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Abstract

We present the design and implementation of a
distributed service for performing sealed-bid auctions.
This service provides an interface by which clients, or
“bidders”, can issue secret bids to the service for an
advertised auction. Once the bidding period has ended,
the auction service opens the bids, determines the win-
ning bid, and provides the winning bidder with a ticket
for claiming the item bid upon. Using novel crypto-
graphic technigues, the service is construcied to pro-
vide strong protection for both the auction house and
correct bidders, despite the malicious behavior of any
number of bidders and even a consiant fraction of the
servers comprising the auction service. Specifically, it
is guaranteed that (i) bids of correct bidders are not
revealed until after the bidding period has ended, (i)
the auction house collects payment for the winning bid,
(#ii) losing bidders forfeit no money, and (iv) only the
winning bidder can collect the item bid upon. We also
discuss techniques to enable anonymous bidding.

1 Introduction

Technology has replaced many human procedures
with electronic ones. Unfortunately, much of the tra-
dition, culture, and law that has been developed to
provide protection in human procedures cannot read-
ily be adapted to afford the same protection in elec-
tronic procedures. The study of cryptographic proto-
cols can be viewed as a technical response to this loss
of more traditional means of protecting ourselves. In-
deed, Diffie has argued that communication security
is “the transplantation of fundamental social mech-
anisms from the world of face to face meetings and
pen and ink communication into a world of electronic
mail, video conferences, electronic funds transfers,
electronic data interchange, and, in the not too dis-
tant future, digital money and electronic voting” [8].
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As this statement hints, one human procedure
whose protections are threatened by electronic ad-
vances is commer¢e. While many proposals have been
put forward to guide the transition to electronic com-
merce (e.g., [4, 19, 2]), most of these proposals provide
for only simple transactions involving little negotiation
or competition among buyers and sellers. In contrast,
many financial vehicles, such as auctions, exchanges,
and general markets, do not conform to this simplistic
view of commerce. We believe that the transition to
electronic commerce should not preclude such vehicles,
but rather should make them more accessible.

We have begun an effort to examine some of these
financial vehicles to understand what is required to
adequately implement them in electronic systems. In
this paper we present an approach to implement one
such vehicle, namely sealed-bid auctions. A sealed-bid
auction is one in which secret bids are issued for an
advertised item, and once the bidding period closes,
the bids are opened and the winner is determined ac-
cording to some publicly known rule (e.g., the high-
est bidder wins). Sealed-bid auctions are used, for
example, in the auctioning of mineral rights to U.S.
government-owned land, in the sale of artwork and
real estate, and in the auctioning of government pro-
curement contracts [18].

Our study of sealed-bid auctions is motivated not
only by their practical importance, but also by the
novel security problems that they pose. First, central
to the fairness of a sealed-bid auction is the secrecy
of sealed bids prior to the close of the bidding period.
That is, the timing of the disclosure of bids is crucial.
Second, auctions require nonrepudiation mechanisms
to ensure that payment can be collected from winning
bidders—as evidenced by the fact that in a recent FCC
auction of interactive video and data service licenses,
13 winning bidders defaulted on their bids, forcing a
second auction to be held [12]. Third, due to secrecy
requirements surrounding sealed-bid auctions, it may
be difficult for outsiders to have confidence in the va-
lidity of the auction. Fourth, some types of sealed-bid



auctions should enable bidders to remain anonymous.
These problems are only exacerbated when one con-
siders the implementation of auctions in distributed
computer systems, or the possibility of a corrupt agent
in the auction house collaborating with bidders.

In this paper we present a secure distributed auc-
tion service that supports the submission of monetary
bids for an auction and ensures the validity of the out-
come, despite the malicious collaboration of arbitrar-
ily many bidders and even a constant fraction (e.g.,
one-third) of the auction servers comprising the ser-
vice. Our auction service addresses all of the security
issues mentioned above. In particular, the auction ser-
vice is guaranteed to declare the proper winning bid-
der, and to collect payment in the form of digital cash
from only that bidder. It is guaranteed that no bid
is revealed prior to the close of the bidding period.
Moreover, it is possible for bidders to submit anony-
mous bids. Our focus in this work is on an efficient
and practical approach to performing auctions, and
we have implemented a prototype of our service to
demonstrate its feasibility. The performance of this
implementation indicates that our approach to per-
forming auctions is feasible using off-the-shelf work-
stations for auction servers, even for large auctions
involving hundreds of bids.

More generally, our auction service demonstrates
novel techniques for handling and protecting electronic
currency in competitive environments, using both old
and new cryptographic methods. We are working
to extend these techniques to address issues in other
competitive financial vehicles, including more general
forms of auctions, markets, and electronic gaming.

The rest of this paper is organized as follows. In
Section 2 we describe the security policy that should
govern a sealed-bid auction. In Section 3 we give pre-
liminary definitions that will be used in the paper.
In Section 4 we describe a new cryptographic prim-
itive called verifiable signature sharing, which is an
important enabler for the efficient implementation of
secure auctions. We present our auction protocol in
Section 5, and discuss its security and performance in
Sections 6 and 7, respectively. We present extensions
to our protocol in Section 8 and conclude in Section 9.

2 Secure auctions

Informally, a sealed-bid auction consists of two
phases of execution. The first is a bidding period, dur-
ing which arbitrarily many bidders can submit arbi-
trarily many sealed bids to the auction. At some point
the bidding period is closed, thus initiating the second

phase in which the bids are opened and the winner is
determined and possibly announced. In general, the
rule by which the winner is determined can be any
publicly known, deterministic rule. When convenient,
however, we assume that this rule dictates that the
highest bidder be chosen the winner.

