
The Q Key Management Service

Michael K. Reiter Matthew K. Franklin John B. Lacy Rebecca N. Wright

AT&T Bell Laboratories, Murray Hill, New Jersey, USA
{reiter,franklin,lacy,rwright}@research.att.com

Abstract

In this paper we i.ntroduce R, a distributed public key
management service for open networks. f’l offers interfaces
by which clients can register, retrieve, and revoke public
keys, and escrow, use (to decrypt messages), and recover
private keys, all of which can be subjected to access con-
trol policy. R is built using multiple servers in a way that
ensures its correct operation despite the malicious corrup-
tion of fewer than one-third of its component servers. We
describe the design of R, the protocols underlying its oper-
ation, performance in our present implementation, and an
experimental application of the service.

1 Introduction

Key management :remains the primary obstacle to the
wide-scale use of cryptography. While numerous approaches
to key management haLve been proposed for specific applica-
tion domains, in our opinion few exhibit sufficient power and
flexibility to support the full range of applications emerging
today. Solutions relying on an off-line certification author-
ity tend to support a limited set of functions and only very
static (and thus poterrtially stale) key-to-principal bindings,
due primarily to the unavailability of the certification au-
thority. Solutions employing an on-line key management
server, on the other hand, tend to suffer from a well-known
tradeoff between security and availability, namely that repli-
cating services for availability makes them more difficult to
secure [13, 19, 12, 271.

In this paper we introduce R (“Omega”), a key manage-
ment service for open networks whose goal is to provide flex-
ible and powerful interfaces to meet the demands of an ever-
widening range of applications. R provides the flexibility
of an on-line server without incurring the fault-tolerance or
security vulnerabilities usually associated with such servers.
R supports interfaces by which a client can, if access control
policy allows, (i) register a public key at the service, (ii) re-
trieve a public key that was registered at the service, (iii)
revoke a registered pu’blic key from the service, (iv) escrow
a private key at the service, (v) decrypt a message using a
private key escrowed at the service, and (vi) fully recover a
private key that was escrowed at the service. A goal of fl

-

.Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are. not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
CCS ‘96, New Delhi, India
0 1996 ACM 0-89791-829-0/‘96/03..$3.50

is to provide a set of policy-independent functions that can
be tailored to fit a wide range of key-management policies.
So, for example, the escrow function provided by the service
can be tailored for policies that require key escrow (e.g., in
support of law enforcement) or that simply suggest it to en-
able a client t,o recover its private key in the event of its loss.
R supports the described interfaces for both RSA [30] and
ElGamal [7] keys.

fl is a distributed service, built using multiple servers in
a way that ensures its continued and correct operation de-
spite the benign failure or even malicious penetration of up
to a threshold number t of its servers, provided that the to-
tal number rz of servers satisfies n 2 3t + 1. This guarantee
applies to all functions supported by the service. So, the
penetration of up to t servers will not enable the attacker
to, for example, alter the public keys distributed by the ser-
vice, recover private keys that are escrowed at the service, or
prevent the recovery of escrowed private keys by the proper
authorities. 0 thus compensates for the increased difficulty
of securing replicated servers by tolerating a failure to ade-
quately protect some of them.

R is novel also in its key escrow functions, which are not
typical of key management services. The motivation to sup-
port key escrow in R is twofold. First, escrow as a form of
“key backup”, so that a key can be recovered if it is lost,, is a
prerequisite for the use of strong encryption in some settings.
Second, some applications require key escrow to enable pro-
tected and auditable use of a key in emergency situations
(e.g., in a business or law-enforcement emergency) when the
key would otherwise be unavailable. The escrow functions of
fl ensure that the private key corresponding to a public key
being distributed by the service is escrowed at the service,
and thus that (i) the private key can be recovered if, e.g., it
is lost by its owner and (ii) messages encrypted under the
public key can be decrypted by the service at the request
of proper authorities, but without revealing the private key.
Property (ii) should suffice, e.g., to enable authorities to re-
cover a shared session key established between two clients
with their public keys, if the clients conform to a known
protocol by which that session key is established. However,
if two clients deviate from the protocol for using public keys
in certain agreed-upon ways (e.g., see [1’7]), or if they com-
municate without the aid of these keys, then these escrowed
keys may be useless for monitoring client communication.

As described previously, a focus of our effort is to ensure
that fi can support a wide range of applications. To this
end, we have engineered R to adapt easily to accommodate
multiple certificate formats. In particular, 0 currently can
produce X.509-compliant RSA certificates, and thus can in-
teroperate with many existing and emerging applications.
An s1 public key has been integrated into the NetscapeTM
World Wide Web browser beginning with version 1.1, to en-
able us to experiment with Internet applications. We have

38

© ACM, 1996. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/238168.238184.

also established R as a certification authority for World Wide
Web servers within AT&T.

This paper provides an overview of 0 with a focus on
its design and the protocols that underlie its operation. We
begin by placing 0 in the context of prior work on key man-
agement systems in Section 2. Section 3 describes principles
and protocols underlying the service. Section 4 presents the
protocols that support public key registration, lookup, and
revocation, and Section 5 describes the protocols for private
key escrow, use, and recovery. Access controls to govern the
use of these functions are discussed in Section 6. Two imple-
mentation issues, namely server recovery and performance,
are discussed in Section ‘7. Section 8 describes ongoing ef-
forts to apply R in the context of the Internet.

2 Related work

n has been most directly influenced by the first author’s
prior work on a fault-tolerant authentication substrate for
the Horus system [28]. That work included the implemen-
tation of a prototype key distribution service with a sim-
ilar architecture to that of R. However, that service did
not support key escrow, supported only the distribution of
RSA keys, was suited for use primarily in the Horus envi-
ronment (e.g., it did not produce certificates that complied
with emerging standards), and reached a level of maturity
and performance far short of our present goal.

R’s architecture differs from those of the key distribution
services in the Digital Distributed System Security Archi-
tecture and its derivatives [ll, 32, 191, the CCITT X.509
recommendation [15], Privacy Enhanced Mail [16], and the
Yaksha public key extension to Kerberos [lo]. In their sim-
plest form, these services consist of an off-line certification
authority that creates public key certificates, and an on-line
directory that distributes these certificates to clients. In
contrast, R is on-line and thus can provide more timely ser-
vice to clients (e.g., can create certificates with shorter life-
times, which simplifies timely revocation [28]). In addition,
whereas the certificate-signing private key is protected by
keeping it off-line in these prior approaches, 0 protects the
private key by dividing it among multiple servers using cryp-
tographic techniques. There are other key management ser-
vices that adopt an on-line approach, such as Kerberos [23]
and the Sesame public key extension to Kerberos [20]. These
services, however, do not provide the fault and penetration
tolerance of n. Methods to increase the fault and pene-
tration tolerance of shared-key distribution services such as
Kerberos have been proposed (e.g., [6, 12, 31) but do not
immediately extend to support the functions of 0.

