Multicast

Group multicast is a class of interprocess communication
primitives by which messages can be multicast to a group G
of processes. Our auction service employs three types of
group multicast primitives, namely unreliable, reliable, and
atomic. Bach of these multicast primitives enables a process
S € @ to multicast a message to the members of G.

The weakest of these multicast primitives is unreliable
multicast. We denote the unreliable multicast of a message
m from a process S € G to the group G by

S—»>G m

Unreliable multicast provides the property that if S is cor-
rect, then all correct members of G receive the same se-
quence of unreliable multicasts from S, which is the se-
quence of unreliable multicasts initiated by S. In particular,
unreliable multicasts are authenticated and protect the in-
tegrity of communication. However, no guarantees are
made regarding unreliable multicasts from a faulty S.

The second multicast primitive is called reliable mul-
ticast, also known as Byzantine agreement [8]. We denote
the reliable multicast of message m from a process S € G to
the group G by

R
S>G: m

Reliable multicast provides all of the properties of unreli-
able multicast. In addition, it strengthens these properties
by ensuring that for each S € G, all correct members of G
receive the same sequence of reliable multicasts from S,
regardless of whether S is correct or faulty. However, reli-
able multicasts from different members can be received in
different orders at each member of G.

The third and strongest multicast primitive is atomic
multicast. We denote the atomic multicast of message m
from a process 5 € G to the group G by

A
S—G: m

Atomic multicast provides all of the guarantees of reliable
multicast, and strengthens them by ensuring that all correct
members of G receive the same sequence of atomic mul-
ticasts (regardless of their senders).

Because processes executing our auction protocol must
sometimes block awaiting the receipt of reliable or atomic
multicasts, it is necessary to provide some degree of failure
detection to guarantee progress in the case that a faulty
member does not multicast a message on which others are
Waiting. Moreover, correct group members must concur on
the set of messages multicast by such a member prior to its
failure. The reliable and atomic multicast protocols that we
have implemented provide these properties [9].

In addition to multicasts from within a process group,
our auction protocol also requires the ability for any arbi-
trary process B ¢ G to atomically multicast messages to G.
We denote such a multicast of a message m by

A
B—>G: m

Atomic multicasts from outside the group are provided the
same total ordering guarantee as those from within the
group. That is, all correct members of G receive the same
sequence of atomic multicasts, regardless of the origin of
those multicasts. However, unlike atomic multicasts from
within the group, atomic multicasts from outside the group
are not authenticated, but rather are anonymous (.e., they
do not indicate their senders). Moreover, failure detection
of processes outside the group is not provided.

The multicast protocols that we have implemented can
tolerate the failure of ¢+ members of a group of size n (and
any number of nonmember failures) provided that n > 3t + 1
[9]." As described in Section 4, however, this is not the only
factor limiting the fault-tolerance of our auction protocol.

3.2 Threshold Secret Sharing Schemes

A (¢, n)-threshold secret sharing scheme [10], [11] is, infor-
mally, a method of breaking a secret s into n shares sh;(s), ...,
sh,(s), so that t + 1 shares are sufficient to reconstruct s but ¢
or fewer shares yield no information about s. In this paper,
we make use of the polynomial based secret sharing
scheme due to Shamir [11]. In this scheme, the secret s is an
element of a finite field F and the ith share is sh{(s) = (i),
where f(x) is a degree t polynomial such that f0) = s and
such that the other coefficients are chosen uniformly at
random from F. Interpolation of any ¢ + 1 shares recon-
structs f(x) and hence the secret s. F is typically taken to be
the integers modulo p for some prime p larger than the se-
cret. This scheme works for any threshold t < n.

As observed by Feldman [12], if the results obtained by
applying a public one-way function to each share are
known, a process attempting to reconstruct the secret can
verify that a share has not been altered prior to using it in
reconstruction. In this way, the alteration of up ton —  — 1
shares can be tolerated. Our auction protocol will make use
of this observation.

1. More precisely, our multicast protocols, which employ timeouts in
their methods for failure detection, satisfy the stated specifications despite ¢
failures in a group of size 3t + 1 provided that messages from correct mem-
bers induce timeouts in other correct members sufficiently infrequently. See
[9] for details.
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3.3 Electronic Money

In its basic form, an electronic money or “digital cash”
scheme [2] is a set of cryptographic protocols for

1) a customer to withdraw electronic money from a
bank,

2) the customer to use the money to purchase something
from a vendor, and

3) the vendor to deposit the money in its account with
the bank.

These protocols protect the security interests of the parties
involved, by ensuring that the customer’s identity cannot
be linked to the purchase (i.e., anonymity), that each party
accepts only valid electronic money, and that the customer
cannot undetectably reuse or forge money. For the pur-
poses of this paper, we will not consider cash schemes that
require physical assumptions (e.g., tamper-proof smart
cards) [13].

