A High-Throughput Secure Reliable Multicast Protocol
(Extended Abstract)

Dalia Malki

Michael Reiter

AT&T Laboratories, Murray Hill, New Jersey, USA
{dalia,reiter}@research.att.com

Abstract

A reliable multicast protocol enables a process to mul-
ticast a message to a group of processes in a way that en-
sures that all honest destination-group members receive
the same message, even if some group members and the
multicast initiator are maliciously faulty. Reliable multi-
cast has been shown to be useful for building multiparty
cryptographic protocols and secure distributed services.
We present a high-throughput reliable multicast protocol
that tolerates the malicious behavior of up to fewer than
one-third of the group members. Our protocol achieves
high-throughput using a novel technigue for chaining
multicasts, whereby the cost of ensuring agreement on
each multicast message is amortized over many multi-
casts. This is coupled with a novel flow-control mecha-
nism that yields low multicast latency.

1. Introduction

Reliable multicast, also known as asynchronous
Byzantine Agreement [4], is a fundamental communi-
cation protocol that underlies many forms of secure dis-
tributed computation. A reliable multicast protocol en-
ables a process to multicast a message to a group of pro-
cesses in a way that ensures that all honest destination-
group members receive the same message, despite the
contrary efforts of potentially malicious group mem-
bers and even a malicious multicast initiator. Reliable
multicast has been shown to be useful for constructing
multiparty cryptographic protocols that enable systems
to operate correctly despite the malicious (Byzantine)
behavior of some components [7]. Practical examples
of this can be found in Q, a distributed, penetration-

1063-6900/96 $5.00 © 1996 IEEE

tolerant key management service that we are developing
at AT&T [14]. © makes use of distributed computations
to perform key backup, recovery, and other functionsin a
way that ensures the correctness and availability of these
functions, while hiding sensitive information from any
sufficiently small coalition of penetrated servers. Reli-
able multicast underpins the protocols used to commu-
nicate intermediate results reported by servers and helps
to ensure that correct servers take consistent actions.

In this paper we present a new, practical reliable mul-
ticast protocol that is suitable for use in asynchronous
distributed systems and that can tolerate the malicious
behavior of up to fewer than one-third of the destination
group members. The main contributions of this protocol
are two mechanisms for maximizing multicast through-
put (i.e., deliveries per second) and for maintaining low
multicast latency (i.e., the time between multicast initi-
ation and its delivery). These mechanisms significantly
improve the message complexity of previously known
techniques for reliable multicast (e.g., [4, 12]) in the
case of no failures, which should be the common case in
most systems. Preliminary performance measurements
conducted in our laboratory on a prototype implemen-
tation of this protocol show encouraging results: Our
prototype sustains a steady throughput of 250 1-kilobyte
messages per second among eight Sparcstation 20s, us-
ing hardware broadcast on a 10 Mbit/s Ethernet.

The novel mechanisms by which we achieve high
throughput in our protocol are based on two principles.
The factor limiting performance in previous, practical
reliable multicast protocols is the cost of computing dig-
ital signatures (e.g., using RSA [16]) on message ac-
knowledgements. Our first principle thus attempts to
amortize the cost of computing a digital signature over
many multicasts by a technique called acknowledgement
chaining. Briefly, in this technique a single digital signa-

ture serves to acknowledge messages transitively, i.e., an
acknowledgement (signature) of one message M serves
also to acknowledge the messages that M acknowledges,
and so on. This method of chaining acknowledgements
was influenced by prior work in benignly fault-tolerant
systems, notably the Trans-Total [10] and Transis [5]
systems. Chaining (or linking) was also used in [2]
for timestamping documents by establishing their place
among a sequence of similarly timestamped documents.

