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A Secure Group Membership Protocol

Michael K. Reiter

Abstract—A group membership protocol enables processes in a distributed system to agree on a group of processes that are
currently operational. Membership protocols are a core component of many distributed systems and have proved to be fundamental
for maintaining availability and consistency in distributed applications. In this paper we present a membership protocol for

~ asynchronous distributed systems that tolerates the malicious corruption of group members. Our protocol ensures that correct
members control and consistently observe changes to the group membership, provided that in each instance of the group
membership, fewer than one-third of the members are corrupted or fail benignly. The protocol has many potential applications in
secure systems and, in particular, is a central component of a toolkit for constructing secure and fault-tolerant distributed services

that we have implemented.

Index Terms—Security, reliability, distributed systems, group membership protocol, Byzantine failures.

1 INTRODUCTION

group membership protocol is a protocol by which proc-

esses in a distributed system can reach agreement on a
group of processes that are currently operational. A process
may need to be removed from the group if the process fails
or is perceived to fail because, for instance, it is discon-
nected from the network. A process may need to be added
to the group when, for example, it rejoins the system after
recovering from a failure. It is the duty of the membership
protocol to ensure that processes observe changes to the
group membership in some consistent fashion. Membership
protocols have received much attention in the scientific lit-
erature (e.g., [1], 2], [3], [4], [5], [6]), [7], [8], [9]) and have
been implemented in numerous experimental and commer-
cial systems (e.g., [10], {1], [11], [12], [7]). They have proved
to be fundamental for maintaining consistency and avail-
ability despite process failures in a wide range of distrib-
uted applications.

In this paper we present a membership protocol that is
suitable for use in distributed systems in which some proc-
esses may be corrupted by a malicious intruder. More pre-
cisely, our protocol provides strong consistency guarantees
regarding the manner in which correct processes observe
changes to the group membership, despite the efforts of cor-
rupted processes inside or outside the group. Moreover, ma-
licious processes cannot single-handedly effect changes to the
group membership or prevent needed changes from occur-
ring. Our protocol achieves these guarantees in an asynchro-
nous system, provided that in each instance of the group
membership, fewer than one-third of the group members are
corrupted or fail benignly. To differentiate our work from
others, we note that our protocol is not concerned with the
detection of corrupt group members (although our protocol
can be used to remove them from the group once detected).
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Thus, its purpose differs from that of intrusion detection sys-
tems (e.g., [13]). Moreover, the ability of our protocol to toler-
ate the corruption of group members sets it apart from previ-
ous security work in group-oriented systems that focuses on
securing group semantics and communication against attacks
from outside the group only (e.g., [14]).

There are many motivations for a secure group member-
ship protocol. First, as membership protocols play impor-
tant roles for many distributed applications, they may also
present avenues through which intruders can mount at-
tacks on the availability and integrity of distributed sys-
tems. By manipulating the membership protocol underly-
ing a replicated service, for example, an intruder might ef-
fect the removal of sufficiently many servers from the
server group to deny service to clients. Similarly, the in-
truder might cause servers or clients to observe inconsistent

- group memberships, which could result in inconsistent re-

plies to clients if, say, each reply is computed from the in-
puts of some fraction of the group members (e.g., [15], [16]).
Use of our protocol to maintain membership information
would prevent these attacks.

A second motivation for our protocol is that it facilitates
the realization of other security technologies. For example,
group-oriented cryptographic controls and secure group
computing techniques have received substantial attention in
the scientific literature (see [17], [18]). These techniques typi-
cally require coordination among group members, and there-
fore, their use in real systems can be facilitated by providing
members with consistent group membership information
that cannot be manipulated by corrupt members.

An example of this can be found in a proposed technique
for using group-oriented cryptographic controls to construct
distributed services that remain available and correct despite
the corruption of some of their component servers [19]. This
technique requires that client requests be issued to servers by
an atomic broadcast protocol, which ensures that all correct
servers receive the same sequence of requests. Assuming that
only crash failures occur, several systems provide practical
and efficient implementations of atomic broadcast with the
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help of a membership protocol (e.g., [20], [12]). With our
membership protocol and similar techniques, we have built
an efficient implementation of atomic broadcast that can tol-
erate even malicious process behavior [21], [22]. Our protocol
thus contributes to a set of mechanisms that make the tech-
niques of [19] practical, and we have implemented a toolkit,
called Rampart, for building secure, fault-tolerant services
using these techniques [22].

The rest of this paper is structured as follows. In Section 2,
. we describe our assumptions about the system. In Section 3,
we more carefully define the properties that our member-
ship protocol satisfies. We give a high-level presentation of
our protocol in Section 4, deferring a formal treatment to
Appendix A. We discuss performance in Section 5 and con-
clude in Section 6. We prove the correctness of our protocol
in Appendix B.

2 THE SYSTEM MODEL

We assume a system consisting of some countable, possibly
infinite number of processes py P, P, .- We will often de-
note processes with the letters p, g, and r when subscripts
are unnecessary. We allow an infinite number of processes
to model infinite executions in which processes are con-
tinually created. However, at any point in an execution,
only a finite number of processes are present. A process
that always behaves according to its specification is said to
be correct. A faulty process, however, can behave in any
fashion whatsoever (i.e., Byzantine failures), limited only
by the assumptions stated below.

Processes communicate exclusively by sending and re-
ceiving messages over a completely connected, point—to—
point network. Communication channels are authenticated
and protect the integrity of communication using, e.g., well-
known cryptographic techniques [23]. Communication is
reliable but asynchronous: If the sender and destination of a
message are correct, then the destination will eventually
receive the message, but we do not assume a known, finite
upper bound on message transmission times. Assuming
such a bound would be risky in hostile settings, due to the
potential of message delays introduced by denial-of-service
attacks [23]. While we do assume reliability of communica-
tions, only the liveness (but not the safety) of our protocol
depends on it.

Each process p; possesses a private key K; known only
to itself, with which it can digitally sign messages (e.g.,
[24]). We denote a message {---} signed with K; by <>Kx

We assume that each process can obtain the public keys of
other processes as needed, with which it can verify the ori-
gin of signed messages. As we will see, our protocol does
not require all messages to be signed by their senders, but
some messages must be signed to ensure that they are not
undetectably altered during forwarding.

Each process has a mechanism by which it may come to
suspect that a process is faulty or correct. These suspicions
can be mistaken and can differ between processes. This
mechanism is largely independent of our membership pro-
tocol, but offers suspicions on which the membership pro-
tocol may act to add or remove a process from the group. In

practice, this mechanism might be implemented with the
help of periodic “heartbeat” messages [9] or hints from a
higher-level application. The safety of our protocol does not
rely on this mechanism, but liveness does; we discuss this

in Section 4.3. If process p suspects g of being faulty, then ’

faulty{g) is true at p; otherwise, correct(g) holds at p. It
is convenient to assume that once a correct p suspects g
faulty, it does so forever.