As mentioned in Section 1, there are numerous pos-
sibilities for corruption and misbehavior in a sealed-
bid auction. Possibly the most difficult to counter are
those that involve the misbehavior of agents in charge
of executing and overseeing the auction (e.g., employ-
ees of the auction house), especially when this behav-
ior involves collaboration with certain bidders. Below
are several examples of behavior that could yield an
improper auction, many of which may be very feasible
in a naive electronic implementation of auctions.

e Prior to the close of the bidding period, an agent
of the auction house opens submitted bids and
informs a collaborator of their amounts (so the
collaborator can submit a bid for tke minimum
amount needed to win the auction).

e An agent manipulates the closing time of the bid-
ding period. For example, an agent attempts to
prematurely close the bidding period in an effort
to exclude some bids.

e After the close of the bidding period, a bidder
arranges to withdraw a bid or insert a bid, in
collaboration with an agent of the auction house.

e An agent awards the auction item to someone
other than the winning bidder (and goes unde-
tected because bids are not made public).

e An agent of the auction house collects payment
from losing bidders (e.g., by informing each that
it won), or collects payment from the winning bid-
der but fails to provide the means for that bidder
to obtain the item bid upon.

e The winning bidder refuses to pay the auction
house (e.g., by disclaiming the bid or claiming
that it lacks sufficient funds).

It is worth noting that in a naive electronic imple-
mentation of a sealed-bid auction, some of the above
problems could arise simply due to the benign failure
of the auction service or a bidding process. For exam-
ple, the next-to-last problem could arise if the auction
service is not fault-tolerant, collects money from the
winning bidder, and then fails before granting the item
to the bidder. Similarly, the last problem could arise
if a bidding process submits a bid and then fails.



Our auction service prevents the above behaviors
and most other “attacks” on auctions of which we are
aware, despite the malicious behavior of arbitrarily
many bidders and even a constant fraction of the auc-
tion servers comprising the service.

We describe the properties provided by our auction
service in two categories, namely Validity properties
and Secrecy properties. Below and throughout this
paper, a process (bidder, server, etc.) is said to be
correct if it always follows the specified protocols. A
faulty process, however, may deviate from the specified
protocols in any fashion whatsoever; i.e., “Byzantine”
failures are allowed.

Validity

1. The bidding period eventually closes, but only af-
ter a correct auction server decides that it should
be closed.

2. There is at most one winning bid per auction, dic-
tated by the (deterministic) publicly-known rule
applied to the well-formed bids received before the
end of the bidding period.

3. The auction service collects payment from the win-
ning bidder equal to the amount of the winning
bid.

4. Correct losing bidders forfeit no money.

5. Only the winning bidder can collect the item bid
upon.

Secrecy

1. The identity of a correct bidder and the amount
of its bid are not revealed to any party until after
the bidding period is closed.

In addition, our auction protocol can be modified to
allow for the submission of anonymous bids.

One class of attacks that our auction service does
not address are those that involve collaboration among
bidders to “fix” the price that wins the auction. For
example, bidders could collude to bid no more than
a certain amount. We also do not address attacks in
which messages to and from bidders are intercepted,
delayed, or otherwise manipulated in transit. For ex-
ample, we do not guarantee that a bid submitted by
a correct bidder will be included in the auction (al-
though it will be if it is received intact before the close
of the bidding period). We emphasize, however, that
the attacks discussed in this paragraph have no effect
on the Validity or Secrecy properties described above.

3 Preliminaries

In this section we review some primitives that are
used in our auction protocol. The following notation
will be used in the remainder of the paper. The en-
cryption of m with a public key K is denoted {m),
and the decryption of m with private key K~ is de-
noted (m)X ™. The digital signature of a message m
by a process P (i.e., with P’s private key) is denoted
op(m). We will introduce additional notation in the
following sections as necessary.

3.1 Group multicast

Group multicast is a class of interprocess communi-
cation primitives by which messages can be multicast
to a group G of processes. Our auction service employs
three types of group multicast primitives, namely un-
reliable, reliable, and atomic. Each of these multicast
primitives enables a process § € G to multicast a mes-
sage to the members of G.

The weakest of these multicast primitives is unreli-
able multicast. We denote the unreliable multicast of
a message m from a process § € G to the group G by

S —G: m

Unreliable multicast provides the property that if S
is correct, then all members of G receive the same se-
quence of unreliable multicasts from S, which is the
sequence of unreliable multicasts initiated by 5. In
particular, unreliable multicasts are authenticated and
protect the integrity of communication. However, no
guarantees are made regarding unreliable multicasts
from a faulty S.

The second multicast primitive is called reliable
multicast, also known as Byzantine agreement [17].
We denote the reliable multicast of message m from a
process S € G to the group G by

sfg. m

Reliable multicast provides all of the properties of un-
reliable multicast. In addition, it strengthens these
properties by ensuring that for each S € G, all correct
members of G receive the same sequence of reliable
multicasts from S, regardless of whether S is correct
or faulty. However, reliable multicasts from different
members can be received in different orders at each
member of G.

The third and strongest multicast primitive is
atomic multicast. We denote the atomic multicast of
message m from a process S € G to the group G by



s-‘ﬁg: m

Atomic multicast provides all of the guarantees of reli-
able multicast, and strengthens them by ensuring that
all correct members of G receive the same sequence of
atomic multicasts (regardless of their senders).

Because processes executing our auction protocol
must sometimes block awaiting the receipt of reliable
or atomic multicasts, it is necessary to provide some
degree of failure detection to guarantee progress in the
case that a faulty member does not multicast a mes-
sage on which others are waiting. Moreover, correct
group members must concur on the set of messages
multicast by such a member prior to its failure. The
reliable and atomic multicast protocols that we have
implemented provide these properties [21].

In addition to multicasts from within a process
group, our auction protocol also requires the ability
for any arbitrary process B ¢ G to atomically multi-
cast messages to G. We denote such a multicast of a
message m by

Bi‘»g: m

Atomic multicasts from outside the group are provided
the same total ordering guarantee as those from within
the group. That is, all correct members of G receive
the same sequence of atomic multicasts, regardless of
the origin of those multicasts. However, unlike atomic
multicasts from within the group, atomic multicasts
from outside the group are not authenticated, but
rather are anonymous (i.e., they do not indicate their
senders). Moreover, failure detection of processes out-
side the group is not provided.

The multicast protocols that we have implemented
can tolerate the failure of ¢ members of a group of size
n (and any number of non-member failures) provided
that n > 3t + 1 [21].! As described in Section 4,
however, this is not the limiting factor in the fault-
tolerance of our auction protocol.