0’s escrow techniques were most directly influenced by
work on threshold signatures [5] and verifiable secret shar-
ing [24]. Our escrow protocols employ these techniques to
divide a private key among the servers, so that t + 1 servers
can collectively decrypt messages encrypted under the corre-
sponding public key or fully reconstruct the private key, but
t or fewer cannot. Mathematically these protocols resemble
several other escrow methods proposed in the scientific lit-
erature (e.g., [21, 8, 17]), though minor differences arise due
to differences in goals and system constraints. There is also
a body of more distantly related proposals for key escrow,
including the EES program [22], which provides symmetric
key escrow using very different mechanisms. We know of no
efforts besides 0, however, that demonstrate penetration-
tolerant key escrow, use, and recovery in practice.

3 State machine replication & Rampart

As described in Section 1, L! guarantees its correctness
despite the failure or corruption of up to a threshold t out of
n servers provided that n 2 3t+l. Basic to this guarantee is
R’s use of state machine repkation [31] to mask the behav-
ior of corrupt servers. State machine replication is a general
technique for implementing fault-tolerant services using mul-
tiple identical, deterministic servers, each initialized to the
same state. Client requests are issued to the service using an
atomic multicast protocol, which ensures that each correct
server receives the same sequence of requests. So, by correct
servers processing requests in the order of receipt, they will
all respond with the same output for each request. Provided
that at most t servers are corrupt, the responses of corrupt
servers can be masked by output voting, i.e., accepting only
responses output by at least t + 1 servers.

R makes use of state machine replication and, in our
present implementation, of the Rampart toolkit [26] for
this purpose. Rampart provides client-resident and server-
resident modules to which application client and server pro-
grams interface. These modules combine to communicate
client requests to a service via atomic multicast, and service
responses to clients via output voting. Rampart’s atomic
multicast protocol [25, 261 tolerates the benign or malicious
failure of t out of n 2 3t + 1 servers’ and any number of
clients. Rampart also enables servers to send authenticated
atomic multicasts to the group of servers, provides a mech-
anism to detect a faulty server that does not multicast a
message for which others are waiting, and ensures that cor-
rect servers concur on the set of messages multicast by such
a server prior to its failure. Because our protocols require
that R servers sometimes block awaiting atomic multicasts
from other servers, these features are useful to ensure that
our protocols will make progress.

The output voting protocol of Rampart is also well suited
to support n; more accurately, it was redesigned to support
0. This protocol is based upon a technique described in
[27] for performing output voting using a threshold signature
scheme [5]. Briefly, a (t + 1, n)-threshold signature scheme
is a technique for creating a public key and n shares of the
corresponding private key in such a way that given a mes-
sage, each share can be used to produce a partial result for
that message, and any t + 1 partial results for that message
can be combined into the digital signature for that message.
Moreover, 2 + 1 shares are necessary to create the signature
for the message, in the sense that without the private key, it
is infeasible to produce (i) the signature from t or fewer par-
tial results for the message, (ii) a partial result without the
corresponding share, or (iii) another share from t or fewer
shares. So, if one share is given to each server, at most t
servers are corrupted, and each correct server generates par-
tial results only for responses that it computes, then only
those responses will ever be properly signed. The Rampart
protocol currently employs an RSA-based threshold signa-
ture scheme due to Desmedt and Frankel [5].

The novelties of the Rampart output voting protocol that
were driven by R derived from a combination of the needs
for 0 to produce responses efficiently, to generate responses
that conform with standards, and to enable clients to detect
the misdirection or replay of responses from the service. In

‘More precisely, our multicast protocols, which employ time-
outs in their methods for failure detection, satisfy the described
properties provided that messages from correct servers induce
timeouts in other correct servers sufficiently infrequently. See [25]
for details.

39

r -
IA

Client _-- ---__ --_
LPP.

X
+

K ’
L

- -

RamDart

-1
64-r y

6” A h(Y)

Server Si
1 r - - Ramaart- - - - - - -~-

Server S,
7 r-----------------,

Rampart
1

X
+
Y

pi + (CX”“h(Y))“+~ : pi :

I ?
I L--------------J I

I I
I I
I I

--------A L

Wait to receive

{Pk}kEB, Iq = t + 1

such that

y c cue2h(y)n (Pk)bk,g

kCB

satisfies 7’ E cue2h(Y)

Figure 1: Rampart output voting protocol (operations performed mod N)

particular, among the interfaces offered by R is key lookup,
to which R should return, e.g., an X.509 certificate. While
this certificate, including its signature, could be generated
by R over Rampart, this would incur the overhead of two
signatures on the critical path of the reply: n signing the
certificate and Rampa.rt signing the response that contains
the certificate. Insteadl, having the Rampart signature be the
signature for the R certificate would be much more efficient.
However, this precludes Rampart placing any material in the
signed portion of the reply (e.g., the intended destination of
the reply or a nonce identifier), because any such material
would destroy the X.509 conformance of the reply.

For this reason, we redesigned the Rampart output voting
protocol to prevent it from signing anything but the infor-
mation provided by 12, but so that the Rampart code on
the client side could :&ill detect a replayed or misdirected
reply. To a first approximation, the Rampart client mod-
ule accompanies each client request with a value p equal to
a fresh random number r E Z& encrypted under the RSA
public key (e, N) of the service, i.e., p = re mod N. Once
Q has produced its reply Y, the Rampart server modules
collectively generate a. “blinded” [2] signature (p . h(Y))d E
T. h(Y)d mod N for Y using the threshold signature scheme,
where d is the private key of the service (shared among the
servers) and h is a message digest function (e.g., MD5 [29]).
On the client side, the Rampart module multiplies this
value by r-l mod N t.o obtain h(Y)d mod N, the signature
for Y. Moreover, since no server or attacker learns r or
h(Y)d mod N, it is not feasible to undetectably substitute a
replay or misdirect another reply Y’ to the client.