A money scheme is said to be “off-line” [14] if the pur-
chase protocol does not involve the bank; otherwise the
scheme is said to be “on-line.” In a typical on-line scheme,
the vendor queries the bank to determine whether the
“coin” that a customer is attempting to use in a purchase
has already been spent. In an off-line scheme, the bank is
not consulted during purchases, and hence reuse cannot be
prevented. However, the customer’s identity can be em-
bedded in each coin in a way that is accessible if and only if
the same coin is used for more than one purchase. When
the copies are eventually deposited, the bank will learn the
identity of the reuser. In this paper, we consider only off-
line cash schemes.

The auction protocol that we present in this paper will
work with most off-line cash schemes. For this reason, in
stating our protocol we abstract away the implementation
of digital cash used, and simply describe a digital coin as

consisting of a triple <v$,obank(v$), w$>, where vy is a de-
scription of the coin, Gpan(vg) is the signature of the bank on

that description, and ws is some auxiliary information that
must accompany the coin when it is used in a purchase.
The description vy would typically include the value of the
coin, and an embedding of the customer’s identity as de-
scribed above. The auxiliary information wg would typically
be a “hint,” any two of which enable the extraction of the
embedded identity, and would include certain freshness
information so that a vendor can detect the replay of a coin.
Our auction protocol requires that the procedure for a ven-
dor to determine the validity of v; and wg be a deterministic
function of these values that it can compute locally.

4 VERIFIABLE SIGNATURE SHARING

In addition to the primitives reviewed in Section 3, our auction
protocol employs a new cryptographic primitive for protecting
digital signatures, called verifiable signature sharing (VES) [15].

4.1 Informal Description of VXS

VIS enables the holder of a digitally signed message, who
need not be the original signer, to share the signature
among a group of processes so that the correct group mem-

bers can later reconstruct it. At the end of the sharing
phase, each member can verify whether a valid signature
for the message can be reconstructed, even if the original
signature holder and/or some of the members are faulty. In
addition, faulty members gain no information prior to re-
construction about the signature held by a (correct) sharer.

VIS has applications whenever a signed document should
become valid only under certain conditions (e.g., a will, a
“springing power of attorney” [16], or an exchange of con-
tracts). Verifiably sharing the document’s signature among a
group of processes, with “trigger” instructions, ensures that
the signature will not be released until the correct members
believe that the triggering events have occurred.

In [15], we develop simple and efficient VES schemes for
signature schemes based on the discrete logarithm problem,
including ElGamal [17], Schnorr [18], and the Digital Sig-
nature Algorithm [19]. Sharing requires a single group
multicast from the signature holder to the group of proc-
esses among which the signature is to be shared, followed
by a single round of multicasts among the group members.
Reconstruction requires no interaction, beyond a single
message sent from each member to the process performing
the reconstruction. Our protocols tolerate a faulty sharer
and ¢ faulty members in a group of size n 2 3t + 1. Our proto-
cols for ElGamal and Schnorr signatures ensure the secrecy
of the signature in a strong sense (related to simulatability);
others (e.g., for DSA) provide only a weaker, heuristic no-
tion of secrecy.

Also in [15], we proposed VES schemes for exponentia-
tion based signature schemes (RSA {20] and Rabin [21]).
However, we later discovered a flaw in our proof of secu-
rity and in the VES schemes themselves [22]. A provably
secure but less efficient VIS scheme for RSA can be ob-
tained from distributed function sharing techniques [23].

4.2 Abstract Description of VXS

The choice of VIS scheme for our auction protocol depends
on the signature scheme used by the bank to sign its digital
cash. For generality, here we describe VIS in an abstract
form. If B holds a signature o(m) of a message m (i.e., om) =
op(m) for some P), then B begins the VXS protocol by gen-
erating two types of values from o(m): a public value
VES-pub(o(m)) and, for each process S; in the group G
among which the signature is to be shared, a private
value VIS-privi(o(m)). B then atomically multicasts’
VIS-pub(o(in)) to the group members and communicates
VIS-priv(o(m)) to S; privately, say, encrypted under the
public key K; for S

B : G: m, VIS - pub(a(m)),v

{<VZS - privj(G(m))>Ki}

Sfeeg

Upon receipt of such an atomic multicast, S; performs a
local computation to determine whether the ith private

value (which it decrypts with K 1y is consistent with the

2. A weaker multicast can be used (see [15]), but we use atomic multicast
here for consistency with the protocol of Section 5 and due to nuances of
our multicast specifications in Section 3.1.
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public value. S; reliably multicasts the status of this com-
putation, denoted VES-stat, to the group:

R
S5;—=G: VXS -stat,.