3 PROTOCOL SEMANTICS

As described in Section 1, the goal of a membership proto-
col, generally speaking, is to enable correct processes to
agree on a group of processes that they believe to be cur-
rently operational. Beyond this, however, the precise se-
mantics from one membership protocol to the next can vary
substantially. Therefore, in this section we more carefully
state the semantics of our protocol.

Conceptually, our protocol operates by updating an ar-
ray V; at each correct process p;. The elements of V; are de-
noted V;*, x 20, and V" is called p,’s xth view of the group.
Initially each V", x > 0, is undefined. The membership pro-
tocol updates this array by installing a set of process identi-
fiers as the value of V" for some x > 0; once V" is so de-
fined, it is never changed. Views are installed in order of
increasing x (i.e., if V" is installed, then only views V/, y >
x, will subsequently be installed). At any time, if x is the
maximum index at which V, is defined, then Vl-x is p;’s cur-
rent view (or just p;’s view) and p; is said to be in view x. In
practice, each p; must retain only its current view, not all
elements of V.. The protocol assumes an initial state in
which for some nonempty, finite set P and all correct p;, if
p; € Pthen V) = P, and if p,¢P then V, is undefined. This
initial state can be achieved manually by a systems admin-

istrator or automatically under an administrator’s supervi-

sion (see, e.g., [25]).

Our protocol satisfies the following four properties on
how views are defined. First, our protocol ensures that for
any x, the xth view at each correct process is the same.

Uniqueness. If p; and p; are correct and Vi and V are
defined, then V" = ij.

Uniqueness is common to many membership protocols,
including [3], [6], but is also stronger than the ordering se-
mantics of some others. For instance, with the protocol of
[7] and the “weak” and “hybrid” protocols of [9], concur-
rent failures may result in the failed processes being re-
moved from processes’ views in different orders.

The second property is also shared with other member-
ship protocols. Intuitively, this property says that views
“make sense:” each correct process is a member of its own
view and the correct members of its view are eventually
aware of their membership in the group.

Validity. If p; is correct and V;* is defined, then p; e V"
and for all correct p; € v, ij is eventually defined.

|
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Note that by Uniqueness, V', once defined, equals V;*. Va-
lidity and Uniqueness imply that those correct p; at which
V" is defined are exactly the correct members of all such

V;*. So, the correct processes with defined xth views intui-
tively form a group, i.e., a set of processes that mutually
believe one another to be members. For convenience, we

thus define the xth group view V*to be V* for any correct p;
such that V;"is defined. If there is no such p,, then V* is

i

undefined. Our protocol defines group views in increasing
order: if V**! is defined, then V* was previously defined.

While Uniqueness and Validity correspond to properties
of several other membership protocols, other membership
protocols satisfy them only when processes fail benignly.
Our protocol, however, satisfies them even when processes
behave maliciously. Moreover, the fact that processes can
behave maliciously forces us to add additional features, to
prevent faulty processes from manipulating the group
membership. '

Integrity. If p e V¥ —V**!, then faulty(p) held at some
correct g V*, and if p e V**' = V¥, then correct()

held at some correct g € V*.

This property prevents faulty processes from single-
handedly causing membership changes to occur. Finally, we
would like a property to ensure that faulty processes cannot
prevent membership changes from occurring.

Liveness. If there is a correct p € V* such that [ (2]V*] + 1)/ 3]
correct members of V* do not suspect p faulty, and a g € V*
such that faulty(g) holds at |(V*| -1)/3]+1 correct
members of V*, then eventually V** is defined.

A similar property can be stated for the case “g¢ V" and
correct(q) holds at | ((V*| - 1)/ 3]+1 correct members of

V*.” Intuitively, Liveness says that if enough correct mem-
bers want to remove a process 4 and there is some correct
member p that is not suspected faulty by enough correct
members, then the membership is eventually changed. This
property may seem weaker than desired, for two reasons.
First, progress relies on accurate failure suspicions about
some correct process p. Chandra, et al., have shown that this
limitation is fundamental [26]; a protocol satisfying our safety
properties cannot be unconditionally live in an asynchronous
system. Second, Liveness does not imply that g is eventually
removed. In fact, with minor modifications, our protocol does

ensure that if for all y > x, [(2]V¥] + 1) / 3] correct members
of V¥ do not suspect p faulty and | (V| - 1)/ 3|+1 correct

members of V¥ suspect g faulty, then g is eventually re-
moved. For simplicity, however, here we content ourselves
with the Liveness guarantee presented above.

4 THE PRoTOCOL

Our protocol was most directly influenced by the work of
Ricciardi and Birman [6], [25], which solves a similar mem-
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bership problem in asynchronous systems where only crash
failures occur. In our protocol we adopt a manager-based
protocol structure that is similar to that of [6], [25]. How-
ever, our consideration of malicious corruptions of group
members, in addition to member crashes, results in a sub-
stantially more complex protocol.

Our protocol executes on a per-view basis: when a process
in view x installs view x + 1, it terminates the protocol for view
x and begins the protocol for view x + 1. The protocol for each
p; in view x operates under the premise that Uniqueness and

Validity are satisfied for processes’ xth views, and thus that V*
is well-defined. If this is the case, the protocol ensures that they
are satisfied for processes’ (x + 1)th views. As stated informally
in Section 1, however, our protocol requires that at most

LV -1/ SJ members of V* are faulty (and thus that at

least [ (2V*| + 1) / 3] members are correct). That is, if one-third
of the members of a group view fail, then we cannot ensure
that Uniqueness, Validity, Integrity and Liveness will continue
to be satisfied, or indeed that the next group view is well-
defined. Recall that in Section 3, we assumed views Vi0 atall p,
that satisfy Uniqueness and Validity; we further require that at
least [(2]V°| + 1) / 3] members of the initial group view V’are
correct.

Each p; in view x assigns to each p € V* a unique rank
‘/ix
the members of V" by rank. Our protocol requires that cor-
rect processes in the same view rank processes in the same

way. This can be done, e.g., by ranking processes based on
a well-known total order of process identifiers or on senior-
ity in the group. In each view V7, there is a distinguished
member called the manager that is, by definition, the mem-
ber with the highest rank (i.e., with rank IVi" ) at each cor-

for view x in the set {1, ..., }, thereby totally ordering

rectp, e V',

The protocol for each process p; in view x is presented
formally in Appendix A. In the remainder of this section, our
goal is to present this protocol in a high-level and intuitive
manner, highlighting the basic techniques used and some of
the issues that must be addressed. To enable the reader to
correlate our discussion to the presentation in Appendix A,
however, we annotate our discussion with references to the
line numbers of Figs. 5, 6, and 7 in Appendix A.