A weakness exists in this protocol as described, because it
provides a corrupt client the opportunity, via a chosen mes-
sage attack, to obtain the service’s signature on a message
that the service did not intend to sign. That is, if the client
sets p = h(Y)-‘h(Y’)# mod N, where Y is the expected re-

sponse from the service and Y’ is a response on which the
client would prefer the service’s signature, then the service
will unexpectedly create h(Y’)d mod N. One way to rem-
edy this would be to require the client to encrypt r using
a chosen-ciphertext-secure version of RSA such as [9]. A
slightly more efficient remedy, which we pursue here, in-
volves presenting the service’s public exponent e as a prod-
uct e = elez; we typically use el = 3 and e2 = 5. The
computation of p is then done in two stages, one at the
client and one at the service: the client chooses r E Z;; at
random and sends (Y = 7” mod N, and the servers generate
(cu’zh(Y))d mod N. This seems to force a client to take ez-
th roots mod N to mount chosen message attacks, which is
equivalent to breaking RSA.

The full protocol is shown in Figure 1. This figure sh.ows
the operations performed at the client and each server, be-
ginning with the client application generating its request X
and ending with the client application receiving the rejly Y
from the service and the service’s signature 6 = h(Y) mod
N for that reply. In particular, each operation contained
in the box labeled “Server S;” is performed by each server
Si and similarly for operations contained in the box labeled
“Server S, *. The notation “Y l R ZI;” denotes the choice
of a random value T E Z&. The notation in this figure also
reflects the threshold signature scheme currently in use by
Rampart [5]. In this scheme, server Si computes its partial
result as /3i = (a”‘h(Y))“; mod N, where si is Si’s share of
the private key d (or more accurately, of d - 1) of the service.
As partial results are received from other servers, each server
waits until there is a set B c (1.. . n}, ISI = t + 1, such
that cyQh(Y) nkEB(Pk)bkpB 3 (cye2h(Y))d mod N, where
each bk,B is a Lagrange coefficient that can be computed
efficiently and in advance.

A disadvantage of this protocol is that it can be sus-
ceptible to replay attacks if the service ever gives the same

40

resoonse twice. For this reason. each response from fI is
constructed to be unique, typically by including a unique
value that can be ignored on the client side. A second dis-
advantage of this protocol is that while it enables the client
to associate the response Y with the request received at the
servers with a, the client has no assurance that its request
X was not altered in transit. So, if necessary, Y must be of
a form that allows the client to verify that it is an appro-
priate response to X. For example, if X is a request for a
principal’s public key, then Y should include the principal’s
name so the client can verify that it has obtained the public
key for the intended principal.

4 Registration, lookup & revocation

In this section we describe the R protocols for han-
dling public keys. These protocols enable clients to regis-
ter, lookup, and revoke RSA or ElGamal public keys at the
service. The 0 client-side module also provides functions
to generate RSA or ElGamal key pairs, although these op-
erations are local to the client and do not involve servers.
Here we assume that the client issuing each request is au-
thorized to perform the requested operation; access control
is discussed in Section 6. Messages to servers are communi-
cated by atomic multicast, and replies to clients are voted
on using the protocol of Section 3.

Registration The Q interface for registering public keys
enables a client to submit a name and a public key to be
stored together at the service. Before accepting such a pair,
each server performs certain checks on the public key. If
it is an RSA public key (e, N), where supposedly N is the
product of two distinct primes, then each server verifies be-
fore accepting the registration that N is not a prime power

(i.e., N # pk for any prime p and any k > 0). If it is an
ElGamal public key (g, p, q, y), where supposedly p is prime,
q is a (large) prime factor of p - 1, g has order q in Zi,
and y = gz mod p for some z, then each server verifies these
suppositions by checking that p and q are prime, that q di-
vides p- 1, and that gq E y* 3 1 mod p. These verifications
are performed primarily to simplify any subsequent escrow
of the corresponding private key, as discussed in Section 5.
If the key passes these verifications, then it is accepted and
stored associated with the name.

Lookup To request a public key from a, the client spec-
ifies the name of the principal for which it is requesting a
public key and the type of public key that it is request-
ing. Each server’s response includes the most current public
key of that type for that principal in its possession. In our
present implementation, each server outputs the public key
for the principal in an unsigned X.509 certificate, the signa-
ture for which is the signature that Rampart creates before
sending the reply to the client (see Section 3).

Accommodating X.509 certificates prompted changes to
the client request, because an X.509 certificate includes
timestamps marking the lifetime of the certificate, which
must be agreed upon at all correct servers. To facilitate this
agreement, the client includes in its request a timestamp
equal to the client’s local clock value at the time of issuing
the request. When each server receives this request, it veri-
fies that the timestamp is sufficiently close to its own clock
value and, if so, uses this timestamp as the base time from
which to compute the certificate lifetime; this technique is

described in more detail in [28]. Since each server uses its lo-
cal clock, servers may disagree on whether the client’s times-
tamp is sufficiently close to their clocks. However, by each
server updating its state identically regardless of whether
it replies with a certificate or a rejection message (i.e., by
incrementing its certificate serial number counter in either
case), this disagreement wiIl not lead to divergence in server
states. And, if at most t out of the n 2 3t + 1 servers are
faulty, then a certificate or rejection message (or both) will
be signed by the service and sent to the client. (If both, the
second to arrive will be ignored by the client.)

Because the service produces a valid X.509 certificate,
this reply can be used in conjunction with any application
that requires certificates of this form, and in particular can
be “pushed” [19] to other applications as is customary in
many authentication protocols. (In Section 8, we describe
such a use in the context of the World Wide Web.) More-
over, R is not bound to return only X.509 certificates, but
can be easily adapted to generate other kinds of certificates
from the information it stores. As additional certificate for-
mats become widely used, we anticipate expanding the R
interfaces to allow requests for multiple types of certificates.

Revocation The revocation of a principal’s public key
takes place by a client submitting a request to the service
containing the name of the principal and the public key to
revoke. Correct servers then no longer distribute that public
key for that principal. R currently provides no interface to
retrieve “revocation lists” in contrast to many other sys-
tems (e.g., [ll, IS]). We feel that the need for such lists is
diminished by the highly available nature of a: rather than
retrieving a revocation list to see if a principal’s key has been
revoked, the client could just as well retrieve a new certifi-
cate for that principal. However, we anticipate providing
an interface for retrieving revocation lists to be compatible
with applications that require them.

The speed with which a revocation will propagate from
R to the larger system it serves depends on how R is used.
0 can afford to create certificates with substantially shorter
lifetimes (e.g., days, hours, or even minutes) than those usu-
ally associated with certificates created by an off-line certifi-
cation authority, since R is available to provide fresh certifi-
cates on demand. As a result, an 52 certificate can be created
with a prudent lifetime to ensure that it will expire “suffi-
ciently shortly” after the revocation of the public key that it
contains. We are currently examining other mechanisms to
propagate revocations more quickly. One is a callback mech-
anism by which clients register interest in keys at 0, and are
informed by 0 when one of these keys is revoked.