Finally, once S; has received a reliable multicast from §; (or
detected S, faulty) for each S; € G, it performs a local com-
putation that allows it to either accept or reject the attempt to
share o(m). This local computation is a deterministic func-
tion of the reliably and atomically multicast values only,
and so either all correct group members accept or all correct
members reject. If they accept, then this guarantees that
o(m) can be reconstructed with the information they collec-
tively possess. If o(m) was shared correctly, then the correct
members will accept, but faulty members gain no informa-
tion about o(m). If at some point the correct members
choose to reconstruct o(m), they can do so by each member
S; forwarding its private value VES-priv(o(m)) (and possi-
bly some other auxiliary information) to the reconstructing
party, which can then easily reconstruct the signature.

4.3 Example of VXS for Schnorr Signatures
As an example of a VIS scheme, here we outline the VES
scheme for Schnorr from [15], which relies on techniques of
verifiable secret sharing due to Pedersen [24] and Feldman
[12]. For a Schnorr signature, the public key is g, p, 9, ¥
where p is a large prime, g is a large prime factorof p— 1, ¢
has order g in Z,, and y = & mod p for some x. The private
key is x. The signature of a document m is given by o(m) =
[w, z] where w = h(g' mod p, m) for random r € Z, and mes-
sage digest function & (e.g., MD5 [25]), and where z = wx + r
mod ¢. A signature can be publicly verified by checking that
w=hg vy mod p, m).

To share o(m) to a group G = {S;, ..., S,}, the sharer B
chooses values gy, ..., 4, at random from Z,. Then B lets

V3S-pub (6(m)) = {w, §* mod p, g" mod p, ..., g" mod p},

and VES-priv{(o(m)) = f(j) mod g, where f(x) =z +a; x + ... +
a,%'. That is, B executes

A a
B—>G: m,w,g"modp, (g’ mod plic ey,

{t7moa q>K}S/€g

7

Now suppose that S; receives an atomic multicast of the
form

m,w, i, Ul {Uj}sjeg
for some values of m, w, u, {uhg, and {Uj}sfeg. S, com-
putes VXS-stat; as
k!
if g<v"> = mod p

7
ul | ol
1<jst )

VIS - stat, = {allow
complain otherwise

S, reliably multicasts VES-stat; and collects status values
from the other servers. Finally, S; accepts if w = h(uy~ ¥ mod p,
m), u’ =1 mod p and at most ¢ processes complained.

5 THE AucTION PROTOCOL

Our auction service is constructed using 7 auction servers.
There is a parameter f that defines the fault tolerance of the
service, i.e., the maximum number of servers that can fail
without affecting the correctness of the service. Our proto-
col requires that n 2 3f + 1.

Intuitively, our auction protocol works as follows. A
bidder submits a bid of a certain value to the service by

sharing the pieces of a digital coin <v$,cbank(v$), w$> with
that value among the auction servers. The description vg
and auxiliary information wg are shared with a standard (¢,
n)-threshold secret sharing scheme (see Section 3.2), while
the signature G (vs) is shared with a VIS scheme (see Sec-
tion 4). Once the bidding period has closed, the servers re-
construct vs and wy for each bid received during the bidding
period, and then perform the VES protocol to determine ac-
ceptance or rejection for each bid (i.e., to determine if they
collectively possess py(vs). The servers then choose the
winning bid from the acceptable bids and declare the winner.
Finally, subject to auction house controls, the bank’s signa-
ture on the coin in the winner’s bid can be reconstructed via
the VIS scheme, and the coin can be deposited. The secrecy
of each bid is ensured until after bidding is closed because
correct servers do not cooperate in the reconstruction of vg
and wg until after bidding is closed. Moreover, since Gy (vs)
is never reconstructed for a losing bid, the coins in losing bids
cannot be spent by faulty servers.

In Section 5.1, we describe this protocol in more depth.
In Section 5.2, we discuss alternative designs that we con-
sidered and compare them to our protocol.

5.1 The Protocol Detailed

In this section, we more carefully describe the auction pro-
tocol. The n auction servers, denoted by S, ..., S,, are or-
ganized as a process group G to which processes can mul-
ticast messages (unreliably, reliably, or atomically). Associ-
ated with each server S; is a public key K; for use in a de-
terministic public key cryptosystem (e.g., RSA [20]). Each K;
is assumed to be available to all servers and bidders; the
corresponding private key K;l is known only to S, In ad-
dition, we assume that a global identifier aid for the auction
is known by all servers and bidders. In the description be-
low, || denotes concatenation. We remind the reader that
only multicasts from servers (i.e., members of §G) are
authenticated, and that sh,(s) denotes the ith share of s pro-
duced via Shamir’s (t, n)-threshold secret sharing scheme.