The second principle behind our protocol is intended
to limit the latency of multicasts given this chaining tech-
nique. The latency of a multicast is determined primarily
by the number of signatures on the critical path between
initiation and delivery. If acknowledgement chaining is
employed in an uncontrolled manner, it could result in
all signatures required to deliver a multicast being per-
formed serially, with severe consequences for the latency
of that multicast. The second contribution of our protocol
is a flow control mechanism that maximizes concurrency
in the preparation of the acknowledgements required to
deliver each multicast. In this way, the latency of each
multicast is minimized without sacrificing the throughput
gained with the acknowledgement chaining technique.

In this abstract, we state our protocol assuming a
static set of processes. It is possible, however, to use
known techniques to extend our protocol to operate in
a dynamic environment in which processes may leave
or join the set of destination processes and in which
processes may fail and recover. In particular, using tech-
niques similar to those of [12], our protocol naturally
extends to support a virtually synchronous communica-
tion environment, which has been shown to simplify the
development of distributed programs [3]. These exten-
sions also support more effective failure handling and
garbage collection than we describe here.

The rest of this abstract is structured as follows. In
Section 2 we briefly describe our assumptions about the
system. In Section 3 we describe the semantics of our
protocol. In Section 4 we describe the acknowledgement
chaining technique in detail, and in Section 5 we describe
how to extend the resulting protocol with a flow-control
mechanism for maximizing the performance of our pro-
tocol. We conclude in Section 6.

2. System model

We assume a system consisting of a static set of n
processes po, p1, - - -Pn—1. We will often use p, ¢, 7, and
s to denote processes when subscripts are unnecessary.
A process that behaves according to its specification is

10

honest. A corrupt process, however, may behave in
any fashion whatsoever (Byzantine failures), constrained
only by the assumptions stated below. Corrupt processes
include those that fail benignly. Our protocol requires
that at most |(n — 1)/3] processes are corrupt, and thus
that at least [(2n + 1)/3] processes are honest.

Processes communicate exclusively via a completely
connected, point-to-point network. Communication
channels between honest processes are FIFO and reli-
able, in the sense that if the sender and destination of a
message are honest, then the destination eventually re-
ceives the message. However, communication is asyn-
chronous, in the sense that there is no known finite bound
on message transmission times. The communication
channel between each pair of processes is authenticated
and protects the integrity of communication (e.g., us-
ing well-known cryptographic techniques [17]), so that
a receiver can tell the channel on which a message is
received.

Each process p possesses a private key known only
to itself, with which it can digitally sign sets of mes-
sages (e.g., [16]). A set B of messages signed by p is
denoted £ B. We often use 2 M as an abbreviation for
£ B where M ¢ B, i.e., for the signature of a set con-
taining M. We assume that each process can obtain the
public keys of other processes as needed, with which it
can verify the origin of signed sets of messages. Hence-
forth, we mention explicitly when message signing is
used; otherwise, messages (or portions there of) are sent
unsigned.

3. Protocol semantics

In this section we more carefully state the semantics of
our reliable multicast protocol. Our protocol provides an
interface R-mcast(m), by which a process can multicast
a message m to the group. A process delivers a message
m from p via the reliable multicast protocol by executing
R-deliver(p, m). It is convenient to assume that an hon-
est process does not R-mcast the same message twice;
this can be enforced, e.g., by the process including a
sequence number in each message. As described in the
Introduction, the task of a reliable multicast protocol is to
ensure that processes deliver the same messages. More
precisely, our protocol satisfies the following properties.

Integrity: For all p and m, an honest process executes
R-deliver(p, m) at most once and, if p is honest,
only if p executed R-mcast(im).

Agreement. If p and ¢ are honest and p executes R-
deliver(r, m), then g executes R-deliver(r, m).

Validity: If p and ¢ are honest and p executes R-
mcast(m), then g executes R-deliver(p, m).

Source Order: If p and ¢ are honest and both execute
R-deliver(r, m) and R-deliver(r, m’), then they do
so in the same relative order.

Note that Agreement and Source Order together im-
ply that for any [and any process 7, the I’th R-delivery
from » is the same at all honest processes. In addi-
tion, while here we present our protocol in a way that
allows multicasts only from the processes po, ..., Pn—-1,
it is possible to extend the protocol to allow multicasts
from outside the destination group (e.g., in the manner
of [13]).