At its highest level, our protocol executes as follows. In
each view V*, the manager is responsible for suggesting an
update to the view, which is the name of a process that,
based on the recommendations of group members, should
be added to or removed from the group. V**' is obtained
by the members of V* either adopting the manager’s sug-
gestion and updating the group membership accordingly,
or removing the manager from the group. Our protocol
ensures that each correct member of V* takes the same ac-
tion; intuitively this is how we achieve Uniqueness.

4.1 Correct Manager

In this section we outline the execution of the protocol in
the case in which the manager is correct and is not sus-
pected faulty by correct members. The case in which the
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Fig. 1. Protocol when manager is correct.

manager is suspected faulty by correct members is dis-
cussed in Section 4.2. The protocol in the case we consider
here, i.e., the manager is correct and not suspected faulty, is
shown in Fig. 1.

As mentioned previously, in each view V* it is the man-
ager’s responsibility to suggest an update, based on the rec-

ommendations of group members, to apply to V* to obtain
V1. To facilitate this, when a process p; in view x comes to

suspect that some g € V" is faulty or that some g ¢ V7 is cor-

rect, it sends a notification (notify ) . to the manager of
]

V* (Fig. 5, line 5.5), indicating that it believes that ’s mem-
bership status should be changed (i.e., that 4 should be re-
moved from or added to the group). The manager, say p;,

collects notifications from members of Vi" until for some

process g, it has received notifications from [_(lle| -1)/3]+1
members to change ¢'s status. The number | (V/*|-1) /3] +1

is significant because, under the assumption that (V* is well-
defined and) at most L(]Vx| -1)/3] members of V* are
faulty, it ensures that some correct member of V* wants to
change the status of 4.

Having received messages {(notify g), }, p for some
J

p;eP

Pc V| where |P|= |_(|Vl."] -1)/3]+1, the manager p;

sends a suggestion (suggest {{notify Ny }PEP> to the
7

]

members of V;*(Fig. 6, line 6.4). When each process P;

receives this message from the manager, it tests whether
the message was created correctly, i.e., if it contains

{(notify g)  }, ., for some g and PcV] where

|P| = L(lexl -1/ 3_| +1 If so, p; returns to p; a signed ac-
knowledgment (ack p, q)Kj for p;’s suggestion {line 5.13).
In addition, p; adjusts its state so that it will never send
another acknowledgment to p; in this view (lines 5.11-
12).

The manager p; waits for [ (V| +1) /3] acknowledg-
ments suggestion (line 6.12).
[@v]+1)/ 3] is significant because, if at most
L(V*]-1)/ 3] members of V* are faulty, it ensures that a

majority of the correct members of V* have acknowledged
the manager. Since a correct process acknowledges only
one suggestion from the manager, there can be at most one

update for which there are [(2V*|+1)/ 3| acknowledg-

for its The number

{ready po q)K,-

ments. And, if at most I_([Vxl -1/ 3_| members of V¥ are

faulty, the manager will receive r(2[Vx| +1)/ 3-| acknowl-

edgments. ‘
Upon receiving messages {(ack p, q)l;(.}pjep where P ¢ V"

7
and |P|=[(2V]+1)/ 3], the manager p; sends a proposal
<proposal {{(ack p; Dy }p,ep> containing these acknowl-
i Pis ‘
edgments to the members of V;* (line 6.13). When a process p J

receives the proposal, it verifies that the proposal was created
correctly (line 5.24) and if so, returns (ready p; ), (line5.27),
7

indicating its readiness to commit the update. Note that even if
p; were faulty, it could not convince a correct process P; to

send (ready p; q'), for some ¢’ # g, due to p;'s requirement
J .
that there be I-(2|V)x] +1)/ 3-| acknowledgments for 4". Once: p;
collects a ‘set of messages {(ready p, q)Kj }p,- cp for some
P ¢ V;" where |P| = [(2JV/*] + 1) / 3] (line 6.15), it broadcasts' a
commit message (commit {(ready p; q), }p-EP> (line 6.16).
j I

A process p; € V* that receives this message verifies that it was
created correctly (line 5.28) and, if so, installs ij“ by adding or
removing g (lines 5.31-32). I-(ZIV’C[ +1)/ 3] ready messages
are required so that a committed update will be detected if the
manager later fails, as is discussed in Section 4.2."

4.2 Faulty Manager

The protocol can become much more complex if the man-

-ager is suspected faulty by some correct processes. In this

case, some process, called a deputy, may need to take over
for the manager and attempt to complete the transition to
the next view. The next view may be obtained by removing
the manager from the group or, if the manager could have
already committed an update to some correct process, by
ensuring that all correct members commit that update. Tn
either case, it must be ensured that all correct members
commit the same update, even if the deputy is faulty.

A process p;, which is not the manager, becomes a deputy
if enough members suspect all other members with rank
higher than p; of being faulty. To be precise, if a process p ; in

view x suspects all members of ij with rank higher than p,
of being faulty, it sends a message (deputy pi)Kv to p;, to
7

1. A broadcast message eventually reaches all correct: members or, and
only if the initiator is faulty, none of them; see Appendix A.
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indicate that it thinks p; should become a deputy (line 5.7). If

p; receives messages {(deputy p;); }, ,p Where P c V" and
i

|Pl= [ (v#|-1)/3]+1 then it initiates the deputy protocol
by broadcasting (query {{aeputy p;), }p-eP> to the mem-
r AR

bers of V" (line 6.7). This message shows that some correct
member believes that p; should become a deputy.

In response to this query message (if it is properly con-
structed), each member p; returns (last p; S)Ki where S is
the set of acknowledgments contained in the last valid pro-
posal message it received, or @ if it has not yet received a
proposal (line 5.10). p; also adjusts its state so that it will not
respond to the manager or deputies of higher rank than p;
(line 5.9). The set S is returned to convey any update that
could have been committed by the manager or a deputy of
higher rank than p;: since |—(2 V¥ +1)/ 3-| processes must
send ready messages for an update to be committed (see
Section 4.1), if an update was committed, then the ac-
knowledgments for the update were already received at a
majority of the correct members of V*. So, if the deputy p;
receives r(2|Vx| +1)/ 3-| last messages, at least one of these
messages contains a set of acknowledgments for the com-
mitted update.