5.1.1 Submitting a Bid

Suppose a bidder wishes to submit a bid to the auction.
Without loss of generality, we assume that the bidder pos-

sesses a digital coin <U$,Gbank(v$), w$> in the amount of the
desired bid. The freshness information included in wy (see

Section 3.3) is aid. The bidder B submits the bid using a sin-
gle atomic multicast as follows:
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M1 Big: uid,{<sh]»(B"v$Hw$)”aid>K} ,

;€

VES - pub(o,,, (75)),

{<VZS - Priv(Opan (v ))>K‘ }

Sieg

5.1.2 Closing the Bidding Period

When server S; decides that bidding should be closed, it
executes:

A
(M2) S, —G: aid,close

When S; has received (by atomic multicast) close messages
for auction aid from t + 1 different servers, it considers bid-
ding closed and ignores any bids subsequently received.
Note that by the properties of atomic multicast, all correct
servers will agree on the set of bids for auction aid received
prior to closing.

5.1.3 Opening the Bids

Suppose that the Ith bid for auction aid received (by atomic
multicast) at S; is of the form

aid, {C]-,l}sjeg/ pub;, {privj,I}S]eG ©

for some values of {Cj,l}s,eg' pub;,, and {privj,l}s,eg- Also

suppose that a total of L bids were received for auction aid.
These bids are opened in three steps:

1) Foreachl, 1 <I<L, server S; computes

s if <cir,>K;l = s“aid

S., =
il .
1 otherwise

S; then executes:

(M3) Si — g: ﬂid, {Si,l}ISZSL
2) When §; receives a message of the form
aid, {S/',I}lSlSL (+)

from a server S, it verifies for each [, 1 <1< L, that if s;;

# 1, then <Si,’”aid>1< = ¢, ;. If there is an I for which
7

this does not hold, then S; discards and ignores this
message from S;. Note that if this occurs, then 5; must
be faulty.

3) S; completes the opening of the Ith bid, 1 <[ <L, as
follows. If in the first 2t + 1 messages of the form (1)
that S; receives (from different servers, and that pass
the verifications of step 2), there are t + 1 messages,
say from S, ,...,S; ,suchthats, ,# L forall k, 1<k
<t + 1, then S; finds the degree t polynomial f; deter-
mined by s; ;...s; . If <f,(j)||aid>Kf #c;; foranyj, 1<

j < n, then S; discards the Ith bid. S; also discards the
Ith bid if £(0) is not of the form B, || v, || ws, for some B,
vy, and wy,; of a proper syntactic form, or if in the first

2t + 1 messages of the form (1) that §; receives, there

are f + 1 messages, say from S]}"'"Sj,,l’ such that

S 1= 1 forallk, 1 <k<t+ 1. Note that if the Ith bid is
discarded, then it was submitted by a faulty bidder.

5.1.4 Checking the Validity of Bids
S; checks the validity of the remaining bids as follows.

1) For each remaining bid, §; first performs the validity
checks on vg and wy that are dictated by the electronic
money scheme in use, discarding any bid that is
found to be invalid or a replay. By the properties of
the off-line cash scheme and the choice of freshness
information embedded in wy, these tests involve only
local deterministic computations. Let the remaining
bids be renumbered 1 </ <L'.

K1
2) S; computes VXS-stat;, (from <privu> " and puby; see
(*)) for each I, 1 <1 < I, according to the VIS scheme,
and executes

R
(M4) S,—G: aid, {VIS-stat; } .

S. collects reliable multicasts from the other servers
and determines acceptance or rejection for each re-
maining bid according to the VIS scheme (see Section 4).
All rejected bids are discarded.

5.1.5 Declaring the Winner

Server S, chooses the winning bid from among the remaining
bids. Once the winning bidder B is determined, 5; executes

(M5) S, ~ B: aid, B, G (aid|B)

where ~> denotes a point-to-point send over a (not neces-
sarily authenticated) communication channel. This message
conveys that S; declares B the winner of auction aid. Such
messages from f + 1 servers can collectively serve as B’s
ticket for claiming the auctioned item.

At this point, correct servers can erase any information
they hold for losing bids. By the properties of the VES
scheme, the correct servers possess enough information to
reconstruct the bank’s signature for the coin used in the
winning bid. The procedure by which this coin is recon-
structed and deposited with a bank is outside the scope of
our protocol. However, we caution against the servers re-
constructing this signature among themselves, lest a faulty
server reconstruct and deposit the coin in its own account
before the correct servers can deposit the coin in the auc-
tion’s account. Moreover, as discussed in Section 8, ena-
bling faulty servers to reconstruct the coin’s signature
might allow them to “frame” a bidder for reusing the coin,
if the bidder does not take recommended precautions. Since
the reconstruction and deposit of the coin can occur at any
time after the auction (e.g., at the end of the day), a range of
manual and/or electronic procedures are possible for per-
forming these operations safely. A particularly convenient
solution would be for each server to forward its private
VIS value for that coin’s signature to the bank, so that the
bank can perform the reconstruction itself.
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5.2 Alternative Designs

In the design of our auction protocol, we considered nu-
merous alternatives to that presented in Section 5.1, and it
is instructive to discuss several of them.