The above semantics distinguish the problem we
are attempting to solve from other problems studied
in the scientific literature on secure and fault-tolerant
distributed computing. In particular, our specification
is weaker than the well-studied problem of Byzantine
agreement [9]. The Byzantine agreement problem is as
follows: The honest members of a system must irre-
versibly decide on a value sent by a designated sender s
among them, such that (i) every honest member decides
on exactly one value, (ii) no two honest members decide
on different values, and (iii) if the sender s is honest,
then each honest member decides on the value sent by
s. It is tempting to think of reliable multicast as multiple
instances of Byzantine agreement with varying senders,
where the “decision” is the R-delivery of a sender’s mes-
sage. However, Byzantine agreement is strictly stronger,
in that it requires a decision to be reached at honest
members even in the case of a faulty sender ((i) above).
In contrast, reliable multicast does not require honest
processes to R-deliver messages from a faulty process.
Reliable multicast is also weaker than atomic (totally-
ordered) multicast (e.g., [11, 12, 13]). This problem
imposes an ordering requirement that is stronger than
Source Order, i.e., that honest processes execute the same
totally-ordered sequence of multicast deliveries. Due to
their stronger properties, neither Byzantine agreement
nor atomic multicast is solvable in asynchronous sys-
tems (implied by [6]), whereas reliable multicast is.

4, Chain multicast

In this section, we describe a subprotocol that will be
used in our reliable multicast protocol. This protocol,

11

called chain multicast, provides an interface that enables
a process to multicast a message to the processes. The
protocol ensures that no two honest processes deliver
different chain multicast messages, ie., that they both
agree on the contents of the I-th chain multicast from
process p, even if p is corrupt. The chain multicast
protocol takes its name from the technique of acknowl-
edgement chaining that was developed in prior work on
benignly fault-tolerant systems such as Trans-Total [10]
and Transis [5]. We outline this technique in Section 4.1
and describe the protocol in Section 4.2.

4.1. Acknowledgement chaining

The chain multicast protocol works by processes
sending messages to the group of processes. Each mes-
sage M is a tuple of the form

M = (p,m, B;, % B,) (1)
where p is a process identifier, m is the (application-
specific) contents of the message, and B; and B, are sets
to be described below, the latter of which is signed by p.
If the sending process is honest, then p is the identifier
of that sending process and included in m is a non-
negative integer header, denoted seq(m), that denotes
the sequence number of the message m.

The sets B and B, contain message digests. A mes-
sage digest function D maps any arbitrary length input
m to a fixed length output D(m) and has the property
that it is computationally infeasible to determine two in-
puts m and m' such that D(m) = D(m'). Thus, for all
practical purposes, the digest D(m) uniquely identifies
m. Several efficient message digest functions have been
proposed (e.g., MDS [15]).

Bj and B, can be viewed as acknowledgements of
other messages, ie., if D(M') € B; U B; (and p is hon-
est) then p has received M’, and we say that p (directly)
acknowledges M’. For reasons that will become clear in
Section 5, these acknowledgements are divided into two
sets By and B;, only the latter of which is signed. The
acknowledgements in messages naturally induce a rela-
tion, which we denote —, among message digests. That
is, given M of the form (1) and M', D(M)—D(M') if
and only if D(M') € By U B,. An acknowledgement
chain for M’ from p, denoted chain, (M), is a sequence
of messages My,..., My, k > 0, such that :p:>M0,
My = M’, and D(M;)—D(M;41) forall 0 < ¢ < k.
Intuitively, if there is an acknowledgement chain for M’
from p, then p has received M.