8.2 Threshold secret sharing schemes

A (t,n)-threshold secret sharing scheme [1, 25] is,
informally, a method of breaking a secret s into n
shares shy(s),. .., shn(s), so that t + 1 shares are suf-
ficient to reconstruct s but t or fewer shares yield no
information about s. In this paper, we make use of

1 More precisely, our mnlticast protocols, which employ time-
outs in their methods for failure detection, satisfy the stated
specifications despite ¢ failures in a group of size 3¢t +1 provided
that messages from correct members induce timeouts in other
correct members sufficiently infrequently. See [21] for details.

the polynomial based secret sharing scheme due to
Shamir [25). In this scheme, the secret s is an element
of a finite field F and the i-th share is sh;(s) = f(4),
where f(z) is a degree ¢ polynomial such that f(0) = s
and such that the other coefficients are chosen uni-
formly at random from F. Interpolation of any ¢ + 1
shares reconstructs f(z) and hence the secret s. F is
typically taken to be the integers modulo p for some
prime p larger than the secret. This scheme works for
any threshold ¢, 1 <t < n.

As observed by Feldman [13], if the results obtained
by applying a public one-way function to each share
are known, a process attempting to reconstruct the
secret can verify that a share has not been altered
prior to using it in recomstruction. In this way, the
alteration of up to n — ¢ — 1 shares can be tolerated.
Our auction protocol will make use of this observation.

3.3 Electronic money

In its basic form, an electronic money or “digital
cash” scheme [4] is a set of cryptographic protocols
for (i) a customer to withdraw electronic money from
a bank, (ii) the customer to use the money to purchase
something from a vendor, and (iii) the vendor to de-
posit the money in its account with the bank. These
protocols protect the security interests of the parties
involved, by ensuring that the customer’s identity can-
not be linked to the purchase (i.e., anonymity), that
each party accepts only valid electronic money, and
that the customer cannot undetectably reuse or forge
money. For the purposes of this paper, we will not
consider cash schemes that require physical assump-
tions (e.g., tamper-proof smart cards) [11].

A money scheme is said to be “off-line” [5] if the
purchase protocol does not involve the bank; otherwise
the scheme is said to be “on-line.” In a typical on-
line scheme, the vendor queries the bank to determine
whether the “coin” that a customer is attempting to
use in a purchase has already been spent. In an off-line
scheme, the bank is not consulted during purchases,
and hence reuse cannot be prevented. However, the
customer’s identity can be embedded in each coin in
a way that is accessible if and only if the same coin is
used for more than one purchase. When the copies are
eventually deposited, the bank will learn the identity
of the reuser. In this paper, we consider only off-line
cash schemes.

The auction protocol that we present in this pa-
per will work with most off-line cash schemes. For
this reason, in stating our protocol we abstract away
the implementation of digital cash used, and sim-
ply describe a digital coin as consisting of a triple



(v8, Tpank(vs), ws), where vy is a description of the
coin, o, (vs) is the signature of the bank on that
description, and wy is some auxiliary information that
must accompany the coin when it is used in a purchase.
The description vy would typically include the value
of the coin, and an embedding of the customer’s iden-
tity as described above. The auxiliary information wg
would typically be a “hint,” any two of which enable
the extraction of the embedded identity, and would
include certain freshness information so that a vendor
can detect the replay of a coin. Our auction protocol
requires that the procedure for a vendor to determine
the validity of v¢ and wg be a deterministic function
of these values that it can compute locally.

Cash schemes can differ in the particular signature
scheme used by the bank to sign coins (e.g., RSA [23]).
This will have an impact on the number of faults that
can be tolerated in our auction protocol, as will be
discussed in Section 4.

4 Verifiable signature sharing

In addition to the primitives reviewed in Sec-
tion 3, our auction protocol employs a new cryp-
tographic primitive for protecting digital signatures,
called verifisble signature sharing (VES). VES en-
ables the holder of a digitally signed message, who
need not be the original signer, to share the signa-
ture among a group of processes so that the cor-
rect members can later reconstruct it. At the end of
the sharing phase, each member can verify whether a
valid signature for the message can be reconstructed,
even if the original signature holder and/or a constant
fraction of the members are malicious. In addition,
malicious members gain no information prior to re-
construction about the signature held by a (correct)
sharer. In a separate paper [14], we present and prove
the correctness of efficient VIS schemes for many sig-
nature schemes, including RSA [23], Rabin [20], Ei-
Gamal {10}, Schnorr [24], and DSA [9]. In the present
work, our purpose is to present VES only to the extent
necessary to describe our auction service.

Our auction protocol does not rely on any particu-
lar VES scheme, and so for generality, here we describe
VIS in an abstract form. If B holds a signature o(m)
of a message m (i.e., o(m) = op(m) for some P), then
B begins the VIS protocol by generating two types
of values from o(m): a public value VES-pub(o(m))
and, for each process S; in the group G among which
the signature is to be shared, a private value VES-

privi(c(m)). B then atomically multicasts? VES-
pub(o(m)) to the group members and communicates
VES-privi(o(m)) to S; privately, say, encrypted under
the public key K; for S;:

BAG:  m, VES-pub(a(m)),
{(VES-privj(a(m)))x; }s,e0

Upon receipt of such an atomic multicast, S; performs
a local computation to determine whether the i-th pri-
vate value (which it decrypts with K;!) is consistent
with the public value. S; reliably multicasts the status
of this computation, denoted VXS-stat;, to the group:
Si B g vsstat

Finally, once S; has received a reliable multicast from
S; (or detected S; faulty) for each S; € G, it performs
a local computation that allows it to either accept or
reject the attemnpt to share o(m). This local compu-
tation is a deterministic function of the reliably and
atomically multicast values only, and so either all cor-
rect group members accept or all correct members re-
ject. If they accept, then this guarantees that o(m)
can be reconstructed with the information they col-
lectively possess. If o(m) was shared correctly, then
the correct members will accept, but faulty members
gain no information about a(m). If at some point the
correct members choose to reconstruct o(m), they can
do so by each member S; forwarding its private value
VIS-privi(o(m)) (and possibly some other auxiliary
information) to the reconstructing party, which can
then easily reconstruct the signature.