5.2.1 Eliminating VXS

It is possible to eliminate the use of a VXS scheme by hav-
ing the bidder share o,,4(vs) among the servers with a
standard threshold secret sharing scheme or a verifiable se-
cret sharing scheme [26]. In this case, the auction servers
would have no way of verifying that they hold shares of a
proper signature, except by reconstructing it. Reconstruct-
ing it, however, would leave the coin vulnerable to theft, by
a faulty server depositing the coin in its own account before
the correct servers could deposit it in the auction’s account.

Even if it were deemed acceptable to simply minimize
the number of coins exposed to theft, doing so would re-
quire that the servers locate the highest bid containing a
valid coin by reconstructing the signatures in the sorted
bids one (or a few) at a time, until that bid is found. In this
approach, the message complexity of finding the highest
valid bid can be proportional to the number of invalid bids
submitted. Therefore, it is susceptible to an explosion in
communication costs if faulty bidders submit a large num-
ber of invalid bids. Moreover, this attack would be very
difficult to prevent or punish, especially since bids are not
authenticated (to withhold the identities of the bidders until
after bidding is closed) and may even be anonymous (see
Section 8).

These problems are avoided with the use of a VIS scheme.
In our protocol, no coins are exposed to theft by faulty serv-
ers, and the validity of all bids can be checked with a total of
n reliable multicasts. Moreover, the use of VES makes it pos-
sible to extend our auction protocol to perform auctions in
which the amount the winner pays is a function of other
valid bids (e.g., second-price sealed-bid auctions [5]). Imple-
menting such auctions with only the mechanism described
above would force servers to reconstruct the coins in those
other bids, thus exposing them to theft.

5.2.2 On-Line Digital Cash

It is conceivable that our protocol could be modified to ac-
commodate the use of on-line digital cash. With an on-line
cash scheme, checking the validity of a bid would involve the
bank, typically to determine whether the coin in a bid was
previously spent. Unfortunately, most obvious approaches to
performing this interaction with the bank either expose coins
to theft by a faulty server or result in a message complexity
that depends on the number of invalid bids. While it is possi-
ble to overcome these difficulties, doing so seems to require
substantial changes to the interface provided by the bank in a
typical on-line cash scheme (e.g., [2], [3]).

5.2.3 Promisory Bidding

Rather than requiring bidders to submit bids containing
digital cash in the full amount of the bid, the service could
accept bids containing cash for only a portion of the bid
amount. The bid would serve as a promise to complete the
payment if that bid wins, and the cash portion (if any)
would serve as a “good faith” deposit. This alternative may
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be preferable in auctions drawing large bids. However, it
offers the opportunity for a winning bidder to default on its
payment after all other bids have been opened. In addition,
it complicates collection of the winning bid, requiring pro-
tocols to collect that payment and to determine a new win-
ner in case the original winning bidder defaults. As above,
the message complexity of determining the actual winner
could then be proportional to the number of uncollectable
bids submitted.

5.2.4 Threshold Cryptography

In our auction protocol, the technique used to keep the bids
secret prior to the close of bidding is to share the value of
the bid among the auction servers using a threshold secret
sharing scheme. Alternatively, a threshold public key
cryptosystem [27] could be used to encrypt bids under the
public key of the auction house, so that they could be de-
crypted only with the cooperation of a threshold number of
servers. Correct servers could prevent the premature dis-
closure of bids by cooperating in decryptions only after
bidding had closed. The primary drawback of this ap-
proach is that with all threshold cryptosystems of which we
are aware, a large modular exponentiation would be re-
quired per server per bid. Since modular exponentiations are
computationally intensive, this could expose the service to
substantial computational overheads induced by faulty bid-
ders submitting large numbers of bids. Such an attack would
be less effective against our protocol, because to open bids,
the main costs per server per bid are polynomial interpola-
tions and (re-)encryptions, which are relatively inexpensive
with an appropriate choice of encryption algorithm (e.g.,
RSA with reasonably small encrypting exponent).

A threshold signature scheme [27], in which the coop-
eration of a threshold number of servers is required to sign
a message with the auction house’s private key, could be
useful when declaring a winner. Instead of sending sepa-
rate signed messages to the winning bidder in step (M5),
the servers could construct a single ticket bearing the auc-
tion house’s signature and send this to the winner. This
would decrease the size of the ticket that the winner must
present to claim the auctioned item, but, with existing
threshold signature schemes, would also increase the com-
putational load on the servers to construct this ticket.