Given this machinery, the basic protocol executes as
follows. For a process p to send a message m, it sends
(1), where By and B, are digests of certain messages that
it has received; which messages’ digests are included in
By and B, will be described later. As a process re-
ceives messages, it builds a directed graph whose nodes
are message digests and whose edges are the relation
—. That is, when a process receives (1), it inserts the
node D(M) and, for each d € By U By, the node d
and the edge D(M)—d into its graph. When there are
acknowledgement chains for this message in its graph
from [(2n + 1)/3] processes, then it delivers m to the
application. The number [(2n + 1)/3] is significant
because if there are acknowledgement chains for a mes-
sage from [(2n + 1)/3] processes and there are at most
[(n — 1)/3] corrupt processes, then there are acknowl-
edgement chains for this message from a majority of the
honest processes. Provided that an honest process forms
an acknowledgement chain to at most one message with
the same process identifier and sequence number, no two
honest processes can deliver messages with the same
sender and sequence number but with different contents.

The acknowledgement-chaining principle leads to an
efficient utilization of resources. For example, four pro-
cesses p, g, 7, s could communicate as follows:

M; (p,my, {},{}

My, = (q,m,{},2{D(M)})
My = (r,m3,{},>{D(M)})
My = (p,ma, {},Z{D(M:)})
Ms = (s,ms,{},={D(Ms)})

In this scenario, messages M1, M, are deliverable, since
there are acknowledgement chains for each from three
processes. But only one explicit signed acknowledge-
ment was sent for any message.

This technique guarantees the uniqueness of mes-
sages, Ie., that when two honest processes deliver the
I’th message from some process ¢, they in fact deliver
the same message. Moreover, if up to |(n — 1)/3] pro-
cesses fail benignly, messages will continue to be deliv-
ered. However, even a single corrupt process can prevent
progress in this protocol. For example, if p is corrupt
above, it could send conflicting “versions” of M; (i.e.,
messages with the same sender and sequence number
but different contents) to ¢, r, and s, say M{ to ¢ and
M|’ to r and 5. Once ¢ sends M, acknowledging M/,
the graphs shown in Figure 1 result, where d’ = D(M])
is, to r and s, a digest of an unknown message. Since
M, acknowledges a message that r and s did not re-

12

ceive, r and s cannot acknowledge M, and thus M,
will never be delivered. To make progress, the protocol
below takes steps to detect corrupt members and bypass
undeliverable messages.

4.2, The protocol

In this section, we detail the chain multicast
protocol. This protocol provides an interface C-
mcast(m, By, '—%Bz) by which a process p can multicast
amessage m. By and B, are sets of message digests that,
as described in Section 4.1, denote acknowledgements.
A process delivers a message m from ¢ via the chain
multicast protocol by executing C-deliver(q, m).

The protocol is implemented using messages of the

form (1). Given such a message, it is convenient to
define
sender(M) = p
seq(M) = seq(m)
payload(M) = m
Two messages M and M’ are conflicting if

sender(M) = sender(M'), seq(M) = seq(M'), and
payload(M) # payload(M'). Since some processes
might be corrupt, it is possible throughout the course of
our protocol that an honest process will receive conflict-
ing messages. We say that a process C-delivers (or just
delivers) M of the form (1) if it executes C-deliver(p, m).

As described in Section 4.1, each process maintains
a graph, the nodes of which are message digests. A
shadow message M at p is any undelivered message
whose digest appears in p’s graph but that p has not
received on the channel from sender(M). Shadow mes-
sages include messages not received at all, but whose
digests appear in the graph because they were included
in the acknowledgements of a received message. A di-
rect message M at p is any undelivered message that is
not a shadow, i.e., that p has received from sender(M).
A candidate message at p is a direct message M such
that all M’, D(M)—D(M'), are delivered. A deliver-
ing set for amessage M is a set {chain,(M)},ep Where
1P| =[(2n+ 1)/3].

Our chain multicast protocol makes use of the con-
cept of message stability; we say that a message is sta-
ble if it has been C-delivered at all honest processes.
In order for processes to determine when messages be-
come stable, each process maintains a vector of counters
{Ci}05i<m indicating the sequence number of the last
message C-delivered from each process. Each process

Graph at ¢

Graph at r

Graph at s

Figure 1. Conflicting messages M|, M|’ prevent M, from being delivered

then piggybacks this vector on (e.g., the payloads of) its
chain multicasts. A process can determine that the I-th
message from a process p; is stable when it has delivered
a vector from each process whose value for ¢; is at least /.