As an example of a VES scheme, here we out-
line the VES scheme for RSA described in [14]. This
scheme can tolerate up to ¢ malicious group members
in a group of size n (in addition to a malicious signa-
ture holder) whenever n > 5t + 1. In this scheme,
o(m) = (h(m))* mod N where h is a message di-
gest function (e.g., MD5 [22]) and where N and d
are the RSA modulus and private exponent for the
signer; the public (verifying) exponent is € = 3. To
share o(m) to a group G = {S4,...,5,} with a tol-
erance of t member failures, B chooses a random de-
gree ¢ polynomial f € Zy[z] such that f(0) = o(m),
and sets VES-pub(a(m)) = {f(5)® mod N}s,eg and
VES-privj(o(m)) = f(j) mod N. That is, B executes

BAG:  m, {f(j)° mod N}s,cg,
{(£(4) mod N)k;}s,eq

2A weaker multicast can be used (see [14]), but we use atomic
multicast here for consistency with the protocol of Section 5 and
due to nuances of our multicast specifications in Section 3.1.




Continuing, now suppose that S; receives an atomic
multicast of the form

m, {u;}s,ec, {¥}s,e0

for some values of m, {u;}s;ec, and {y;}s;eg. Si
computes VIS-stat; as

VES.atar. < d (@allow ) ifw = (@)%)> mod N
' (complain, r;) otherwise

where r; = (yi)K-‘-1 + p(i) mod N and p(i) is S;’s pri-
vate share of a secret, random degree t polynomial
p € Zy[z]; p(3) is given to S; at initialization. S; re-
liably multicasts VX.S-stat; and collects status values
from the other servers. Finally, S; accepts if the values
{u;}s;ec lieon a polynomial g of degree at most 3¢,
9(0) = h(m), the values {r;}s,eg lie on a polynomial
g’ of degree t with at most ¢ errors (any absent r;, due
to S; failing, is counted as an error), and at most
processes complained or contributed an error to g.
All VIS schemes in [14] provide protection against
a constant fraction of faulty members, but the con-
stant is different for different schemes. As mentioned
above, n must be greater than 5t + 1 for RSA, but it
must be greater than only 3¢+ 1 for signature schemes
based on discrete logarithms (i.e., ElGamal, Schnorr,
and DSA). Since in either case the value for n that is
necessary to tolerate ¢ member failures is at least that
required for the multicast protocols of Section 3.1, the
fault tolerance of our auction scheme will be equal
to the fault tolerance of the VIS scheme used in it.
The choice of VES scheme depends on the signature
scheme used by the bank to sign its digital cash.

5 The auction protocol

Our auction service is constructed using n auction
servers. There is a parameter t that defines the fault
tolerance of the service, i.e., the maximum number of
servers that can fail without affecting the correctness
of the service. As described in Section 4, our protocol
allows ¢ to be as large as a constant fraction of n, which
depends on the VES scheme, and thus the digital cash
scheme, used.

Intuitively, our auction protocol works as follows. A
bidder submits a bid of a certain value to the service by
sharing the pieces of a digital coin (vs, oank(vs), ws)
with that value among the auction servers. The de-
scription vg and auxiliary information wg are shared
with a standard (t, n)-threshold secret sharing scheme
(see Section 3.2), while the signature op,n)(vs) is

shared with a VIS scheme (see Section 4). Once the
bidding period has closed, the servers reconstruct vg
and wg for each bid received during the bidding pe-
riod, and then perform the VES protocol to determine
acceptance or rejection for each bid (i.e., to determine
if they collectively possess opni(vs)). The servers
then choose the winning bid from the acceptable bids
and declare the winner. Finally, subject to auction
house controls, the bank’s signature on the coin in the
winner’s bid can be reconstructed via the VXS scheme,
and the coin can be deposited. The secrecy of each bid
is ensured until after bidding is closed because correct
servers do not cooperate in the reconstruction of vg
and wg until after bidding is closed. Moreover, since
Opank(vs) is never reconstructed for a losing bid, the
coins in losing bias cannot be spent by faulty servers.

In Section 5.1, we describe this protocol in more
depth. In Section 5.2 we discuss alternative designs
that we considered and compare them to our protocol.

5.1 The protocol detailed

In this section we more carefully describe the auc-
tion protocol. For simplicity, our description assumes
only a single auction; executing concurrent auctions at
the same auction service requires modifications to the
protocol and is discussed in Section 8.2. The n auc-
tion servers, denoted by Si, ..., Sy, are organized as a
process group G to which processes can multicast mes-
sages (unreliably, reliably, or atomically). Associated
with each server S; is a public key K; for use in a de-
terministic public key cryptosystem (e.g., RSA [23]).
Each K; is assumed to be available to all servers and
bidders; the corresponding private key K-.‘—l known
only to S;. In addition, we assume that a global iden-
tifier aid for the auction is known by all servers and
bidders. In the description below, || denotes concate-
nation. We remind the reader that only multicasts
from servers (i.e., members of G} are authenticated,
and that sh;(s) denotes the i-th share of s produced
via Shamir’s (¢, n)-threshold secret sharing scheme.

Submitting a bid Suppose a bidder wishes to sub-
mit a bid to the auction. Without loss of general-
ity, we assume that the bidder possesses a digital coin
(v$,0pank(vs), ws) in the amount of the desired bid.
The freshness information included in wg (see Sec-
tion 3.3) is aid. The bidder B submits the bid using
a single atomic multicast as follows:

(M1) BAG: {(shi(Bllvsllws))x,}s,c0:
VZS-pub(a’bank(vs)),

{(VZS—priv,- (Ubank(vs)))Kj }556(}



Closing the bidding period When server S; de-
cides that bidding should be closed, it executes:

(M2) S 46 close

When S; has received (by atomic multicast) close mes-
sages from ¢ + 1 different servers, it considers bidding
closed and ignores any bids subsequently received.
Note that by the properties of atomic multicast, all
correct servers will agree on the set of bids received
prior to closing.