5 Escrow, decryption & recovery

R supports the escrow of RSA and ElGamal private keys.
Private key escrow ensures that messages encrypted under
the corresponding public key can be decrypted by the proper
authorities and that the private key can be recovered if,
for example, it is lost by its owner. (0 could be extended
trivially to also support signing with escrowed private keys,
though we haven’t done so in our present implementation.)
The correctness of these operations and the secrecy of the
escrowed key are ensured despite the collusion of up to the
threshold t of corrupt servers. Key escrow can be tied to key
registration in fl to provide leverage in enforcing escrow, by
having the service refuse to distribute the public key until
the corresponding private key has been escrowed.

41

When describing the following protocols, we again as-
sume that the client issuing each request is authorized to
perform the requested ‘operation; access control is discussed
in Section 6. The escrow protocols as presented here assume
that a public key corresponding to the private key being
escrowed has already been registered at the service. More-
over, our escrow protocols require the ability for the client
to send private information to each server individually. To
support this, R offers an interface by which a client can re-
quest a set of public keys, one for each server, to which each
server replies with a set of public keys distributed among
the servers at startup. Like other replies, this is voted upon
using the output voting protocol of Section 3, and so the
public keys obtained ca.n be trusted. Below we assume that
the client already possesses a public key Ki for each server
Si. We denote the encryption of v under public key K, by
(v)~~, and the decrypt,ion of v with the private key K,:’

by (v)~*-! Again, all messages to servers (from clients or
servers) are communicated by atomic multicast, and replies
to clients are voted upon using the protocol of Section 3.

5.1 RSA

Escrow protocol Our RSA escrow protocol employs a
threshold decryption scheme [5] in much the same way as the
output voting protocol of Section 3 makes use of the same
scheme for producing signatures. More precisely, a client es-
crows a private key of a principal at the service by breaking
it into shares and distributing one share to each server. The
servers verify that they collectively possess the private key
by decrypting several “test messages” in the manner pre-
scribed by the threshold decryption scheme. If the servers
find that the partial results from n - t servers consistently
contribute to proper decryptions for all test messages, then
the service accepts the #escrow.

The protocol is shown more precisely in Figure 2. It is
assumed in this figure ,that each correct server possesses a
pair of values (e, N) that a client previously registered at the
service as the principal’s public RSA key. If that client was
correct (and the public key was generated by the 0 client-
side module), then N == pq, p = 2p’ + 1, and q = 2q’ + 1
for primes p, q, p’ and q’. The client attempting an escrow
should possess the private key d satisfying ed E 1 mod X(N).
Here, X is the Carmichael function, i.e., X(N) is the least

positive integer satisfying m X(N)=lmodNforallm~ZI;. -
The escrow protocol ensures that the service can, if later
presented with a message m by an authorized client, produce
m* mod N, or reveal d to an authorized client if necessary.

The protocol begins by the client choosing a random de-
gree t polynomial f(z) E ZX(N)[~] satisfying f(0) = d - 1,
and computing n shares 81,. . . , s,, as Sk = f(2k)/ak mod
p’q’ where Uk is a value that is independent of e and N
that can be computed e-Kciently and in advance. The client
then sends {(sk)Kr}r<J+ to the servers by atomic mul-
tics&. Each server Si does the following: it (i) decrypts
(si)l<; to obtain si, (ii) deterministically computes L “unpre-
dictable” messages PI,. . . , PL E Z& by applying a message
digest function h to L different values VI,. . . , VL known to
the servers (each Vr is d.escribed below), (iii) raises each /3~
to the es;-th power mod N (i.e., computes its partial results
for PE,...,PE), and (iv) atomically multicasts these partial
results to the other servers. Each server accepts the escrow
attempt if there are n - t servers whose partial results have
the property that for all .& 1 5 e 5 L, the partial results for
p; from each subset oft f 1 of them yield (Pi)* E Pl mod N
when properly combined. Given n-t such partial results for

/3F, the verification that all (t + I)-subsets combine to form
,Br can be optimized by checking n - 2t (carefully chosen)

subsets of the (:$) subsets of size t + 1.
The assurance of a proper escrow with this scheme derives

from the following fact: since N is not a prime power (as ver-
ified in the registration protocol), a value S $ 1 mod X(N)

satisfies z6 5 z mod N for at most l/4-th of the elements
x E Z&. So, the probability that a subset of t + 1 correct
servers’ partial results for some ,B; combine to form PO, even
though their shares are invalid (i.e., their shares combine to
form a value d’ such that ed’ $ 1 mod X(N)), is at most l/4.
Thus, the probability that the partial results from a subset
of t + 1 correct servers that were given invalid shares satisfy
this relationship for all .& 1 < e < L, is at most 1/4L. Since
this holds for all (t + I)-subsets of a set of n - t servers (t of
which may be faulty), with high probability there are n - 2t
correct servers that possess proper shares for a value d such
that ed E 1 mod X(N).

A limitation of this protocol is that it only works for R!<A
keys of the form N = pq where p = 2p’+l, q = 2q’+l, and all
of p, q, p’, and q’ are prime, because the threshold decryption
scheme we use [5] works only for keys of this form. Finding
such N in our implementation takes substantially more time
than finding RSA moduli of a less restricted form, and many
applications do not produce RSA keys of only this form.
An alternative without this limitation is to share d to each
(t + I)-subset of the servers separately with a (t + 1, t + :I)-
threshold decryption scheme for general RSA keys (e.g., [l]),
and to perform checks similar to those above for each (t + IL)-
subset. Though costly in general, this is only marginally
more costly for small n and t (e.g., t = 1, n = 4). De Santis
et al., have also proposed an escrow scheme for RSA without
this limitation, and that is as secure as RSA [4].

Without special-purpose hardware at the servers for per-
forming modular exponentiation, our protocol’s performance
is limited by L because, e.g., each server Si must compute
L partial results (pl)e”i mod N, 1 5 e 5 L. Each such ex-
ponentiation is costly, taking roughly 385 milliseconds on a
50 MHz SPARCstation 20 for a 768-bit N. The size of L that
is needed to ensure a proper escrow is largely determined 'by
the client’s ability to predict, possibly with the help of cor-
rupt servers, the test messages {pt}i<~<~ that will be used
to verify the escrow attempt. If thesemessages can be pre-
dicted far in advance, then L must be large enough to make
a brute-force attack by the client infeasible (e.g., L 2 3:!).
However, this predictability can ,be limited in practice with
simple tricks, such as computing each /?c from information
VP that includes, in addition to e: (i) the encrypted shares
that the client sends to the servers, (ii) the placement of the
escrow request in the atomic multicast receipt sequence, (ii)
the most recent prior atomic multicast from each server, (iv)
the request immediately preceding the escrow request, ei,c.
Assuming that these tricks render {PI}~<c<L unpredictable,
we typically choose L = 5, leaving the c&e% roughly a .OOl
probability of fooling the service. Further steps could be
taken to ensure that {/31)i<l<~ are unpredictable: e.g., each
Ve could include random numbers atomically multicast by
servers, either periodically or per escrow request. We do n’ot
take such steps in our present implementation.