Upon receiving [(2 [V +1)/ 3] 1ast messages

{(1ast p, S,.)K'}piep,pi sends to V a suggestion
]

<suggest {(1a.st p; Si>1< }p]-EP> that contains these mes-
j

sages (line 6.10). From this point the protocol continues
much like that of Section 4.1, as if p; had sent a suggest
message as the manager, but with one major difference. It is
simple for a process that receives a manager’s suggest mes-
sage to determine the update it should acknowledge—it is
just the update in the included notify messages (see Section
4.1). In this case, however, a receiving process p must derive,
from the messages {{last p; Sj)Kj }pjep, an update to ac-

knowledge. This is simple if all last messages indicate that
all p; € P received no prior proposal (in which case p ac-

knowledges the update naming the manager) or the same
prior proposal (in which case p acknowledges the update in

(proposal
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that proposal). However, these 1ast messages may indicate
that different processes received different last proposals.

As shown in Fig. 2, this could happen even if no proc-
esses behave maliciously. In Fig. 2, the manager’s proposal
is received only by p,. The first deputy p attempts to in-
stall the next view, but fails after sending its proposal
message to remove the manager. (p,’s messages are also
delayed to p,.) Then, the second deputy p, collects last
messages from the remainder of the group and sends its
suggest message. Note that the last messages in p,’s
suggestion contain a set of acknowledgments for g, the up-
date initially proposed by the manager p,, and a set of ac-
knowledgments for the update p,. Moreover, it is not diffi-
cult to extend this example to one in which some correct
process may have actually committed one of these updates
and installed its next view. If this occurred and processes
Py, ..., ps acknowledge the wrong update, then Uniqueness
could be violated.

Intuitively, given a suggestion

<suggést {(1ast 4 Si)K,}Pf€P>’
]

a process should acknowledge the update r with the prop-
erty that for some p; € P, S; = {{ack g r)Kk }y,eq (for some
appropriate Q) and 4 is the lowest ranked process in the set
of all processes ¢ ranked greater than p such that for some
randp;eP,S; = {{(ack ¢’ rr)Kk }pkEQj (for some appropriate
Q). For instance, in Fig. 2, after receiving p,’s suggestion

each process p; should reply with (ack p, py), since the
7

process that proposed to remove p,, namely pg, is the low-
est ranked of all processes (with rank greater than p,) that
made a proposal. As we prove in Appendix B, the strategy
of acknowledging the update proposed by this lowest
ranked proposer ensures that this update will be the same
as any update that could have been previously committed
to another member. This update is identified in lines 5.15~
21 of Fig. 5.

Once a process p; determines the update q to acknowl-
edge, the protocol continues as in Section 4.1. That is, p;

sends (ack p; q), to the deputy p; (line 5.23). Upon receipt
]
of [ (2lV*| +1) / 3] acknowledgments for g, p; then sends its

(suggest {(last pz Sj)k; }Pj€Rl> where

{(ack po a)x;}pyer) time (2ast 72 )
(mm;ser) " {(:;:‘(jp;pjeP)Kl 5= ig::: :: rqx))ﬁﬁ:f:q fd‘;"’l"‘"

1
py — (1ast ps B)xc;,  (ack pe po)k;, \ /
vy Py 1N il N
S 0 N A N S0 S A
D A\ A Y A
o VNV WV e, G

{query (suggest (proposal Pz)K,-}»_,-eR) PO)Kj}p,'eQ')K;

{{deputy {(1ast ps - {({ack pe

Pe)K;}pieq) )i }pieQ) Po)k;}pieq)

Fig. 2. Processes p,,

..., p; are informed of two different proposals for the next view.
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proposal message (line 6.13). When a process p; receives

this proposal, it verifies that it was created correctly (line
5.24) and, if so, sends (ready p, q)K_ to p;. Once p; obtains
]

[(2]Vf|+1)/ 3—| such ready messages, it broadcasts its

commit message, thereby causing correct processes to add
Or remove 4.

It is worth recalling how our protocol masks malicious
behavior by faulty processes. First, a manager’s suggest
message or a deputy’s query message must contain signed
notify or deputy messages, Trespectively, from
L(v¥|-1)/3]+1 members of V* to be considered valid.
This ensures that a process cannot be added or removed
without the agreement of at least one correct member. Sec-
ond, a proposal message must contain I-(ZIVxl—f-l) / 3]
acknowledgments for an update—and thus acknowledg-

ments from a majority of correct processes in V*—for the
proposal to be considered valid. So, it is impossible for a
faulty process to send valid proposals for different updates
to different processes. Third, if an update is committed to a
member, then any valid suggest message sent by a subse-
quent deputy, even if the deputy is faulty, will contain evi-
dence that this update was committed. This is true because
[(2|VI| +1)/ 3] members must send ready messages for

the update to be committed, and because the deputy’s sug-
gest message must contain last messages from

l- @Qvi+1)/ 3_] members—and thus a last message from

some correct member that sent a ready message for the
update. This ensures that once an update has been commit-
ted somewhere, correct processes will acknowledge only
the same update, and thus that Uniqueness will be main-
tained. These arguments are formalized in Appendix B.

4.3 Failure Suspicions

So far, our protocol description has treated failure suspicions

as inputs generated independently of the membership proto-

col, and indeed none of Uniqueness, Validity, or Integrity
require any further assumptions regarding failure suspicions.

To prove Liveness, however, we must make certain assump-

tions regarding these suspicions. To see why, suppose that a

member p fails and that all correct processes suspect it of be-

ing faulty, but the (faulty) manager refuses to suggest that p

be removed from the group. Unless correct members come to

suspect the manager faulty and remove it, a next view may
never be installed. We thus impose the following assump-
tions on the failure suspicion mechanism.

Eventual Suspicion. Suppose that for some correct p; in
view x and some faulty » € V", faulty(q) holds at p; for
1) some g € V", and 2) all 4 € V] ranked higher than . If
p; does not install Vi"Jrl (for sufficiently long), then even-
tually faulty(r) holds at p;.

Gossip. If a correct p; in view x receives

(query {(aeputy r)K’_ b, )

for some P V', |P| = [(V{*|-1) / 3] +1, then faulty(g)

becomes true at p; for all g € V;” ranked higher than r.

Eventual Suspicion prevents correct processes from
waiting on faulty managers and deputies forever without
suspecting them faulty. Gossip requires a correct process to
sometimes adopt failure suspicions about a manager or
deputies from another correct process. The necessity of
Gossip to Liveness will be made clear in Appendix B.

4.4 Joiner Protocol

In this section, we describe the protocol for a process join-
ing the group. In stating this protocol, it is convenient to
assume that a correct process joins the group at most once,
or in other words, that a removed but correct process re-
joins the group as a new process with a new process identi-
fier. In practice, this can be implemented by composing
process identifiers from two components: a static identifier
for the process (e.g., its public key) and a value that changes
with each of that process’ joins (e.g., an incarnation number
or nonce identifier).