Opening the bids Suppose that the I-th bid re-
ceived (by atomic multicast) at S; is of the form

{cju}s;eq, puby, {PTiVj,z}Sjeg (*)

for some values of {c;,1}s,eg, pub;, and {priv, ;}s;eg.
Also suppose that a total of L bids were received.
These bids are opened in three steps:

1. 5; computes s;,; = (c;_:)xi_l foreach |, 1 <1< L,
and executes:

(‘M3) S —G: {8{.1}1515L

2. When S; receives a message of the form {85, h<i<r
from S, it verifies that (85,1)k; = ¢j,1 for each I,
1 €1 < L. If there is an I for which this does
not hold, then S; discards this message from S; and
ignores it. Note that if this occurs, then S; is faulty.

3. Once S; has received ¢ + 1 messages from t + 1 dif-
ferent servers S;,, ..., Sj,,, that pass these verifica-
tions, then for each I, 1 < ! < L, §; finds the de-
gree ¢ polynomial f; determined by the ¢ + 1 values
35,0+ +85,41,0- Si then verifies that (fi(5))x; = c;u
for each 7 such that 1 < j <nand j # ji,...,Jis1.
If for any such j this does not hold, then S; discards
the I-th bid. S; also discards the I-th bid if fi(0) is
not of the form By||vg | |ws,; for values By, vg;, and
wg; of a proper syntactic form. Note that if the
{-th bid is discarded, then it must have been sub-
mitted by a faulty bidder. Let the bids that remain
be renumbered 1 <1< L.

Checking the validity of bids S; checks the va-
lidity of the remaining bids as follows.

1. For each I, 1 <! < L/, S; first performs the valid-
ity checks on vg; and ws that are dictated by the
electronic money scheme in use, discarding any bid

that is found to be invalid or a replay. By the prop-
erties of the off-line cash scheme and the choice of
freshness information embedded in wg, these tests
involve only local deterministic computations. Let
the remaining bids be renumbered 1 < I < L”.

2. 5; computes VES-stat;; (from (pl’iv‘-'oK‘,—x and
pub;; see (+)) for each I, 1 < I < L”, according
to the VIS scheme, and executes

(M4) Si “Ii g: {st—st&t,"{}15[5Lu

S; collects reliable multicasts from the other servers
and determines acceptance or rejection for each re-
maining bid according to the VES scheme (see Sec-
tion 4). All rejected bids are discarded.

Declaring the winner Server S; chooses the win-
ning bid from among the remaining bids. Once the
winning bidder B is determined, S; executes

(M5) S;~ B: aid, B, o5, (aid|| B)

where ~» denotes a point-to-point send over a (not nec-
essarily authenticated) communication channel. This
message conveys that S; declares B the winner of auc-
tion aid. Once B receives such messages from t + 1
different servers, it can claim the item bid upon by
presenting the ¢ + 1 signed declarations to the appro-
priate authority.

At this point, correct servers can erase any informa-
tion they hold for losing bids. By the properties of the
VIS scheme, the correct servers possess enough infor-
mation to reconstruct the bank’s signature for the coin
used in the winning bid. However, the servers should
not reconstruct this signature among themselves, lest
a faulty server reconstruct and deposit the coin in its
own account before the correct servers can deposit the
coin in the auction’s account. Moreover, as discussed
in Section 8.1, enabling faulty servers to reconstruct
the coin’s signature might allow them to “frame” a
bidder for reusing the coin, if the bidder does not take
recommended precautions. To perform reconstruction
in a way that avoids these problems, each server could
forward its private VIS value for that coin’s signature
to the bank, so that the bank can perform the recon-
struction itself. This would result in minimal over-
head at the bank (see [14]), but it requires the bank
to provide an interface to support VIS reconstruction.
Since reconstruction can occur at any time after the
auction (e.g., at the end of the day), an alternative



solution would be for reconstruction to be performed
later by a trusted financial officer of the auction house.

5.2 Alternative designs

In the design of our auction protocol, we considered
numerous alternatives to that presented in Section 5.1,
and it is instructive to discuss several of them.

Eliminating VES It is possible to eliminate the
use of a VES scheme by having the bidder share
Ohank(vs) among the servers with a standard thresh-
old secret sharing scheme or a verifiable secret sharing
scheme [6]. In this case, the auction servers would
have no way of verifying that they hold shares of a
proper signature, except by reconstructing it. Recon-
structing it, however, would leave the coin vulnerable
to theft, by a faulty server depositing the coin in its
own account before the correct servers could deposit
it in the auction’s account.

Even if it were deemed acceptable to simply min-
imize the number of coins exposed to theft, doing so
would require that the servers locate the highest bid
containing a valid coin by reconstructing the signa-
tures in the sorted bids one (or a few) at a time, until
that bid is found. In this approach, the message com-
plexity of finding the highest valid bid can be propor-
tional to the number of invalid bids submitted. There-
fore, it is susceptible to an explosion in communica-
tion costs if malicious bidders submit a large number
of invalid bids. Moreover, this attack would be very
difficult to prevent or punish, especially since bids are
not authenticated (to withhold the identities of the
bidders until after bidding is closed) and may even be
anonymous (see Section 8.1).

These problems are avoided with the use of a VES
scheme. In our protocol, no coins are exposed to theft
by faulty servers, and the validity of all bids can be
checked with a total of n reliable multicasts. More-
over, the use of VIS makes it possible to extend our
auction protocol to perform auctions in which the
amount the winner pays is a function of other valid
bids (e.g., second-price sealed-bid auctions [18]). Im-
plementing such auctions with only the mechanism de-
scribed above would force servers to reconstruct the
coins in those other bids, thus exposing them to theft.

On-line digital cash It is conceivable that our pro-
tocol could be modified to accommodate the use of on-
line digital cash. With an on-line cash scheme, check-
ing the validity of a bid would involve the bank, typi-
cally to determine whether the coin in a bid was previ-
ously spent. Unfortunately, most obvious approaches
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to performing this interaction with the bank either
expose coins to theft by a faulty server or result in
a message complexity that depends on the number of
invalid bids. While it is possible to overcome these dif-
ficulties, doing so seems to require substantial changes
to the interface provided by the bank in a typical on-
line cash scheme (e.g., [4, 19]).