Decryption using escrowed keys R provides an inter-
face by which a client can request that a message be de-
crypted with a private RSA key escrowed at the service.
When presented with a message m to be decrypted with an
escrowed private key, each server Si looks up the correspond-
ing public key (e, N) and its share si of the private key and

42

Client Server Si Server S;

I
time

6

C~ERZX(N),~ Lklt

f(Z) - d - 1 + c;=, ckz

Sk * f(2k)/ak mod P’q’

(Yk + (Sk)Kk
{ak}l<k<n

Si + (Cti)K1v’

For e = 1 . . . L:

Pr - h(K)

gcd(Pr, N) L 1

Yi,f + (pt)esi mod N

3?A c (1 . ..n} [IAl=n-t A

ack/nack

decrypts m as prescribed by the threshold decryption algo- the original protocol is for sharing the discrete logarithm
rithm. That is, Si computes its partial result msi mod N, of a public value and is due to Pedersen [24]. The es-
atomically multicasts this to the other servers, waits to re- crow protocol is shown in Figure 3. The protocol begins
ceive partial results that allow it to reconstruct an m’ such by the client, which possesses the private key z, choos-
that (m’)’ z m mod N, and replies to the requesting client
with m’.

ing a random degree t polynomial f(z) E Z,‘[z] such that
Since n - 2t servers are guaranteed (with high

probability) to possess correct shares of the private key at
f(0) = z; denote f by f(z) = ctzt + . . . -t ciz + z. The

the end of the escrow protocol, such an m’ will be found
client then creates and sends an escrow request consisting

provided that n > 3t + 1.
of {(Sk)K*h<k$n, where Sk = f(k) mod q, and {Yk}l<k<f,

where Yk = gCk mod p. Each server Si individually verifies
This protocol as described would allow corrupt servers

and network eavesdroppers to learn m’. To hide this plain-
text, the client that issues the ciphertext to be decrypted
first blinds the ciphertext before submitting it, by multiply-
ing it by re mod N for a random r E Zh. Upon receiving
the decrypted reply, it multiplies the result by r-i mod N
to obtain the target plaintext.

that gst s Y n:=, (-dik mod p, and atomically multicasts
“ok” to the other servers if this check succeeds (and sends
“nok” otherwise). Finally, each server accepts the escrow
attempt if “okll was received from at least n - t servers. If
the correct servers accept this escrow attempt, then n - 2t
correct servers possess a correct share of z (see [24]).

Recovery of escrowed keys n also provides an interface
by which a client can request a private RSA key escrowed
at the service. In response to such a request, each server Si
encrypts its share si of the private key d under a public key
K provided in the client’s request and atomically multicasts
this value to the other servers. Each correct server then
responds to the client with the collected set of encrypted
shares. The client decrypts these shares with K-l and de-
termines d via Lagrange interpolation.

Decryption using escrowed keys 0 provides an inter-
face by which a client can request that a message be de-
crypted with a private ElGamal key escrowed at the service.
This is implemented at the servers with a protocol for com-
puting (Y* mod p where cr is a value provided by the client,
z is the private key escrowed at the service, and (g, p, q, y) is
the corresponding public key registered at the service. This
suffices to support ElGamal decryption because the ElGa-
mal encryption of a message m under a public key (g, p, q, y)

is (gk mod p, myk mod p) where k is a random element of
Z’ n. So. if a client submits to R the first comnonent cr

5.2 ElGamal of a ciphertext (cr, /3) generated with key (g, p, 9, y), and
R returns (Y’ mod D. then the client can find the nlaintext

Escrow protocol Our ElGamal escrow protocol enables a
client to escrow the private key z corresponding to a public
key (g,p,q,y = gz mod p) that was previously registered at
the service. The protocol assumes that p is prime, q is a
prime factor of p - 1, g has order q in Zp, and y is generated
by g. Recall that each of these assumptions was verified
when (g, p, q, y) was registered at the service (see Section 4).

m = (~3)~‘p mod a:
To compute oz mod p for a client that provides (Y, each

server Si that sent “ok” when z was escrowed looks up its
share s; for z, and atomically multicasts its partial result
ri = osi mod p to all servers. Each server then forms its
reply to the client as follows. Let {rk}&A for some A s
(1,. . . , n} be the partial results received at all servers.

Like our RSA escrow protocol, our ElGamal escrow pro-
tocol adapts a prior protocol, initially designed for a some-
what different purpose, to achieve key escrow. In this case,

1. If there is some B G A,]B] = 2t + 1, such that for all

B’ G B of size t+l, the computation nkeB, r:‘@ mod

Figure 2: RSA key escrow

43

Client Server Si Server S,

I
time

Ck CR &, 1 5 k 5 t

f(X) + Z + CL=, Ckxk

yk + gck m.od p

6k + (f(k) mod q)&.

.

{-fk)l<k<t, {bk}l<k<n

w Si C (Si)“;’

9” & y ni=, (yk)ik mod p ok/nok
w

c ack/nack 2 n - t ok’s ?

Figure 3: ElGamal key escrow

p, where bk,ni is the appropriate Lagrange coefficient,
produces the same value, then the server replies to the
client with this value. This value is (Y= mod p, because
the partial results (rk}&B contain partial results from
t + 1 correct servers that sent “ok” in the escrow pro-
tocol. However, since at the end of the escrow proto-
col only n - 21 correct servers are guaranteed to pos-
sess proper shares of z, there may be no such set B if
n < 4t + 1.2

2. If there is no such set B, then the server replies with

n

bk,B’

kEB’ ‘k
mod p

> B’&A,JB’I=t+l

(Note that this set wiII contain at most (zi) elements.)
Since n > 3t+l and at least n-2t 2 t+l correct servers
completed the escrow protocol with valid shares of z,
the value (Y* mod p is contained in this set. However, it
is left to the requesting client to determine which value
is (Y= mod p (e.g., by trying to complete the ElGamal
decryption with each value, provided that the target
plaintext is recognizable).