The main difficulty presented to a joining process is de-
termining the view in which it is first a member. That is, in
the protocol described in Sections 4.1 and 4.2, a process p,

installs Vfﬂ after receiving a message of the form

(commit {{ready p q)Kj }pl_d,) for some PcV® where

[P|= ]-(2|Vix] +1)/ B_I. For p; to interpret or verify the valid-
ity of this commit message, it must know the contents of

V*, because otherwise it is not able to, e.g., determine if P is
of the proper size or form. However, a joining process
p; € V¥*' = V¥ may not know the contents of V* (because
Vix is not defined). Thus, the joining protocol must take
other measures to ensure that p; will install a proper Vi’”l.
The basis of our solution to this problem is that it suffices

for p; to obtain the contents of some past group view VY

where ¥ < x, and the commit messages sent in views y

through x that tell it how to transform V¥ into V**!, To be
able to provide these commit messages to joining proc-
esses, correct members maintain a history set containing, for
each prior view, a valid commit message sent in that view
(line 5.29). Before a correct p; € V” installs a view ij” con-
taining a new member p,, it sends (history p; S) to p;
where S is its history set, including the commit message
sent in view x (line 5.30). '

The joiner’s part of this protocol is shown formally in
Fig. 7 of Appendix A. Informally, the protocol begins with
the joining process obtaining the contents of some past

group view V¥; below we discuss approaches by which this -

information can be obtained.” The joiner then waits to re-
ceive a history message and, upon receiving one (Fig. 7,

2. Depending on how members are ranked, it may be helpful for the
contents of V” obtained by the joiner to convey the ranks of the mem-
bers of V7. For instance, if members are ranked by seniority in the
group (in the manner of [6], [25]) and the obtained contents of V” are
ordered by rank, then the joiner can determine the rank of each proc-
ess in later views, because any two processes in V” are ranked in the
same relative order in Jater views (until one of them is removed).
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line 7.5), extracts commit messages from the history and

constructs subsequent views V*, z > y (lines 7.7-16). The
joining process, say p;, continues accepting history mes-
sages and producing subsequent views to find the first
view V**! that contains its own identifier. It then installs
Vi"+1 and initiates the normal protocol for that view.

This scheme relies on the ability of a joining process to
obtain the contents of a prior group view. There are several
possible ways to enable this:

1) A trusted authority (e.g., the group creator or admin-
istrator) could deposit with the group members the
contents of some group view signed by the author-
ity’s private key. Then, the members themselves
could send the signed view to a process prior to add-
ing the process to the group. Provided that the proc-
ess could obtain the authority’s public key, the proc-
ess could verify the validity of the group view and
then save the view to distribute to other processes. A
variation of this approach is to store the signed view
in a replicated database that holds signed views for
many groups. Processes could obtain the view from
the database if at least one database server is correct.
Since many public-key distribution systems employ
such databases to distribute public keys (e.g., [27]),
this alternative may require little extra mechanism or
administrative overhead in a system already em-
ploying public key technology.

2) Using the techniques of [16], [19] a secure, fault-
tolerant service could be constructed to maintain and
distribute recent group views for possibly many
groups. Each group’s initial view could be stored at
the service as part of the group creation, and then
copies of commit messages for that group could be
forwarded to the service to update the group view
held in the service. Processes wishing to join a group
would first query the service to obtain a group view
for the group. This approach, however, may require
additional assumptions bounding the number of the
service’s component servers that could be faulty [16],
[19]. Moreover, the techniques of [16] would require
processes wishing to join a group to be able to iden-
tify and authenticate each of these servers.

3) If there is a known set of nodes on which all members
of V* for all x > 0 will execute, then the set V° can be
written to local stable storage on each node as part of
the group creation, s0 that a process joining the group
will at least know V. Moreover, if each process up-
dates local stable storage when it installs a view, then
a joining process may know a more recent view. This
approach would work well, say, for a group of server
processes executing on a small, static set of server
nodes. However, it requires checks to ensure that a
faulty process cannot mislead a future joining process
on the same node simply by updating local stable
storage with an incorrect view.

Depending on how joining processes obtain group
views, steps may need to be taken to ensure that the view
obtained by a joining process is indeed a past group view.
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For example, in the second approach above, if a process is
added to the group and additional views are committed
before the process can obtain a view from the service, the
process might obtain a view after that in which it was
added. Such confusions can be avoided if, e.g., each correct

p; in view x delays sending (notify q) for some q ¢ V*

until ¢4 has obtained a view. (For 31mphc1ty, such synchro-
nizations are omitted from Figs. 5, 6, and 7.)

As our protocol is presented in Figs. 5, 6, and 7, each
member retains a commit message for every view update
committed (lines 5.29, 7.6). In practice, a commit message
sent in view x can be discarded when it is known that every
correct process that joins in the future will know the con-

tents of V¥ for some y > x. For instance, in the first ap-
proach described above, if the trusted authority periodi-
cally updates the signed group view to a more recent view
VY, then the commit messages sent in views V*, x <y, can
be discarded after each update. Here there is a tradeoff be-
tween the amount of state that members must maintain and
the frequency with which the authority updates the signed
view. However, as experience with group-oriented systems
suggests that membership changes infrequently in most
applications (e.g., see [20]), storage costs at members should
typically be modest even if the signed view is updated in-
frequently. In the second approach, a process could discard

a commit message for view x after it is received at the

service (and at any g e V**' —V¥), provided that correct

processes p; in view x refrain from sending (notify g},
7

for some g ¢ V* until g has obtained V*. In the third ap-

proach, once some V; where y > x has been written to local
stable storage at all nodes that can host member processes,
all commit messages for view x could be discarded from
processes’ histories.

5 PERFORMANCE

As just mentioned, experience with current group-oriented
systems has shown that membership changes are infrequent
for most applications. Based on this, we do not expect our
protocol to be the primary factor limiting performance in
most applications that use it. Nevertheless, if our protocol is
to be useful in a wide range of applications, efficiency will be
important, and this weighed heavily in the design of our pro-
tocol. For instance, we chose a manager-based protocol struc-
ture, versus a symmetric protocol involving more messages
(but possibly fewer phases of communication), to minimize
message traffic. Moreover, the traffic generated by our proto-
col as presented in Section 4 and Appendix A can be further
reduced by various optimizations. We have omitted these
optimizations here, however, for purposes of clarity.