Threshold cryptography In our auction protocol,
the technique used to keep the bids secret prior to the
close of bidding is to share the value of the bid among
the auction servers using a threshold secret sharing
scheme. Alternatively, a threshold public key cryp-
tosystem [7] could be used to encrypt bids under the
public key of the auction house, so that they could
be decrypted only with the cooperation of a thresh-
old number of servers. Correct servers could prevent
the premature disclosure of bids by cooperating in de-
cryptions only after bidding had closed. The primary
drawback of this approach is that with all threshold
cryptosystems of which we are aware, a large modular
exponentiation would be required per server per bid.
Since modular exponentiations are computationally
intensive, this would expose the service to substantial
computational overheads induced by malicious bid-
ders submitting large numbers of bids. Such an attack
would be much less effective against our protocol, be-
cause to open bids, the main cost per server per bid
is a polynomial interpolation, which is relatively inex-
pensive (a small number of linear combinations using
precomputed coefficients; see Section 7).

A threshold signature scheme [7], in which the co-
operation of a threshold number of servers is required
to sign a message with the auction house’s private key,
could be useful when declaring a winner. Instead of
sending separate signed messages to the winning bid-
der in step (M5), the servers could construct a single
ticket bearing the auction house’s signature and send
this to the winner. This would decrease the size of
the ticket that the winner must present to claim the
auctioned item, but, with existing threshold signature
schemes, would also increase the computational load
on the servers to construct this ticket.

Mental games “Mental games” [15] are known
cryptographic techniques for securely performing a
wide variety of tasks, including secure auctions as a
special case. Mental games could be used to construct
an auction service that provides stronger properties
than ours—e.g., that the values of bids are never dis-
closed, even after bidding closes—but a service built
using these techniques would perform much worse



than ours. Our protocol sacrifices the above prop-
erty in the interest of efficiency, although our protocol
can be modified to allow bidder’s identities to remain
secret even after bidding closes; see Section 8.1.

6 Security

In this section, we discuss how the protocol of Sec-
tion 5.1 achieves the security properties stated in Sec-
tion 2. Our arguments are informal, and are not in-
tended to constitute a proper proof of security. Such
a proof would be quite involved, and would require
more detailed definitions of security for auctions and
the properties of VIS and multicast.

Validity

1. The bidding period eventually closes, but only after
a correct auction server decides that it should be
closed.

The bidding period eventually closes because all
correct servers (and thus at least ¢ 4+ 1 cor-
rect servers) atomically multicast close messages.
Moreover, since the bidding period closes at each
server after it has received (by atomic multicast)
close messages from t + 1 servers, the bidding pe-
riod closes at a server only after it has received a
close message from a correct server.

2. There is at most one winning bid per auction,
dictated by the (deterministic) publicly-known rule
applied to the well-formed bids received before the
end of the bidding period.

All correct servers agree on which bids were re-
ceived before the close of the bidding period, due
to the properties of atomic multicast. If the servers
received correct shares of Billvg|lws, in the -
th bid, then all correct servers will reconstruct
By||vg,i||ws,i, since any bad shares provided by
faulty servers will be discarded in step 2 of “open-
ing the bids”. In addition, if the sharing was not
performed correctly, then the bid will be discarded
by all correct servers, as all will detect the dis-
crepancies between the interpolated polynomial f;
and the values {c; }s;eg (step 3 of “opening the
bids”). Thus all correct servers agree on the same
set of L' bids after opening the bids. By the prop-
erties of the digital cash and VIS schemes, all cor-
rect servers will agree on the subset of those bids
that pass the validity checks. All correct servers
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will select the same winning bid from these ac-
ceptable bids, by following the public rule for de-
termining the winner. Finally, all correct servers
will sign a message announcing this winning bid,
enabling the winner to claim the item bid upon.

3. The auction service collects payment from the win-

ning bidder equal to the amount of the winning bid.

By the properties of the VXS scheme, the correct
servers end the protocol in possession of shares suf-
ficient to reconstruct the bank’s signature on the
coin contained in the winning bid. This signature
can be reconstructed via the VIS reconstruction
protocol, according to auction house policy.

4. Correct losing bidders forfeit no money.

The money from a losing bid is worthless without
the bank’s signature. By the properties of VIS,
no information about this signature is leaked to a
coalition of faulty servers, and so the faulty servers
are unable to deposit the money. Thus, the money
is effectively transferred back to the bidder, who
can reuse the money as it chooses.

5. Only the winning bidder can collect the item bid
upon.

Only the winning bidder obtains ¢ +1 signed decla-
rations (from ¢+ 1 different auction servers) stating
that it won the auction. Thus, only the winning
bidder can collect the item bid upon, supposing
that possession of ¢ + 1 such declarations is neces-
sary to do so.

Secrecy

1. The identity of a correct bidder and the amount of
its bid are not revealed to any party until after the
bidding period is closed.

More precisely, the identity of the bidder and the
amount of the bid are not revealed until after the
bidding period is closed at some correct server.
This prevents bids being submitted based on the
previously disclosed contents of other bids, because
by the properties of atomic multicast, once bidding
is closed at any correct server, the set of bids that
will be considered by any correct server is fixed.

Showing the stated property is not straightfor-
ward, since it depends on additional properties of
VIS and digital cash schemes. Intuitively, how-
ever, a coalition of faulty servers cannot recon-
struct the value Bljvg||wg shared in a bid from



only their shares of this value, by the properties
of threshold secret sharing schemes. Moreover, in
all of the VIS implementations proposed in [14],
the public and private VIS information available
to the coalition would yield at most the message
digest of vg. In a typical digital cash scheme, vg in-
cludes a large, unpredictable component, such as a
string with the coinholder’s identity embedded in
it. Thus, the message digest of vg reveals no useful
information about the amount of the bid.