In stating our protocol, it is convenient to let —* be
the smallest relation satisfying (i) d—*d for all d, and
(ii) if d;—d3 and dy—*d3, then d;—*d3. The protocol
at p executes as follows:

1. If C-mcast(m, By, :p>Bz) is executed:

(a) If for some D(M) € B; U B,, there
is a shadow message M’ such that
D(M)—*D(M'), then indicate an error and
halt this routine.

(b) Send
(p,m, B;,% By)

to each process. (This message is also re-
ceived immediately at p and is treated ac-
cording to the following rule.)

2. Ifamessage M = (q,m,Bq,1,=q>Bq,2)isreceived
from r:

(@) If M is direct (i.e., » = ¢) and there is a di-
rect or delivered message that conflicts with
M , then ignore and discard M and halt this
routine.

(b) Insert D(M) and any d € B, ; U B, into
the graph if they do not already appear.

(c) Insert the edges D(M)—d into the graph for
eachd € B, 1 U By 1.

3. Let M be a candidate message, where
sender(M) = p;. If a delivering set is received
for M and seq(M) = ¢; + 1:

13

(a) Execute C-deliver(p;, payload(M)), and
setc; —c¢j + 1.

(b) After a timeout period has passed, send M
and its delivering set to each process 7 that
has not acknowledged delivering M (ac-
cording to the delivery counters C-delivered
from r).

4. A message M (and the node D(M) and any
incident edges) where sender(M) = gq is dis-
carded when (i) some message M’ such that
sender(M') = q and seq(M’) = seq(M) is sta-
ble, and (ii) every M"' such that D(M)—D(M")
is either stable or has been discarded already,
meaning that M is no longer needed for any ac-
knowledgement chain of another unstable mes-
sage.

Lemma 1 If an honest p executes C-deliver(r, m) and
an honest g executes C-deliver(r, m') where seq(m) =
seq(m'), thenm = m/.

Lemma 2 An honest process executes C-deliver(p, m)
at most once and, if p is honest, only if p executed C-
mcast(m, . . .).

Lemma3 If p and q are honest and p executes C-
deliver(r, m), then q executes C-deliver(r, m).

4.3. Ensuring message C-delivery

The protocol described above ensures that honest pro-
cesses will agree on the contents of C-delivered mes-
sages. Additional steps are required in order to guar-
antee that a message that is C-mcast will eventually be
C-delivered. Some of the steps are obvious; e.g., we
have to specify what message digests are included in
By and B,, and even that C-mcasts are initiated at all,

in order to believe that acknowledgement chains from
[(2n + 1)/3] processes will be collected for any mes-
sage. In addition, however, there are a number of subtle
behaviors that can prevent C-mcasts from honest pro-
cesses from ever being C-delivered.

1. If some processes do not C-mcast messages or
include message digests in B; and B;, then de-
livery sets for messages may never be collected.
Thus, we stipulate that if an honest p does not
execute C-mcast within some period, then p ex-
ecutes C-mcast(L, B1,£>Bz) where 1 is a null
message. Moreover, for each C-mcast (unless oth-
erwise specified), B, includes all digests D(M)
currently in the graph such that (i) there is no di-
rect message M’ such that D(M')—D(M), (ii) if
D(M)—*D(M"), then M" is direct or delivered,
and (iii) M did not appear in B, in a previous ex-
ecution of C-mcast. The usage of the set By will
be described in Section 5 below.