This protocol as described would allow corrupt servers
and network eavesdroppers to learn the target value c? mod
p and thus the plaintext m corresponding to the target
ciphertext (cy, rncr’ mod p). To hide cy’ mod p, the client
blinds (Y by submitting (Y” mod p for some random v E ZG.
Upon receiving cr”” mod p from the service, the client com-
putes (Y= 2 ~~~~~~~~~~~~ q mod p.

Recovery of escrowed keys 0 also provides an interface
by which a client can request a private ElGamal key escrowed
at the service. In response to such a request, the service
replies with a set of shares for that private key as in the
recovery protocol for an RSA key, i.e., each share encrypted
with a public key K included in the recovery request. The
client decrypts these shares and determines the private key
via Lagrange interpolat:ion.

2By appending to the escrow protocol an additional interac-
tion with the client, the existence of such a B can be guaranteed
whenever n > 3t + 1.

6 Access control

So far we have described what the service can do, but
not for whom the service will do it. The latter is determined
by the access control policy that describes what operations
each client is authorized to perform. This policy is essential
to the semantics of the keys managed by the service. If, for
example, any client is allowed to register any public key for
any principal, then public keys retrieved from the service
are meaningless. In our present implementation, R enforc:es
a few simple policies derived from the needs of applications
with which we have experimented. Below we sketch a few of
these policies, enforcement mechanisms and simple alterna-
tives, for illustrative purposes only. n can be adapted with
little effort to enforce more sophisticated policies.

Public key registration Since presumably clients will
use a public key retrieved from 0 to authenticate the princi-
pal named with that key, it is important that R authenticate
a client submitting a registration request as acting on behalf
of the principal named in its request. Of course, it is not pos-
sible to require digital signatures to authenticate registrati’on
requests, as typically the registration of a public key for a
principal precedes the service’s possession of a public key
for that principal. Rather, our present implementation pre-
sumes an out-of-band negotiation that results in a message
digest of a principal’s public key being stored at each server
as a prerequisite to a client registering a public key on be-
half of that principal. This supports a registration scenario
in which the principal generates its (potentially large) public
key and private key in isolation, computes a short message
digest of the public key (e.g., 16 or 32 hexadecimal digits),
and communicates this digest to one or more administrative
authorities that authenticate the principal and install the
principal’s name and digest at each server. Each server ac-
cepts a registration request only if the digest of the public
key in the request matches the stored digest for the princi-
pal named in the request. An example of such a registration
scenario is described in Section 8.

Public key revocation To prevent public keys from be-
ing revoked capriciously, 0 restricts which clients can re-
voke each public key. Our present implementation requires
a client to possess the corresponding private key. That is,

44

each revocation request is signed with the private key corre-
sponding to the public key being revoked, in order to prove
the client’s authority to revoke this public key. In this way,
only the owner of the key (or one who has compromised the
private key) can revoke it.

Private key escrow n enforces no policy regarding which
clients can escrow which private keys. Rather, any escrow
that succeeds is assumed to imply knowledge of the private
key by the client that issued the escrow request. Greater
assurance of this could be obtained by requiring the client to
sign its escrow request with the private key being escrowed.

Private key recovery Since private key recovery is of-
fered primarily for those cases in which the private key is
unavailable to the client, determining a client’s authority to
recover a private key should not depend on the client’s abil-
ity to sign its request with that private key. Rather, this
authorization can be determined with the aid of an “out-
of-band” mechanism similar to that described above for key
registration, i.e., that results in a message digest of the pub-
lic key K in the recovery request being stored at the service.
This supports a recovery protocol in which the principal gen-
erates the key K for the purpose of recovering its original
key and communicates K’s digest to administrators out-of-
band. Alternatively, n could provide an interface for a client
to specify, prior to the loss of a principal’s private key, values
of K for which the service should participate in the recovery
protocol for that principal’s key. This interface could au-
thenticate the client by requiring a signature with that prin-
cipal’s key. Suitable values of K might be, e.g., public keys
of other principals that the principal trusts, thus enabling
the (auditable) recovery of its key by these principals.

7 Implementation issues

At the time of this writing, an initial research prototype
of 0 is nearing completion. This implementation employs
the Cryptolib toolkit [18] for its basic cryptographic oper-
ations and, as described in Section 3, the Rampart toolkit
for atomic multicast and output voting in support of state
machine replication. In this section, we briefly discuss two
issues surrounding this implementation.

7.1 Logging and server recovery

Each 0 server maintains a log recording the sequence of
operations that it performs, except for public key lookups.
Each record contains the essential portions of the client re-
quest that invoked the operation, any follow-up messages
from other servers (in the case of private key operations),
and status information. The logs contain only public data;
private data is stored in a separate data structure. Since
messages to servers are communicated by atomic multicast
and the servers are deterministic (see Section 3), the logs at
all correct servers are identical.

The primary purpose of this log is to assist in the recovery
of a server that failed. When a server recovers, each correct
server communicates to the recovering server the portions of
its log that will enable the recovering server to operate as
if it had never failed. These portions include, among other
things, records of public key registrations and revocations,
and of private key escrow operations. The integration of a
new server into operation is similar, but is complicated by

the fact that an escrow operation prior to the new server’s
installation will include no share of the escrowed private key
for the new server. Thus, subsequent decryptions using the
escrowed key will not involve the new server.

Log information is communicated to the recovering server
via the state transfer mechanism of Rampart. Rampart in-
forms servers of a new or recovering server by inserting a spe-
cial event in their atomic multicast delivery sequence. When
the application servers receive this event, each can provide
information for updating the new server to Rampart. Ram-
part delivers to the new server information provided by at
least t+I servers (to ensure that the new server is updated by
only information from correct servers) and buffers requests
to the new server until the server has had the opportunity
to update its state.

Recovering or adding servers raises questions regarding
the fault-tolerance of our service, which so far we have de-
scribed statically as tolerating t failures out of n servers.
This is the true tolerance of the service to malicious faults
that expose secret values held by the faulty servers: the
penetration of any t + 1 servers by an attacker would, for
example, enable the attacker to sign responses from the ser-
vice. However, the actual tolerance of our service to benign
(e.g., crash) failures is a more dynamic quantity that can ex-
ceed t out of n over the long term. Specifically, [(n - 1)/3]
is the maximum number of concurrent benign server failures
that the service can tolerate and still make progress, if for no
other reason than this is true of the Rampart protocols [25].
However, more than [(n - 1)/3] benign failures can be tol-
erated serially, and in general all servers can fail benignly at
some point, provided that some have recovered before oth-
ers fail. A caveat to this statement is that benign server
failures can prevent the decryption of a message with a key
escrowed at the service, or the recovery of that key, until
enough servers possessing proper shares for that key recover
(recall that there are at least n - 2t of them, where n is the
number of servers at the time of escrow). This circumstance
will force the requesting client to reissue its request later,
but will not deadlock the service. A direction of ongoing
work is to adapt R to tolerate greater numbers of malicious
failures that expose secret values held by the faulty servers,
perhaps serially as for benign failures.