7 Performance

We have implemented a prototype of our auction
service using the protocol of Section 5.1, in an effort to
understand the factors that limit its performance. Our
implementation uses the multicast protocols of Ram-
part [21], and employs Cryptolib [16] for basic cryp-
tographic operations. Our implementation includes
many optimizations to the protocol described in Sec-
tion 5.1. For example, to avoid sharing the entire value
B||vg||ws when submitting a bid, we share a (much
smaller) key to a symmetric cipher and include in the
bid the encryption of B||vg||ws under that key. In ad-
dition, since each server must receive only £ + 1 shares
of this key to recover Bilvg||lws, only 2¢ + 1 servers
multicast shares and, in fact, only 2t + 1 shares are
distributed by the bidder for each bid. Similarly, only
2t + 1 servers multicast close messages, as this suf-
fices to ensure that each correct server receives close
messages from ¢ + 1 servers.

Latency numbers in milliseconds (ms) for the stages
of the auction protocol in the case of no failures
are shown in Table 1 and Figure 1. These num-
bers were taken on a network of moderately loaded
spaRCstation 10s. These tests used RSA for public
key encryption and signatures, with 512-bit moduli
and public exponents equal to three; thus, the RSA-
based VXS scheme of [14] (see Section 4) was also used.
There were six auction servers, which is the minimum
number of servers required to tolerate the failure of
one auction server with this VXS scheme (i.e., ¢t = 1).

In order to isolate the costs of our auction protocol,
the numbers in Table 1 and Figure 1 do not reflect op-
erations specific to the form of digital cash used. In
particular, the latencies labeled “submitting a bid” in
Table 1 and “checking the validity of bids” in Figure 1
do not include the costs of creating ws and check-
ing the validity of vg and wg, respectively. For the
purposes of interpreting these test results, vs and wy
can together be viewed as a single opaque 256-byte
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string, a size comparable to that in modern off-line
cash schemes (e.g., [3] using a 512-bit modulus).

Operation Latency (ms)
Submitting a bid 261
Closing the bidding period 230
Declaring the winner 62

Table 1: Operations with constant latency

Table 1 shows operations whose latencies are rel-
atively constant as a function of the number of bids
submitted to the auction. The latency labeled “sub-
mitting a bid” includes the latencies of creating a bid,
atomically multicasting it to the server group, and
each server, in parallel, decrypting the two portions
of the message private to it. “Closing the bidding pe-
riod” is the latency of parallel atomic multicasts (close
messages) from 2t + 1 servers. “Declaring the winner”
includes the latencies of each server, in parallel, sign-
ing the message declaring the winner and sending it,
and the winner receiving and verifying the signatures

on ¢t + 1 such messages.
3000 T T T T
Opening the bids ~— .4
Checking the validity of bids (min) -+ -
2500 | Checking the validity of bids (max) -8 - E)ﬁ-"' -
2000 |+ :3 /,r"/ E
8 L
8 L
g 1500 | - e
7 L /‘
e 4
1000 T
* -’/o T
0 1 1 A1 o
20 40 60 80 100 120

number of bids
Figure 1: Latencies that grow with number of bids

Figure 1 shows operations whose latencies increase
as a function of the number of bids submitted. “Open-
ing the bids” includes the latency of 2t + 1 servers,
in parallel, unreliably multicasting messages contain-
ing their previously decrypted shares for the value
B||vg||wg for each bid, and all servers receiving ¢ + 1
such messages and reconstructing these values as de-
scribed in Section 5.1. “Checking the validity of bids
(max)” includes the latency of each server, in paral-
lel, computing its VES-stat values for all bids, reliably
multicasting these values, and completing the verifica-



tion for each bid, until each is either accepted or re-
jected. “Checking the validity of bids (min)” includes
the latency of this procedure only until the highest
bid, whose verification is completed first, is found to
be acceptable. Thus, these curves form a minimum
and maximum latency for finding the winning bid in
our implementation, once the bids are opened. Since
our implementation is intended to minimize the “max”
curve (versus the “min” curve), it should be possible
to find implementations of our protocol that provide
a better “min” curve than that shown in Figure 1.

8 Extensions

8.1 Anonymity

As discussed in Section 3.3, a goal of most ap-
proaches to electronic money is to provide anonymous
spending to customers, i.e., to prevent a vendor or
bank from associating purchases to individuals. In
this section, we discuss the ability of a bidder to re-
tain that anonymity in the auction protocol.

An immediate requirement to achieving bidder
anonymity is to remove the identity of the bidder from
the protocol of Section 5.1. A simple approach to
achieve this is for each bidder, prior to submitting
a bid, to generate a large random number  and use
h{r} as a pseudonym for that bid, where h is a mes-
sage digest function (e.g., MD5). That is, a bid would
be submitted as

(MV) B5G: {(shy(h(r)llusliws))x, }s,eq,
VES—pub(abank(vs)),
{{VES-priv;(opank (vs)))k, } s, 0

The auction would then proceed as before, except that
the winner would be announced as follows:

(M5’) S; broadcasts:  aid, h(r), os5,(aid, h(r))

Note that Sj, not knowing the identity or location of
the bidder that submit the bid with pseudonym h(r),
must simply broadcast the declaration of the winner.
Alternatively, S; could place this signed declaration
in a location from which it could be later retrieved
by the winning bidder. Once the winning bidder has
obtained ¢ + 1 such signed declarations, it can claim
the item bid upon by presenting these declarations and
the number r to the appropriate authority; since b is
a message digest function, the winning bidder is the
only party that could produce r.

While at first this may seem to ensure the bidder’s
anonymity, other steps may be required due to the
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properties of off-line digital cash. As discussed in Sec-
tion 3.3, off-line cash schemes require that the cus-
tomer’s (in this case, the bidder’s) identity be em-
bedded within the value v in a way that reveals this
identity to the bank if the same coin is spent multiple
times. Thus, with proposed off-line cash schemes, if a
bidder were to submit the same coin to two auctions
(e.g., submit the coin to one, lose the auction, and
submit the coin to another), then the identity of the
bidder could be inferred by a coalition of one faulty
auction server from each auction. Perhaps even worse,
if opank(vs) is ever leaked to the coalition of faulty
servers (e.g., due to a weakness in the procedures by
which the coin is reconstructed and deposited after it
wins the second auction), then they could deposit both
uses of the coin, thereby revealing the bidder’s iden-
tity to the bank and “framing” the bidder for reusing
the coin. It is possible to modify proposed off-line
cash schemes so that the identity information embed-
ded in vg is encrypted with a key known only to the
bank and the bidder. Then, the bank’s cooperation
would be required to reveal the identity of the bidder.
However, this approach still enables the coalition of
auction servers to link the same coin, and thus the
same (unknown) bidder, to both auctions, and does
not prevent the “framing” attack described above.