2. There is arisk that a candidate message in an hon-
est process’ graph will not be C-delivered any-
where, even if it is from an honest process p, be-
cause no honest process receives a delivery set for
it. This could happen, for example, if a corrupt
process g sends conflicting “versions” of a mes-
sage M>, each version acknowledging p’s message
M;, to different honest members. Let M; and M}/
be these conflicting messages. Then, each hon-
est process may indirectly acknowledge M; by
directly acknowledging either M; or Mj'. This
is shown in Figure 2, where » has sent a mes-
sage M3 acknowledging M, s has sent a message
My acknowledging M)/, and &’ = D(M}') and
d' = D(Mj}) are digests of unknown messages to
r and s, respectively. As shown here, there may be
only one acknowledgement chain for M; at each
honest process.

In order to C-deliver a candidate message from
an honest process in such cases, each honest pro-
cess p must directly acknowledge the candidate
message if it is not delivered within some timeout
period (even though p will have at least indirectly
acknowledged it before). Thus, we require that
for any candidate message M = (g, m,...) such
that p has sent a message M', D(M')—*D(M):
if C-deliver(q, m) is not executed at p within some
timeout period, then p adds D(M) to B, for a fu-
ture C-mcast (if D(M) did not appear in a previous
B, at p).

14

3. The prior rule ensures that a message from an
honest process that becomes a candidate at honest
processes is provided enough acknowledgements
to eventually be C-delivered. There is still a pos-
sibility, however, that a C-mcast from an honest
process, say p, might be prevented from becom-
ing a candidate because it acknowledges amessage
from a corrupt process that can never be delivered
(as in Figure 1). To ensure that a C-mcast from
an honest process becomes a candidate, we use
a simple retransmission scheme. That is, if af-
ter p executes C-mcast(m, . . .), this message does
not become a candidate locally within some time-
out period, then p executes C-mcast(m, {}, {}).
This message is immediately a candidate at all
processes. Although it is possible that both these
transmissions of m can eventually become deliv-
erable, the stability counters will suppress dupli-
cate delivery of m to the application at any honest
member.

5. The full reliable multicast protocol

In this section we describe the full reliable multi-
cast protocol, which uses chain multicast from the pre-
vious section to deliver messages reliably and with high
throughput. The promise of high throughput comes from
the fact that a single digital signature can be used to ac-
knowledge multiple messages (all of those included in
the signed set, and acknowledged by those in the signed
set), and thus that the cost of a digital signature can be
amortized over many chain multicasts.

The latency of message delivery, however, may suffer
significantly in this protocol, because to amortize sign-
ing operations as effectively as possible, the signature
operations that are needed to deliver a message must be
sequentialized. In today’s computing environments, sig-
nature generation is a costly operation that is typically
an order of magnitude slower than authenticated mes-
sage transmission for most reasonable message sizes.
For instance, the generation of an RSA [16] signature
on a 75 MHz Sparcstation 20 using the CryptoLib soft-
ware package [8] ranges from roughly 12 milliseconds
(ms) for a (insecure) 300-bit RSA modulus,! to roughly
33ms for a (somewhat more secure) 512-bit modulus.

A 300-bit RSA modulus should be secure for roughly an hour
against an adversary with the computational resources used in the
factorization of the largest general RSA modulus factored to date [1]
(A. Odlyzko, private communication, May 1994). A 300-bit modulus
should therefore be used in our protocol only if it is changed frequently,
as in [13].

@D G

@D
Q)(Mﬂ

Graph at r

Graph at s

Figure 2. Conflicting messages A, M’ prevent A, from being delivered

These numbers are largely independent of the size of the
message being signed, but still compare poorly to the
roughly 1.5ms required for a 2 kilobyte message trans-
mission over a 10Mbit/s Ethernet authenticated using
(very secure) message authentication codes on such a
platform. Signature verification for RSA is faster: e.g.,
with a public exponent of 3, verification takes 1ms for a
300-bit modulus and 1.5ms for a 512-bit modulus. How-
ever, since [(2n + 1)/3] verifications sit sequentially on
the critical path of a C-delivery, these can add up to a
considerable cost.