5.2.5 Mental Games

“Mental games” [28] are known cryptographic techniques
for securely performing a wide variety of tasks, including
secure auctions as a special case. Mental games could be
used to construct an auction service that provides stronger
properties than ours—e.g., that the values of bids are never
disclosed, even after bidding closes—but a service built
using these techniques would perform much worse than
ours. Our protocol sacrifices the above property in the in-
terest of efficiency, although our protocol can be modified
to allow bidder’s identities to remain secret even after bid-
ding closes; see Section 8.

5.2.6 Nonmalleable Cryptography

Intuitively, an encryption scheme is “nonmalleable” [29]
if it is infeasible to modify a ciphertext so that a known
relationship will hold between the new plaintext and the
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original plaintext. One of the motivating examples for non-
malleable encryption was contract bidding, where an at-
tacker might try to become the low bidder by manipulating
all competitors’ bids upward. In our scheme, the inclusion
of digital cash makes this particular attack irrelevant. How-
ever, malleability could lead to other weaknesses, e.g., that
enable an attacker to divert a bid to an auction with an ear-
lier closing time. Our auction protocol precludes the use of
non-malleable encryption by exploiting determinism in the
servers’ encryption schemes (steps 2 and 3 of “opening the
bids”); the theoretical definition of nonmalleability requires
that encryption be probabilistic. Moreover, existing en-
cryption schemes that are provably nonmalleable would be
prohibitively inefficient for our purposes.

6 SECURITY

In this section, we discuss how the protocol of Section 5.1
achieves the security properties stated in Section 2. Our
arguments are informal, and are not intended to constitute
a rigorous proof of security.

6.1 Validity
1) The bidding period eventually closes, but only after a cor-
rect auction server decides that it should be closed.

The bidding period eventually closes because all cor-
rect servers (and thus at least ¢ + 1 correct servers)
atomically multicast close messages. Moreover, since
the bidding period closes at each server after it has re-
ceived (by atomic multicast) close messages from £ + 1
servers, the bidding period closes at a server only after
it has received a close message from a correct server.

2) There is at most one winning bid per auction, dictated by
the (deterministic) publicly known rule applied to the well-
formed bids received before the end of the bidding period.
Due to the properties of atomic multicast, all correct
servers agree on which bids were received before the

close of the bidding period. If any correct server S;
sends s;; = L, then the /th bid will be discarded by all
correct servers, because each correct server will either
receive too many L values to determine an f; or will
notice that ( f,(z’)||aid>Ki #¢; ;. 1f s, # L for each correct

S, then either each correct server will determine the

same f; or each correct server will detect discrepancies

between its f; and the values {c ; s - Thus, all correct
4 7

servers agree on the bids remaining after “opening
the bids.” Moreover, these include all well-formed
bids, since any bad s;; # L provided by a faulty S; is
discarded in step 2 of “opening the bids.”

From the remaining bids, all correct servers agree on
the subset that pass the validity checks, by the prop-
erties of the digital cash and VZS schemes. All correct
servers select the same winning bid from these ac-
ceptable bids, by following the public rule for deter-
mining the winner. Finally, all correct servers sign a
message announcing this winning bid, enabling the
winner to claim the item bid upon.

3) The auction service collects payment from the winning bid-
der equal to the amount of the winning bid.

By the properties of the VXS scheme, the correct serv-
ers end the protocol in possession of shares sufficient
to reconstruct the bank’s signature on the coin con-
tained in the winning bid. This signature can be re-
constructed via the VEZS reconstruction protocol, ac-
cording to auction house policy.

4) Correct losing bidders forfeit no money.
The money from a losing bid is worthless without the
bank’s signature. By the properties of VXS, no infor-
mation about this signature is leaked to a coalition of
faulty servers, and so the faulty servers are unable to
deposit the money. Thus, the money is effectively
transferred back to the bidder, who can reuse the
money as it chooses.

5) Only the winning bidder can collect the item bid upon.

Only the winning bidder obtains ¢ + 1 signed declara-
tions (from t + 1 different auction servers) stating that
it won the auction. Thus, only the winning bidder can
collect the item bid upon, supposing that possession
of t + 1 such declarations is necessary to do so.

6.2 Secrecy
1) The identity of a correct bidder and the amount of its bid
are not revealed to any party until after the bidding period
is closed.
More precisely, the identity of the bidder and the
amount of the bid are not revealed until after the bid-
ding period is closed at some correct server. This pre-
vents bids being submitted based on the previously
disclosed contents of other bids, because by the prop-
erties of atomic multicast, once bidding is closed at
any correct server, the set of bids that will be consid-
ered by any correct server is fixed.