We implemented a prototype of our protocol as part of the
Rampart tool kit [22]. Our implementation employs Cryp-
toLib [28] for its cryptographic operations and runs over the
Multicast Transport Service [29], which supports point-to-
point authenticated channels [14]. Figs. 3 and 4 illustrate the
protocol cost in milliseconds for removing a group member
with this implementation. The tests described in these figures
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were performed between user processes running over Sun0OS
4.1.3 on moderately loaded SPARCstation 10s spanning sev-
eral networks. In these tests, we used RSA [24] as our digital
signature scheme, with 512-bit moduli and public exponents
equal to three. Figs. 3 and 4 show average times between the
initiation and termination of the protocol at group members
in tests in which a nonmanager process was removed via the
protocol of Section 4.1 (Fig. 3) and in which the manager was
removed via the protocol of Section 4.2 (Fig. 4). Those curves
marked “total” show the average elapsed real time between
initiation and termination at each member, and the curves
marked “CPU” show the average CPU time consumed by the
protocol between initiation and termination at each member.
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Even though CryptoLib provides a very fast software
implementation of RSA (roughly 52 msec for signature gen-
eration and 2 msec for signature verification, for the de-
scribed platform and parameters), RSA operations still ac-
counted for over 70% of managers” and deputies’ CPU costs
and over 80% of others’” CPU costs. Clearly our protocol’s
performance would benefit from special-purpose proces-

sors for performing RSA computations.

In these tests, each member initiated the protocol imme-
diately upon suspecting the eventually-removed process
faulty, which, for the purposes of these tests, was triggered
by a multicast to the group. So, each member initiated the
protocol at approximately the same instance. In reality, the
moments at which group members come to suspect a proc-
ess faulty and to initiate the protocol can vary widely with
both the types of failures exhibited and the failure detection
mechanisms employed. Therefore, the numbers in these
figures should be viewed as protocol costs only, rather than
the actual duration between a process failure and its re-
moval from the group.

6 CONCLUSION

In this paper we presented a group membership protocol
for asynchronous distributed systems that tolerates the cor-
ruption of group members by a malicious intruder. Our
protocol provides strong membership semantics, including
a total ordering of membership changes among all correct
group members, provided that less than one-third of each
group view is faulty. Moreover, these faulty members are
powerless to single-handedly alter the group membership
or prevent membership changes from occurring.

We have implemented our protocol as part of Rampart, a
tool kit for constructing secure and fault-tolerant distrib-
uted services. Rampart provides protocols and other sup-
port for constructing replicated services that can retain their
correctness and availability despite the malicious corrup-
tion of some of their component servers. The membership
protocol presented in this paper, and the implementation of
atomic broadcast that it facilitates, complete a set of tech-
niques that make such a tool kit practical.

APPENDIX A — FORMAL PrRoTOCOL DESCRIPTION

The protocol discussed informally in Sections 4.1 and 4.2 is
presented formally in Figs. 5 and 6. For clarity, we have
divided the protocol description into those steps that each
p; in view x executes in the role of a “regular member” (Fig.
5) and those that it executes as a manager or deputy (Fig. 6).
Nevertheless, Figs. 5 and 6 describe a single protocol, to be
executed in its entirety by each p; in view x. In Fig. 5,
rank(p) denotes the rank of p for view x, and mgr denotes
the manager for view x. We will also use this notation in
the rest of our discussion. Here we do not describe a par-
ticular implementation of a failure-suspicion mechanism,
though implementing one satisfying Eventual Suspicion
and Gossip is trivial in practice.

In Figs. 5 and 6, the protocol is presented in terms of if
statements (e.g., lines 5.30-32) and repeat statements (e.g.,
lines 5.3~-33). The execution of “if C : A, else: A,” proceeds
in the natural way: if condition C holds then the (possibly
compound) statement A, is executed, and otherwise A, is
executed. If C is an existential condition that is true when
evaluated, then A; is executed with varjables instantiated
by a witness (i.e., a satisfying assignment of bound vari-
ables) for C. The else. clause can also be omitted, as in the
innermost if statement of line 5.32. The semantics for
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repeat

1C : 4
1C,: A,
1C,: A,

are that the following step is repeated: some condition C, is
evaluated and, if true, the statement A, is executed (with
variables instantiated by a witness for C,). The evaluation of
C, and the execution of A, are atomic, so that no other con-
ditions are evaluated or statements executed concurrently.
Evaluating conditions and executing statements as appro-
priate are repeated until the repeat statement is terminated
with a terminate repeat statement. A terminate repeat ter-
minates only the closest encompassing repeat statement.
We assume that the condition evaluated in each iteration is
chosen fairly, so that if a condition is continuously satisfied,
then eventually the corresponding statement will be exe-
cuted (if the repeat statement is not terminated). Moreover,
if there are several witnesses that continuously satisfy an
existential condition, then eventually the corresponding
statement will be instantiated and executed with each.

In Fig. 5, the outer repeat statement is terminated imme-
diately after the protocol changes to the next view by exe-
cuting

Vf“ ¢ installview(...)

in line 5.31 or 5.32. The operation V;"*! < installview(S)

installs the view V"' =S and initiates the protocol for

view x + 1 at the top of Figs. 5 and 6.

Each message sent by a correct process in view x is la-
beled with x. (We have omitted these labels from the fig-
ures to simplify the presentation.) In particular, a digitally
signed message contains the label as part of its signed con-
tents. Received messages that are labeled with a view num-
ber greater than that of the receiver’s current view are buff-
ered until the process installs that view. Received messages
that are labeled with a view number less than that of the
receiver’s current view are immediately discarded and ig-
nored, as are messages that are labeled for one view but
that contain messages labeled for a different view.

Messages can be sent and received by one of two inter-
‘faces. A process can send a message m to a process using a
send (e.g., line 5.5); a message can be sent to each member
of a view by specifying the view as the destination (e.g.,
line 6.4). The predicate rcvd(p, m) in Figs. 5 and 6 is true if
p; received the message m on the communication channel
from p. The second interface enables messages to be sent by
broadcast to a view (e.g., line 6.16). We assume that this
broadcast is implemented by a protocol that ensures that

1) if a correct process broadcasts m to V¥, then all correct
members of V* receive the broadcast m, and 2) if any cor-
rect member of V* receives a broadcast m to V*, then all

correct members of V* receive the broadcast m. Property 2)
distinguishes broadcasting from a process simply sending a
message to each member of a view, because in the latter, if
the sender is faulty then the message might, e.g., reach only
some members. Broadcasting can be implemented in our

39

system model using a simple message diffusion protocol;
see [30]. In Figs. 5 and 6, the predicate brcvd(m) is true if p;
received a broadcast message .