More generally, let S be the time is takes to sign a
message, U be the time to verify a signature, and T’
be the typical time it takes to transmit a message of
some constant size. The delivery latency of the chain
multicast protocol is the time between a process p exe-
cuting C-mcast(m, . ..) and some process executing C-
deliver(p, m). In the most disadvantageous (but fault-
less) run of the chain multicast protocol, the delivery
latency is T + [(2rn + 1)/3] #* (S + U + T'). This oc-
curs when signed acknowledgements are formed sequen-
tially in a chain of [(2n + 1)/3] processes, each signa-
ture starting after the previous message in the chain is
received. In this case, in a network of 9 Sparc 20s us-
ing 300-bit RSA moduli, the delivery latency would be
roughly 105ms.

The latency of the chain protocol can be improved
only by parallelizing the generation of signatures. The
hope is to generate signatures in parallel at multiple pro-
cesses, without sacrificing the chaining principle entirely.
To achieve parallelization, the order of signing and trans-
mission is regulated in the full reliable multicast proto-
col. The reliable multicast protocol operates by hold-
ing the transmission of messages that are R-mcast, and

15

sending them via C-mcast according to the flow control
policy. In addition, it is responsible for preparing signed
and unsigned acknowledgements of messages, such that
signing is coordinated between different processes for
efficiency, and such that signing delays message trans-
mission as little as possible. In this manner, reliable
multicast obtains its reliability from raw chain multicast
and adds flow-control logic for better performance.

The reliable multicast protocol orders message trans-
mission in a round-robin manner. Initially, po is enabled
to transmit a message. When a message is received
from p;, process p(j4iymod n is enabled for transmis-
sion, and so on. Given this ordered transmission, %
consecutive transmissions can take place while message
signing is performed elsewhere. Therefore, the protocol
uses the following rule for signing digest acknowledge-
ments. A process p; that receives a message from sender
P(i—S/T)mod n—i-€., from a sender that is % hops pre-
ceding it in the order of transmission—begins preparing
a signed acknowledgement for the messages currently
in its graph (i.e., for its set B,). When process p; be-
comes enabled, it C-mcasts a message with the already
prepared signed acknowledgements (B B,), and with
unsigned acknowledgements for an appropriate set of
messages received since signing B, was initiated (Bj).
More precisely, the reliable multicast protocol at process
p; executes according to the following rules (in addition
to those of Section 4), where initially sender = 0 at p;.

1. If R-mcast(m) is executed, put m in a pending
queue.

2. Suppose that sender = j. If a message M =
(pj,...) is received from p;, or if a timeout pe-
riod passes without such a message being received,

then set sender = (7 + 1) mod n.

3. When (i — sender) mod n becomes less than £,

start the computation of :p>Bz for the set B; to
be included in the next C-mcast, i.e., where B;
includes the digests of all messages M’ such
that (i) there is no direct message M’ such that
D(M")—D(M"), (ii) if D(M')—*D(M"), then
M is direct or delivered, and (iii) M’ did not
appear in B; in a previous execution of C-mcast.

4. When sender = 1, dequeue the first message m
in pending, and execute C-mcast(m, B, B,),
where & B, is already prepared, and Bj contains
(unsigned) message digests of messages that cur-
rently satisfy requisites (i)—(iii) above.

5. If C-deliver(q, m) is executed, then execute R-
deliver(q, m).

Under normal (faultless) conditions, this reliable mul-
ticast protocol can potentially achieve a delivery latency
of T+ S+ [(2n+1)/3] * (U + T). This latency is
derived as follows: The transmission of a message M
takes T time. S is the time it takes for the process % hops
away from the sender to complete a signed acknowledge-
ment for M, or equivalently for this process to become
enabled to transmit. This is followed by [(2n + 1)/3]
transmissions, each one being initiated as soon as the pre-
vious one is received and thus taking 7" time, and each
one containing a signed acknowledgment for M (direct
or indirect). Finally, the [(2n + 1)/3] signatures must
be verified. This calculation assumes that each process
is ready to transmit a message as soon as its turn arrives.
In order for this to hold, it is assumed that n > % Us-
ing the parameters above (with 300-bit RSA moduli and
public exponents equal to 3), the delivery latency for 9
Sparc 20s is potentially between 30ms and 40ms.