Showing the stated property is not straightforward,
since it depends on additional properties of VIS and
digital cash schemes. Intuitively, however, a coalition
of faulty servers cannot reconstruct the value B || vg ]| ws
shared in a bid from only their shares of this value, by
the properties of threshold secret sharing schemes.
Moreover, in the VXS implementations proposed in
[15], the public and private VES information available
to the coalition would yield at most a message digest
dependent on v;. In a typical digital cash scheme, vg in-
cludes a large, unpredictable component, such as a
string with the coinholder’s identity embedded in it.
Thus, this message digest reveals no useful information
about the amount of the bid. Lastly, any attempt by an
attacker to redirect a bid to an earlier auction will result
in each correct server contributing L to the bid open-
ing, and the bid will be rejected before the amount or
source of the bid are revealed.

7 PERFORMANCE

We have implemented a research prototype of our auction
service using the protocol of Section 5.1, in an effort to un-
derstand the factors that limit its performance. Our imple-
mentation uses the multicast protocols of Rampart [9], and
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employs CryptoLib [30] for basic cryptographic operations.
Our implementation includes many optimizations to the
protocol described in Section 5.1. For example, to avoid
sharing the entire value B || v, | w; when submitting a bid,
we share a (much smaller) key to a symmetric cipher
(specifically, DES [31]) and include in the bid the encryp-
tion of B | vg || ws under that key. In addition, since each
server must receive only ¢ + 1 shares of this key to recover
B || vs| ws, only 2¢ + 1 servers multicast shares and, in fact,
only 2t -+ 1 shares are distributed by the bidder for each bid.
Similarly, only 2t + 1 servers multicast close messages, as
this suffices to ensure that each correct server receives close
messages from f + 1 servers.

Approximate latency numbers in milliseconds for the
stages of the auction protocol in the case of no failures are
shown in Table 1 and Fig. 1. These numbers were derived
from tests on a network of moderately loaded SPARCstation
10s. These tests used RSA public key encryption with 512-
bit moduli and 8-bit encryption exponents, and Schnorr
signatures with 512-bit modulus p and 160-bit prime factor
g of p — 1. As a result, the VXS scheme of [15] based on
Schnorr signatures (see Section 4) was also used. There
were four auction servers, which is the minimum number
of servers required to tolerate the failure of one auction
server (ie., f=1).

TABLE 1
OPERATIONS WITH CONSTANT LATENCY
Operation Latency (ms)
Submitting a bid 327
Closing the bidding period 87
Declaring the winner 94
2500 T T T T
Opening the bids —<o—
Checking the validity of bids -+~
2000 i
5 1500 4
=1
o
3
E 1000 .
500 ]
0 1 1 1 1
20 40 60 80 100 120

number of bids

Fig. 1. Latencies that grow with number of bids.

In order to isolate the costs of our auction protocol, the
numbers in Table 1 and Fig. 1 do not reflect operations spe-
cific to the form of digital cash used. In particular, the la-
tencies labeled “submitting a bid” in Table 1 and “checking
the validity of bids” in Fig. 1 do nof include the costs of cre-
ating wy and checking the validity of vs and wy, respectively.
For the purposes of interpreting these test results, v and wq
can together be viewed as a single opaque 256-byte string, a

size comparable to that in modern off-line cash schemes
(e.g., [32] using a 512-bit modulus).

Table 1 shows operations whose latencies are relatively
constant as a function of the number of bids submitted to
the auction. The latency labeled “submitting a bid” includes
the latencies of the bidder creating a bid and atomically
multicasting it to the server group, and each server S; de-
crypting the two portions of the message private to it and
performing as many local computations as possible associ-
ated with the VXS scheme. These decryptions and VXS op-
erations consume just over 200 milliseconds at each server,
which implies that the service can process at most five bids
per second during the bidding period. “Closing the bidding
period” includes the latency of 2t + 1 servers initiating
atomic multicasts (close messages) in parallel, and each
waiting to receive t + 1 of those messages. “Declaring the
winner” includes the latencies of each server, in parallel,
signing the message declaring the winner and sending it, and
the winner receiving and verifying the signatures on f + 1
such messages.

Fig. 1 shows operations whose latencies increase as a
function of the number of bids submitted. “Opening the
bids” includes the latency of 2f + 1 servers, in parallel, un-
reliably multicasting messages containing their previously
decrypted shares for the value B | vg || wg for each bid, and
all servers receiving ¢ + 1 such messages and reconstructing
these values as described in Section 5.1. “Checking the va-
lidity of bids” includes the latency of each server, in paral-
lel, reliably multicasting its VIS-stat values and completing
the verification for each bid, until each is either accepted or
rejected. Note that “checking the validity of bids” reflects
only those local VIS computations that depend on vy val-
ues. In our implementation, all other VES computations are
performed immediately when the bid is received, and are
reflected in “submitting a bid” of Table 1.