7.2 Performance

We anticipate that the performance of R will not be a
limiting factor for most applications, for two reasons. First,
in the applications that we envision, a typical client would
employ all but perhaps the public key lookup operation in-
frequently. Second, lookups can be performed off the critical
path of many protocols when performance is of concern (see,
e.g., [28]). Nevertheless, understanding the factors that limit
the performance of 0 is essential to determining its ability
to scale to large numbers of clients and its suitability for use
with certain protocols. In this section, we discuss its perfor-
mance based upon experiments with our research prototype.

Preliminary performance numbers for the operations de-
scribed in Sections 4 and 5, in the absence of faulty clients
or servers, are shown in Table 1. These numbers are mean
round-trip latencies in milliseconds (ms), as timed by the 0
client from initiating the operation to receiving the service’s
reply. The preparation of requests and the verification of the
signature on the reply are included in these latencies, but
the access controls described in Section 6 are not. In these
tests, the client and server processes were each running on
a separate SPARCStatiOn 20 workstation. There were four

45

servers in these tests. All keys (notably the service’s public
key) contained 768-bit moduli. Keys used to encrypt shares
in the private key escrow and recovery protocols were RSA
keys, regardless of the client key type.

Operation

public key registrat.ion
public key lookup
public key revocation
private key escrow
private key decryption
private key recovery

- Client key type
RSA ElGamal

- 1884 756
563 575
588 595

3648 1049
1365 1330
1357 1165

1

Table 1: Mean latency (ms); 768-bit moduli, SPARC 20s

With the described key sizes, the mean round-trip latency
of a null operation at the service was roughly 550 ms, over
three-fourths of which was due to the modular exponenti-
ation operations of the threshold signature scheme used to
sign responses (see Sec:tion 3). The remainder of this time
resulted primarily from costs associated with communica-
tion, particularly the atomic multicast protocol of Rampart.
However, since the latency of this protocol is also partly due
to modular exponentiations (see [26]), modular exponenti-
ation is responsible for a large majority of the latency of
a null request to the service. Even in most operations for
which the 550 ms latency of the basic round-trip protocol
was not the dominant cost, modular exponentiation contin-
ued to dominate the total latency. Specifically, our escrow,
decryption, and ElGamal registration protocols, as well as
the atomic multicast protocols that underlie them, employ
modular exponentiation heavily at the servers.

The only operation whose cost was not dominated by
modular exponentiation is the RSA registration protocol.
As described in Section 4, one step of this protocol is for
each server to verify that N, the public key modulus pro-
vided by the client, is not a prime power. This is done by
verifying that N is not a proper power of any integer, which
is performed by taking Ic-th roots of N for each prime Ic,
1 < k 5 IiVI, where INI is the bit length of N. Finding
k-th roots of N, which is performed with Newton’s method,
dominated the latency of the registration protocol. This
verification could be skipped in the registration protocol, al-
though doing so would require either doubling the value L in
the RSA escrow protocol to achieve the same level of secu-
rity or, in the event that an attempted decryption with the
escrowed key failed, factoring the modulus of the escrowed
key (which, with high probability, is a prime power).

The conclusion that we draw from our preliminary perfor-
mance experiments is t:hat fl is a compute-intensive service.
Most computation takes place at the servers (not the clients)
and takes the form of modular exponentiations. Equip-
ping the servers with special-purpose hardware for perform-
ing modular exponentiation would dramatically improve the
performance of the service and its ability to scale to large
numbers of clients. Similarly, the performance of the service
should improve substantially by employing modern server
machines with more powerful processors. Finally, because
most computation is performed at the servers, we expect
that the service will be usable by a wide range of client
devices. Further exper:iments, however, are needed in this
area.

8 Applications: an example

In a first step towards experimenting with applications,
we arranged for an Q public key to be included in the
Netscape World Wide Web (WWW) browser, beginning
with version 1.1. This enables these browsers to accept cer-
tificates issued by n when interacting with WWW servers
that support the SSL protocol [14]. More precisely, when
a browser communicates with a WWW server, the server
can authenticate itself to the browser by sending an X.dO9
certificate binding the server’s name to a public key. If the
browser possesses a public key with which it can verify the
signature on that certificate, then it subsequently authenti-
cates the server with the public key in the certificate, or more
accurately, with a shared encryption key established using
this public key. Thus, by having an R public key included in
the browser, it is possible for browsers to authenticate and
communicate privately to servers certified by 0.

The bulk of the effort required to integrate fi to work with
Netscape browsers has been to establish Sz as a source from
which a WWW server administrator can obtain a certificate
for its server. Typically, a server administrator obtains a
certificate for its server by generating a public/private lkey
pair, and sending the public key and naming information
via electronic mail to a certificate issuer. After receiving
this request, the issuer takes measures (e.g., via a phone
call) to authenticate the requesting administrator and then
returns a properly signed certificate via electronic mail.

To simplify this certification process, we developed a
WWW interface that enables WWW server administrators
within AT&T to communicate their certificate requests to an
R administrator (i.e., one of us). When a request is received,
the R administrator verifies the employment status and in-
tent of the requesting administrator and installs the name of
the WWW server and a message digest of the public key at
each Q server. Another WWW interface can then be used to
register the public key at R and retrieve an X.509 certific.ate
for the WWW server. We plan to automate more of this
procedure over time, for example using on-line databases of
AT&T employees to verify employment status.

0 has been operating as a certification authority for
WWW servers within AT&T for roughly three months at
the time of this writing. More ambitious application of 0,
for example in the areaS of electronic commerce, electronic
mail, and secure networking, is a direction of ongoing work.

9 Conclusion

Though a number of approaches to key management have
been proposed, we believe that few have been demonstrat.ed
that possess the flexibility and robustness required by emerg-
ing applications. The R service attempts to address this
need. R provides a collection of key management functions-
including public key registration, lookup, and revocation,
and private key escrow, decryption, and recovery-that can
be tailored to suit a wide range of key-management polici’es.
Moreover, R is tolerant of even the malicious penetration
of fewer than one-third of its servers. Our initial prototype
implementation of the service indicates that 0 is a viable
service for key management, particularly if the servers are
equipped to perform modular exponentiation efficiently.