There are steps that a bidder should take to guard
against these attacks. Specifically, the bidder should
use a coin in at most one bid. If that bid is unsuc-
cessful, the bidder should deposit the coin in the bank
and withdraw a new one. In this case, multiple bids
cannot be linked to the same bidder or used to frame
the bidder for reuse, and the identity of the bidder can
be revealed only by a coalition involving the bank and
a faulty auction server. However, it is not clear how a
bidder can conceal its identity against such a coalition
with current off-line schemes.

8.2 Concurrent auctions

The protocol of Section 5.1 does not suffice to han-
dle multiple auctions with overlapping bidding periods
at the same auction service, because a bid conveys the
auction for which it is intended only after B||vg||ws
is reconstructed (and Secrecy has possibly been vio-
lated). Thus, to adapt the protocol to accommodate
concurrent auctions, the format of a bid must be mod-
ified to enable all correct servers to determine the auc-
tion for which a bid is intended. A first attempt might
be for the bidder to include aid, in plaintext, in the
body of message M1. However, since M1 is not authen-
ticated by the servers, an attacker could modify aid in
transit, replacing it with the identifier of an auction



whose bidding period closes earlier. This would be de-
tected by the auction servers, but only after B]||vg||ws
was reconstructed and Secrecy had been violated.

To rectify this problem, it is necessary to bind aid to
the shares of B||vg||ws, so that servers can detect any
modification to aid before reconstructing B||vs||ws.
More precisely, we propose the following bid format:

(M1") B4 G:  aid, {(sh;(B||vs||ws)l|aid)x,}s,eq
VES-pub(abank(vg)),
{{(VES-privj(opank(vs))) x; }s,e0

When server S; decrypts (shi(B||vs||ws)||aid)x;,
it verifies that the value of aid appended to
shi(B||vs||ws) matches the value of aid at the front of
the bid. If these values do not match, then S; does not
reveal sh;(B||vs||lws) during the “opening the bids”
phase. However, it cannot completely abandon the
protocol for opening this bid, because other correct
servers may have found a matching pair of aid values.
Therefore, we must modify the “opening the bids” step
of the protocol as described below, to ensure that all
correct servers consistently accept or reject this bid.

Opening the bids Suppose that the [-th bid for
auction aid received (by atomic multicast) at S; is of
the form

aid, {cj}s,eg, pub;, {priv;; }s;ec
for some values of {¢;,1}s,eg, puby, and {priv; }s,eg-

Also suppose that a total of L bids were received for
auction aid. These bids are opened in three steps:

1. For each I, 1 <1 < L, server S; computes

81 = g if (ci':')I("-l = ql|aid
b 1 otherwise

S; then executes:
(M3“) S;‘ — g : a.id, {8",1}1515[,

2. When S; receives a message of the form

(1

from a server S;, it verifies for each I, 1 < 1 < I,
that if s;,; # L, then (sj,illaid)k; = c;,1. If there is
an | for which this does not hold, then S; discards
and ignores this message from S;. Note that if this
occurs, then S; must be faulty.

aid, {31} 1<i<L

3. S; completes the opening of the I-th bid, 1 <1< L,
as follows. If in the first 2t + 1 messages of the
form (1) that S; receives (from different servers, and
that pass the verifications of step 2), there are ¢t +1
messages, say from Sj,, ..., Sj,,,, such that s;, 1 #

1 forallk,1 <k <t+1, then S; finds the degree ¢

polynomial f; determined by s;, i...8j,,,,1- Si then

verifies that (fi(j)||aid)x, = ;. for all j such that

1<j<mnandj#ji,...,Jt41. If for any such j

this does not hold, then S; discards the I-th bid. S;

also discards the I-th bid if f1(0) is not of the form

Bi||vs,i||ws, for some By, vg;, and ws, of a proper

syntactic form, or if in the first 2441 messages of the

form (1) that S; receives, there are ¢ + 1 messages,

say from Sj,, ..., Sj,,,, such that s;, ; = 1 forall k,

1 < k < t+41. Note that if the I-th bid is discarded,

then it was submitted by a faulty bidder.

The rest of the auction protocol remains as it is de-
scribed in Section 5.1, except that messages M2 and
M4 must be prepended with aid to mark the auction
to which they pertain.

All correct servers agree on the remaining set of
bids after the above “opening the bids” step, due to
the following two observations. First, if any correct
server S; sends s;; = L, then each correct server S;
will discard the I-th bid, because either S; will receive
too many L values to determine an f; or otherwise will
notice that (f(i)||aid)k, # ci,i- Second, if 8;; # L for
each correct S;, then each correct server will deter-
mine an f; and will consistently accept or reject the
bid as in the protocol of Section 5.1. Also note that
any attempt by an attacker to redirect a bid to an
earlier auction will result in each correct server con-
tributing L to the bid opening, thus causing the bid
to be rejected before the amount or source of the bid
are revealed.

9 Conclusion

‘We have presented the design and implementation
of a practical distributed auction service that can tol-
erate the malicious behavior of a constant fraction
of its servers and any number of bidders. Our de-
sign is based on several cryptographic primitives, both
old (multicast, secret sharing, digital cash) and new
(verifiable signature sharing). Our implementation of
this service suggests that this approach performs suf-
ficiently well to be useful in a wide range of settings.

As described in Section 1, this work is part of a
larger effort to understand how to implement com-
mon financial vehicles in distributed systems. We are



continuing in this effort, and plan to extend the tech-
niques developed in this work to address more general
types of auctions and other financial vehicles. We hope
to report on this work in future papers.
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