Fig. 7 is the formal description of the protocol for a join-
ing process p;. As in Section 4.4, our description assumes
that a correct p; joins the group only once. In Fig. 7,
oldview and oldviewno denote, respectively, the con-
tents of a past view VY and its view number y that were
obtained by p;. Ways to obtain these were discussed in Sec-
tion 4.4. The label(m) operation in line 7.8, where

m= (commit {{ready g r>K/ }p,.ep>f returns the number of

the view in which m and the messages {(ready q r)Kj }pj P

were sent according to their view labels (which are required
to be the same). Other than this, view labels are ignored in
Fig. 7. Note that the outer repeat statement in Fig. 7 termi-
nates only after both the first view V;*! containing p; has
been installed (i.e., done = true) and histories from at least
|_(|V”| -1)/3]+1 members of V* have been incorporated
into history (line 7.17). This ensures that history will be
sufficiently complete to enable other joining processes to
construct their own joining views from it. The history
should be complete in this regard prior to sending it in line
5.30; we have omitted this synchronization from the figures
for simplicity.

APPENDIX B — CORRECTNESS
In this appendix we prove that our protocol satisfies
Uniqueness, Validity, Integrity and Liveness. Our proofs
employ the assumptions that at most | (V|- 1)/ 3] mem-
bers of each view V* are faulty and that a correct joining
process obtains a valid oldview and oldviewno (lines
7.1-2). In what follows, ranks are for view x, and all mes-
sages are assumed to be labeled for view x (see Appendix A).
Of the four properties, the proof for Uniqueness is the
most complex, as it must address the issues raised in Sec-
tion 4.2 of ensuring that if an update is committed to some
members by the manager or a deputy, then no different
update can be committed to other members by a future
deputy. The full proof is by induction on views; the fol-
lowing lemma is the key to the induction step.

LEMMA 1. If a process receives <commit {(ready p r)K/ }P/ EP)
where P ¢ V* and |P| = [(2V*|+1) / 3), then the only v* for
which a correct p, € V* will send (ack qr’) x where
rank(q) < rank(p), is?’ =1. )

PROOF. Suppose a process receives

(commit {(ready p T)K/ },,],Ep>

where P ¢ V* and |P| = ['(ZIV"I +1)/ 3]. Then, each proc-
ess p, in some majority of the correct processes in V™ sent
(ready p 1) k,, in line 527 and  assigned

lastproposal ={(ack p r)K_}piEPk in line 5.26, for some
7

P, c V* where |P,| =[(2V*|+1)/ 3].
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(5.1)  protocolstate + 3|V}
(5.2) lastproposal «

(5.3; repeat

(54) | I({(p € VF A fauliy(p)) vV (p € V¥ A correci(p)))
(5.5) : send {notify p)x, to mgr
(56) [ 3p€VT(p+# mgr A Vg€ Vi (rank(q) > rank(p) = faulty(q)})
25.7 send (deputy p)x, to p ’
5.8) | 3pe V7, P C V7 (brevd({query {(deputy p)x;}p;ep)) A Srank(p) < protocolstate A |P| = [([V¥]-1)/3] +1)
5.9) protocolstate « 3rank(p)

55.10) send (1ast p lastproposal) i, to p

(5.11) [ 3p,P C V7 (revd(mgr, (suggest {(notify p)x;}p;er)) A

) 3rank(mgr) — 1 < protocolstate A |j>] = [{|VFfl-1)/3]+1)

(5.12) protocolstate +— 3rank(mgr) — 1

é5.13) send (ack mgr p)x; to mgr

5.14) | Ipe V¥ PCVE, {Sj}pjep(rcvd(p, {suggest {(last p Sj)Kj}},jep)) A

3rank(p) ~ 1 < protocolstate A |P| = [(2{VF| +1)/3])

(5.15) lowestrank «— [VZ| +1

5.16 lowestupdate «— mgr

5.17 repeat

(5.18) ftrue: if3p; € P,g € V7,7, Q CVA(S) = {{ack ¢ 1) s, }ppeq A

. rank{p) < rank(q < lowestrank A 19l = [(2|vF +1)/3])

€5.19; lowestrank «— rank(g)

5.20 lowestupdate « r

5,21 else : terminate repeat

}5.22; protocolstate — 3rank(p) — 1

5.23g send {ack p lawestupdate) g, to p

%5,24 I 3p € V7,q,P C V7 (revd(p, (proposal {{ack p g}x;}p;ep)} A

3rank(p) ~ 2 < protocolstate A |P}= [(2]V7|+ 1}/3])

5.25 protocolstate «— 3rank(p) — 2

}5.26; lastproposal — {{ack p q)Kj}ijp

55.273 send (ready p ¢)x; to p

5.28) | 3p€ V¥, q, P C V7 (brevd({commit {{ready p ¢} x;}p;ep)) A IP]= [(2[V7]+1)/3])

(5.29) : history « history U {{commit {(ready p ¢}k, }p;cP)}

(5.30) if ¢ ¢ V¥ : send (history g history} to ¢

(5.31) VT — installview(VF U {¢})

(5.32) else : ifpis#g: ’Vf"'*'1 « installview(V¥ — {¢})

(5.33) terminate repeat

é&l% mdstate «— begin

6.2 repeat

6.3) | mdstate= begin A 3q, P C V(Vp; € P(revd(p;, (notify g)x;)) A [Pl = [{IVF]~1)/3] +1)
(6.4) send (suggest {(notify GI)KJ- }p;ep) to V7
6.5 mdstate — sentsugg
%6.6% | mdstate = begin A AP C V#(Vp; € P(revd(p;, (deputy Pi)K,-)) A [Pl= (VA - 1)/3] +1)
6.7) broadcast (query {(deputy pi)k;}p;cp) to V¥
(6.8) mdstate «— sentquery
(6.9) | mdstate= sentquery A 3P C V¥, {S;},,ep{Vp;j € P(revd(pj, (Last p; S5)x;)) A |Pl=[(2[VF]| +1)/3])
(6.10) : send (suggest {(last p; Sj)x;}p;ep) to V7
6.11 mdstate «— sentsugg
56.12; | mdstate = sentsugg A g, P C V7(¥p; € P(revd(p;, {ack pi a}x;)) A [Pl = 2V +1)/31)
(6.13) : send (proposal {{ack p; ¢)x;}p;er) to Vf

. (6.14) ‘mdstate « sentprop
(6.15) | mdstate = sentprap A Jdq, P C V(¥p; € P(rcvd(p;, (ready p; ‘Z>Kj)) AP = [(2|VE] + 1)/3])
(6.16) : broadcast (commit {(ready p; g}x;}s;ep) to V7
(6.17) terminate repeat

Fig. 6. Manager/deputy protocol for each process p, in view x.