Our current focus is refining the implementation of the
functions described in this paper. One direction of ongoing
work is providing interfaces for managing the service, such

46

as interfaces for specifying access controls for each service
operation. A second direction for future work is integrating
s2 within a key management hierarchy and exploring other
alternatives for scaling R to large numbers of clients.

Acknowledgements We thank Elizabeth Royer for imple-
menting the WWW interface to 0.

References

PI

PI

[31

[41

[51

161

[71

PI

PI

[llI

WI

P31

Ll41

1151

WI

C. Boyd. Digital multisignatures. In H. J. Beker and F. C.
Piper, editors, Cryptography and Coding, pages 241-246.
Clarendon Press, 1989.

D. Chaum. Blind signatures for untraceable payments. In
FL L. Rivest, A. Sherman, and D. Chaum, editors, Proceed-
ings of CRYPT0 ‘88, pages 199-203. Plenum Press, 1983.

L. Chen, D. Gollman, and C. Mitchell. Key distribution
without individual trusted authentication servers. In Pro-
ceedings of the 8th IEEE Computer Security Foundations
Workshop, pages 30-36, June 1995.

A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to
share a function securely. In Proceedings of the 26th ACM
Symposium on Theory of Computing, pages 522-533, May
1994.

Y. Desmedt and Y. Frankel. Shared generation of authen-
ticators and signatures. In J. Feigenbaum, editor, Advances
in Cryptology-CRYPT0 ‘91 Proceedings (Lecture Notes
in Computer Science 576), pages 457-469. Springer-Verlag,
1992.

Y. Deswarte, L. Blain, and J. Fabre. Intrusion tolerance
in distributed computing systems. In Proceedings of the
1991 IEEE Symposium on Research in Securily and Pri-
vacy, pages 110-121, May 1991.

T. ElGamal. A ‘public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on
Information Theory, IT-31(4):469-472, July 1985.

Y. Frankel and M. Yung. Escrowed encryption systems vis-
ited: Threats, attacks, analysis and designs. Manuscript,
Nov. 1994.

M. K. Franklin and M. K. Reiter. Adaptive chosen cipher-
text security for RSA from Guillou-Quisquater signatures.
Manuscript, May 1995.

R. Ganesan. Yaksha: Augmenting Kerberos with public key
cryptography. In Proceedings of the 1995 Internet Society
Symposium on Network and Diskibaled System Security,
pages 132-143, Feb. 1995.

M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The
Digital distributed system security architecture. In Proceed-
ings of the 12th NIST/NCSC National Computer Security
Conference, pages 305-319, Oct. 1989.

L. Gong. Increasing availability and security of an authenti-
cation service. IEEE Journal on Selected Areas in Commu-
nications, 11(5):657462, June 1993.

M. P. Herlihy and J. D. Tygar. How to make replicated data
secure. In C. Pomerance, editor, Advances in Cryplology-
CRYPT0 ‘87 Proceedings (Lecture Notes in Computer Sci-
ence 293), pages 379-391. Springer-Verlag, 1988.

K. E. B. Hickman and T. ElGamal. The SSL protocol. In-
ternet draft, June 1995.

International Telegraph and Telephone Consultative Com-
mittee (CCITT). The Directory - Authentication FTame-
work, Recommendation X.509, 1988.

S. T. Kent. Internet privacy enhancedmail. Communicalions
of the ACM, 36(8):48-60, Aug. 1993.

Ll71

t181

PI

PI

WI

PI

[231

[24l

t251

[261

1271

[281

PI

1301

1311

[32l

J. Kilian and T. Leighton. Fair cryptosystems, revisited. In
D. Coppersmith, editor, Advanced in Cryptology-CRYPT0
‘95 (Lecture Notes in Computer Science 963), pages 208-221.

Springer-Verlag, 1995.

J. B. Lacy, D. P. Mitchell, and W. M. &hell. CryptoLib:
Cryptographyin software. In Proceedings of Ihe 4th CJSENIX
Secusily Workshop, pages l-17, Oct. 1993.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.
ACM Transaclions on Computer Syslems, 10(4):265-310,
Nov. 1992.

P. V. McMahon. SESAME V2 public key and authorisation
extensions to Kerberos. In Proceedings of Ihe 1995 InleT-
nel Society Symposium on Network and Distributed System
Security, pages 114-131, Feb. 1995.

S. Micali. Fair public-key cryptosystems. In E. F. Brickell,
editor, Advances in Cryptology-Proceedings of CRYPT0
‘92 (Lecture Notes in Computer Science 740), pages 113-
138. Springer-Verlag, 1992.

National Institute of Standards and Technology. Escrowed
Encsyplion Standard, Feb. 1994. Federal Information Pro-
cessing Standards Publication 185, U.S. Department of Com-
merce.

B. C. Neuman and T. Ts’o. Kerberos: An authentication
service for computernetworks. IEEE Communications Mag-
azine, 32(S), Sept. 1994.

T. P. Pedersen. Distributed provers with applications to
undeniable signatures. In D. W. Davies, editor, Advances in
Cryptology-EUROCRYPT ‘91 Proceedings (Lecture Notes
in Computer Science 547), pages 221-242. Springer-Verlag,
1991.

M. K. Reiter. Secure agreement protocols: Reliable and
atomic group multicast in Rampart. In Proceedings of the
2nd ACM Conference on Computer and Communicalions
Security, pages 68-80, Nov. 1994.

M. K. Reiter. The Rampart toolkit for building high-
integrity services. In K. P. Birman, F. Mattern, and
A. Schiper, editors, Theory and Practice in Dislributed Sys-
tems (Lecture Notes in Computer Science 938), pages SS-
110. Springer-Verlag, 1995.

M. K. Reiter and K. P. Birman. How to securely replicate ser-
vices. ACM Transactions on Programming Languages and
Systems, 16(3):986-1009, May 1994.

M. K. Reiter, K. P. Birman, and R. van Renesse. A security
architecture for fault-tolerant systems. ACM Transaclions
on Computer Systems, 12(4):340-371, Nov. 1994.

R. L. Rivest. RFC 1921: The MD5 Message Digest Algo-
rithm. Internet Activities Board, Apr. 1992.

R. L. Rivest, A. Shamir, and L. Adlernan. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120-126, Feb. 1978.

F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299-319, Dec. 1990.

J. J. Tardo and K. Alagappan. SPX: Global authentication
usingpublic key certificates. In Proceedings of the 1991 IEEE
Symposium on Reseawh in Security and Privacy, pages 232-
244, May 1991.

47