6. Conclusion

In this abstract we presented a high-throughput mul-
ticast protocol that ensures that all members of the mul-
ticast destination group receive the same multicast mes-
sages, despite the malicious collaboration of fewer than
one-third of the group members. High throughput is
achieved due to an acknowledgement chaining tech-
nique, whereby a single signature is used to indirectly
acknowledge multiple messages. Our protocol also in-
cludes a flow control mechanism that enables concur-
rency in signing, in order to minimize multicast latency.

16

The performance of a communication protocol in an
environment that admits intruders can be predicted only
in the case of benign failures. Unfortunately, malicious
processes may significantly slow down the system by
inducing interruptions to the protocol. Future research
will focus on means for detecting and preventing such
attacks.

References

[1] D. Atkins, M. Graff, A. K. Lenstra, and P. C. Ley-
land. The magic words are squeamish ossifrage.
In Proceedings of Asiacrypt 94, pages 219-229,
1994,

[2] D. Bayer, S. Haber and W.S. Stornetta. Improv-
ing the efficiency and reliability of digital time-
stamping. Journal of Cryptology 3(2):99-111,

1991.

K. P. Birman. The process group approach to re-
liable distributed computing. Communications of
the ACM 36(12):37-53, December 1993.

G. Bracha and S. Toueg. Asynchronous consen-
sus and broadcast protocols. Journal of the ACM
32(4):824-840, October 1985.

D. Dolev and D. Malki. The Transis approach to
high availability cluster communication. Commu-
nications of the ACM 39(4), 1996. To appear.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2):374—
382, April 198S.

[71 M. K. Franklin and M. Yung. The varieties of se-
cure distributed computation. In Proceedings of
Sequences II, Methods in Communications, Secu-
rity and Computer Science, pages 392-417, June
1991.

[8] J. B. Lacy, D. P. Mitchell and W. M. Schell. Cryp-
toLib: Cryptography in software. In Proceedings
of the 4th USENIX Security Workshop, pages 1—
17, October 1993.

[9] L.Lamport, R. Shostak, and M. Pease. The Byzan-
tine generals problem. ACM Transactions on Pro-
gramming Languages and Systems 4(3):328-401,
July 1982.

(10]

(11]

[12]

[13]

(14]

(15]

[16]

[17]

P. M. Melliar-Smith, L. E. Moser, and V.
Agrawala. Broadcast protocols for distributed sys-
tems. IEEE Transactions on Parallel and Dis-
tributed Systems 1(1):17-25, January 1990.

L. E. Moser and P. M. Melliar-Smith. Total order-
ing algorithms for asynchronous Byzantine sys-
tems. In Proceedings of the 9th International
Workshop on Distributed Algorithms, Springer-
Verlag, September 1995.

M. K. Reiter. Secure agreement protocols: Re-
liable and atomic group multicast in Rampart. In
Proceedings of the 2nd ACM Conference on Com-
puter and Communications Security, pages 68—80,
November 1994.

M. K. Reiter. The Rampart toolkit for build-
ing high-integrity services. In Theory and Prac-
tice in Distributed Systems (Lecture Notes in
Computer Science 938), pages 99-110, Springer-
Verlag, 1995.

M. K. Reiter, M. K. Franklin, J. B. Lacy, and
R. N. Wright. The & key management service.
In Proceedings of the 3rd ACM Conference on
Computer and Communications Security, pages
3847, March 1996.

R.L.Rivest. RFC 1321: The MD5 message digest
algorithm. Internet Activities Board, April 1992.

R. L. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM
21(2):120-126, February 1978.

V. L. Voydock and S. T. Kent. Security mecha-
nisms in high-level network protocols. ACM Com-
puting Surveys 15(2):135-171, June 1983.

17