7.1 viewno + oldviewno
7.2 view — oldview
7.3) done + false
57.4) repeat
(7.5; 1 3p, S(revd(p, (history p; S}))
(7.6 history « history U §
(7.7; repeat
(7.8 [ true: if done=false A 3g € view,r,m € history, P C view(m = {commit {{ready ¢ r}x;}p;eP) A
1P| = [(2{view| + 1)/3] A I’abel(m) = viewno)
(7.9) : if p; =7 : broadcast m to view
(7.10) VYIeWnotl . instailview{view U {r})
27.11; done + true ‘
7.12 terminate repeat
(713; else : if r € view: view « view —{r}
(7.14 else : view +— view U {r}
(7.15) viewno « viewno + 1
%7.16) : else : terminate repeat
7.17) if done = true A 3P C view,{S;}p;erp(|P| = [(lview| - 1)/3] + 1 A Vp; € P(revd(p;, {history pi S;}) A S; C history))
(7.18) : terminate repeat

Fig. 7. Protocol for a joining process p,.
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Now suppose that a correct process p; € V' sends
(ack g r’)Ki where rank(q) < rank(p). To do this, p;

must have received a message
(suggest {<1ast q Si)x }P:EQ>
)

where Q ¢ V* and |Q|= |_(2|V"| +1)/ 3-|. Because
Iol =[@|v*| +1) / 3], each process p, in some majority of
the correct processes in V* must have sent
(1ast q S;) K’ Moreover, at least one of the correct proc-
esses p, in that majority must have previously set

lastproposal ={{ack p 7). }y.ep, as described above.
AR

We now show by induction on rank(p) — rank(g) that

v = r. So, for the base case, suppose that rank(p) —

rank(g) = 1. Then for some correct p, € P N Q,

S, ={{ack p 7), }, .p- Moreover, since p is the lowest

AR

ranked process with rank greater than g and there could

_ 4 X —

not be any §, —{(ack pr >K,-}p,~el’, where P, ¢ V¥, IPI| =

[(2v*|+1) /3], and r” % r, it follows (from 5.17-21) that
r=r.

Now suppose that rank(p) — rank(g) > 1, and con-

sider the lowest ranked process ¢’ such that rank(g’) >
rank(q) and there exists a p, € Q and a r” such that

5 =(ack q 7))y where @ © V' and [Q=

[(2|Vx|+1) / 3]. Since there is some correct process in

P N Q, it is guaranteed that there is some such ¢ and,
moreover, that rank(p) 2 rank (¢'). If rank(p) = rank(q’)
(i.e., p = ¢'), then the result follows as in the base case.
Otherwise, since rank(q’) > rank(q) we know that
rank(p) — rank(q’) < rank(p) — rank(g) and so v’ = r by
the induction hypothesis; the result follows. O

THEOREM 1. This protocol satisfies Uniqueness.

PROOF. The proof is by induction on views. The induction
step goes as follows. For a correct process p, to execute

V! « installview(...), it must receive a message
(comm:i.t {{(ready p r)K.}p_EP), where P ¢ V* and |P| =
7
r(2|Vx| +1)/ 3-|, that commits the update 7 to apply to the
xth view. Consider the p € V* of largest rank such that
some process receives (commit {(ready p r)Kj }pjep>, for
some P where P ¢ V* and |P|= r(ZiV"I +1)/ 3] Since a
correct p; € V* sends (ready p r), for at most one up-
date 7, it is not possible for a different correct process to
receive (commit {(ready p T,)K.}pep'>' where P’ c V7,
i n
[P = [(2|V" | +1)/ 3_|, and 7’ # . Moreover, Lemma 1 says

that the only update value r” for which a correct process
p; € V¥ will create (ack q7”), where rank(g) <

ran , or thus (ready g r”), isr”" =r. O
K(p) q1"),

THEOREM 2. This protocol satisfies Validity.

PROOF. Suppose that p € V*—V*,
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PROOF. By the conditions guarding the installview op-

erations on lines 5.31, 5.32, and 7.10, V/**! is defined at a
correct process p; only if p; € V;""'. We have to show that
ijﬂ is eventually defined at all correct p; € v+ This is
done by induction on views: Our induction hypothesis is

that if V" is defined at any correct p;, then ij is defined
atall correct p; € V/".

So, suppose that Vi’Vrl is defined at a correct p;, and con-
sider any correct p; € V.. In order for V**! to be de-
fined, p; must receive a valid commit message sent to
view x containing ready messages sent by correct proc-
esses in view x. Thus, if Vfﬂ is defined, then ka must be
defined at some correct p, and, by the induction hypothe-
sis, either V' is defined or p; ¢ V*. If V' is defined, then
because the commit message sent in view x is broadcast to
the members of V* (lines 6.16, 7.9), V].’“'1 will be defined. If

pj ¢ V¥, then p; will eventually receive a history mes-
sage from p; (line 5.30), which will cause p; to install

V;*!(line 7.10). ‘ a

THEOREM 3. This protocol satisfies Integrify.

Then, "at least
Lqv*|-1)/3]+1 members of V* sent either notify
messages indicating that p should be removed or, if p
was the manager of V¥, deputy messages indicating
that some member ranked lower than p should become a
deputy. Since there are at most I_(IVxl—l)/ 3| faulty
members of V* and since correct members send notify
and deputy messages in accordance with their failure
suspicions, it follows that some correct member of v

suspected p faulty. The argument for p € V™' —V* is
similar.

THEOREM 4. This protocol satisfies Liveness.

PROOF. Suppose there is a correct p € V* such that

[(2Jv*]+1) / 3] correct members of V* do not suspect p
faulty. Then, no member with rank lower than p can
generate a valid query message containing
|_(‘V"| ~1)/ 3] +1 deputy messages. Therefore, if p is the
manager and sends a suggest message, or if p acts as a
deputy and sends a query message, then each correct
member of V* will reply to p (if it has not already in-
stalled a new view) and p will complete the protocol and
install a new view. )
Now suppose there is a process that some set P ¢ V*
of correct processes, |P| = L(lel -1/ 3J +1, wants to re-

move. We show by induction on rank that if V**! is not

installed for sufficiently long, then eventually each
member of P suspects each g € V*, rank(g) > rank(p),
faulty. Thus, if p is not the manager, then p eventually
receives enough deputy messages to send a query,
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which, by the argument above, causes V**' to be
installed. For the induction, consider any q € V¥,
rank(g) > rank(p), and suppose that each member of
P suspects each r € V¥, rank(r) > rank(q), faulty. If

q is faulty, then Eventual Suspicion gives us the result. If
x+1

4 is correct but does not succeed in installing V***, then

some  correct member must have received

(query {{(deputy Mg by EQ> for some 7, rank(g)
AR

> rank(r) 2 rank(p), and some Q ¢ V7,

Q] = |_(|Vx|—1)/ 3]+1. Because query messages are

broadcast, all members receive

(query {{deputy ), }PieQ) and, by Gossip, suspect g
]

faulty. O

correct
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