We reiterate that the latencies in Table 1 and Fig. 1 are ap-
proximate, due to the difficulty of precisely measuring dis-
tributed events. The latencies of the stages involving only the
auction servers (i.e,, closing the bidding period, opening the
bids, and checking the validity of bids) were computed as the
average of the latencies of these stages as measured at each
server individually. In order to measure the latency of sub-
mitting a bid, we modified each auction server to reply with
a point-to-point message to the bidder after processing the
bid. (Obviously, bidder atomic multicasts were not anony-
mous, as assumed in Section 3.1.) The latency of submitting
the bid was then measured as the elapsed time at the bidder
between initiating a bid and receiving replies from all serv-
ers. Finally, the latency of declaring a winner is simply a sum
of the measured latencies of a Schnorr signature, ¢ + 1
Schnorr verifications, and message transport.

The factor limiting performance in each stage of our
auction protocol is cryptographic operations. This is even
true for those stages involving little computation beyond
that involved in reliable or atomic multicasts, as the laten-
cies of the multicast protocols we used [9] are also domi-
nated by cryptography. These performance numbers are
thus very sensitive to choices of cryptographic algorithms
and key lengths. Moreover, they should improve substan-
tially if more powerful server machines are used.
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8 ANONYMITY

As discussed in Section 3.3, a goal of most approaches to
electronic money is to provide anonymous spending to
customers, i.e., to prevent a vendor or bank from associat-
ing purchases to individuals. In this section, we discuss the
ability of a bidder to retain that anonymity in the auction
protocol.

A first requirement to achieving bidder anonymity is to
remove the identity of the bidder from the protocol of Sec-
tion 5.1. A simple approach to achieve this is for each bid-
der, prior to submitting a bid, to generate a large random
number r and use h(r) as a pseudonym for that bid, where /
is a message digest function (e.g., MD5). That is, a bid
would be submitted as

A
M1) B5G: uid,{<shj(h(r)”%"%)uaid%(‘} ,
/ Sje(j

VIS - pub(Gy,. (05)),

{<st - IV, ek (09)), }
] 5;€G

The auction would then proceed as before, except that the
winner would be announced as follows:

(M5") S, broadcasts:  aid, h(r), o4 (aid, h(r))

Note that S;, not knowing the identity or location of the bid-
der that submit the bid with pseudonym h(r), must simply
broadcast the declaration of the winner. Alternatively, S
could place this signed declaration in a location from which it
could be later retrieved by the winning bidder. The winner
can employ { + 1 such declarations and the number r, which
only it knows, as its ticket for claiming the auctioned item.
While at first this may seem to ensure the bidder’s ano-
nymity, other steps may be required due to the properties
of off-line digital cash. As discussed in Section 3.3, off-line
cash schemes require that the customer’s (in this case, the
bidder’s) identity be embedded within the value vgin a way
that reveals this identity to the bank if the same coin is
spent multiple times. Thus, with proposed off-line cash
schemes, if a bidder were to submit the same coin to two
auctions (e.g., submit the coin to one, lose the auction, and
submit the coin to another), then the identity of the bidder
could be inferred by a coalition of one faulty auction server
from each auction. Perhaps even worse, if Gpan(vg) is ever
leaked to the coalition of faulty servers (e.g., due to a weak-
ness in the procedures by which the coin is reconstructed
and deposited after it wins the second auction), then they
could deposit both uses of the coin, thereby revealing the
bidder’s identity to the bank and “framing” the bidder for
reusing the coin. It is possible to modify proposed off-line
cash schemes so that the identity information embedded in
vg is encrypted with a key known only to the bank and the
bidder. Then, the bank’s cooperation would be required to
reveal the identity of the bidder. However, this approach still
enables the coalition of auction servers to link the same coin,
and thus the same (unknown) bidder, to both auctions, and
does not prevent the “framing” attack described above.
There are steps that a bidder should take to guard
against these attacks. Specifically, the bidder should use a

coin in at most one bid. If that bid is unsuccessful, the bid-
der should deposit the coin in the bank and withdraw a
new one. In this case, multiple bids cannot be linked to the
same bidder or used to frame the bidder for reuse, and the
identity of the bidder can be revealed only by a coalition
involving the bank and a faulty auction server. However, it
is not clear how a bidder can conceal its identity against
such a coalition with current off-line schemes.

9 CONCLUSION

We have presented the design and implementation of a
practical distributed auction service that can tolerate the
malicious behavior of fewer than one-third of its servers
and any number of bidders. Our design is based on several
cryptographic primitives, both old (multicast, secret shar-
ing, digital cash) and new (verifiable signature sharing).
Our implementation of this service suggests that this ap-
proach performs sufficiently well to be useful in a wide
range of settings.

As described in Section 1, this work is part of a larger ef-
fort to understand how to implement common financial ve-
hicles in distributed systems. We are continuing in this effort,
and plan to extend the techniques developed in this work to
address more general types of auctions and other financial
vehicles. We hope to report on this work in future papers.
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