
The Rampart Toolkit for Building

High�Integrity Services

Michael K� Reiter

AT�T Bell Laboratories� Holmdel� New Jersey� USA
reiter�research�att�com

Abstract� Rampart is a toolkit of protocols to facilitate the develop�
ment of high�integrity services� i�e�� distributed services that retain their
availability and correctness despite the malicious penetration of some
component servers by an attacker� At the core of Rampart are new pro�
tocols that solve several basic problems in distributed computing� in�
cluding asynchronous group membership� reliable multicast �Byzantine
agreement�� and atomic multicast� Using these protocols� Rampart sup�
ports the development of high�integrity services via the technique of state
machine replication� and also extends this technique with a new approach
to server output voting� In this paper we give a brief overview of Ram�
part� focusing primarily on its protocol architecture� We also sketch its
performance in our prototype implementation and ongoing work�

� Introduction

Many techniques for enforcing security policy in distributed systems rely
on trusted services for performing security�critical functions� Examples in�
clude authentication services or certi�cation authorities to support cryp�
tographic key distribution �e�g�� ���� ��	
 and access control services for
the management and enforcement of access control policy �e�g�� ���	
�
For these types of services to be trustworthy� they must be protected
from tampering by attackers� In addition� since security and liveness in
a surrounding system may rely on the availability of these services� they
may need to be replicated for high availability� It has been argued that
these requirements pose a con�ict� in that replicating data or services for
high availability makes them more di
cult to protect ���� ��� ��� ��	� This
tradeo� is particularly pertinent to security�critical services of a trusted
computing base� as prudence dictates that these services be localized to
facilitate their protection�

A compromise to balance the needs for security and availability in
some services is to replicate the service in a way that enables it to re�
main correct and available despite the malicious penetration of some of
its component servers by an attacker ���� ��� ��	� Techniques for building
such high�integrity services have been explored primarily under the rubric

In Theory and Practice in Distributed Systems �Lecture Notes in Computer
Science ����� pp� ��	

�� Springer�Verlag� 
����



of Byzantine fault�tolerance� The most widely applicable technique for
building high�integrity services is known as state machine replication ���	�
In this approach� a service is implemented with multiple identical� deter�
ministic servers� each initialized to the same state� Clients issue requests
to the servers using an atomic multicast protocol� which ensures that all
correct servers process the same requests in the same order and thus pro�
duce the same output for each request� If the correct servers su
ciently
outnumber the faulty ones� then a client can identify the correct output
by output voting� e�g�� accepting the output returned by a majority of the
servers�

A substantial impediment to using state machine replication in hostile
environments is its reliance on atomic multicast� While many systems
have demonstrated atomic multicast tolerant of benign process failures in
general�purpose distributed systems �e�g�� ���� ��� �� ��� �	
� prior e�orts
have demonstrated atomic multicast tolerant of malicious failures only
under the assumption that the underlying network is synchronous� i�e��
that there are known bounds on message transmission times� processes�
rates of execution� and relative clock drifts ��� ��� ��	� These synchrony
assumptions make these solutions inappropriate for use in loosely�coupled
systems� and especially for hostile environments in which messages can
be delayed due to denial�of�service attacks ���	�

We have undertaken the design and implementation of a protocol
toolkit� called Rampart� to facilitate the construction of high�integrity
services via state machine replication� A main focus of this e�ort has been
to demonstrate the feasibility of atomic multicast tolerant of malicious
process failures without relying on synchrony assumptions� This work
has yielded a new protocol for asynchronous atomic multicast� as well
as new protocols for reliable multicast �i�e�� Byzantine agreement ���	
�
process group membership� and output voting ���� ��� ��	� In addition�
Rampart provides e
cient implementations of these protocols to facilitate
the construction of high�integrity services in practice�

Rampart facilitates the construction of high�integrity services by re�
lieving the application programmer of the complexities of server repli�
cation� That is� our goal is to enable a programmer to build a �non�
replicated
 application server program and then� with only minor and
very simple changes to the server code� use Rampart to replicate it� The
primary interfaces provided by Rampart enable �i
 application clients to
issue requests to the replicated service� which are delivered to all correct
application servers in the same order �i�e�� atomic multicast
 and �ii
 ap�
plication servers to send replies to clients� in a manner that ensures that



the replies delivered to clients are only those sent by correct application
servers �i�e�� output voting
�

This paper gives a brief overview of Rampart and a snapshot of the
system at the time of this writing� Most of this paper is concerned with
the atomic multicast protocol of Rampart� which is the topic of Section ��
We discuss the output voting protocols of Rampart in Section �� and the
status of Rampart and ongoing work in Section �� All performance num�
bers discussed in this paper were obtained in tests among user processes
running on a network of moderately loaded Sparcstation ��s over SunOS
������

� Atomic multicast

In our present implementation� atomic multicast from clients to servers is
implemented using an atomic multicast protocol from servers to servers�
This latter protocol� moreover� is implemented using two additional pro�
tocols� namely a group membership protocol and a reliable multicast pro�
tocol �see Figure �
� These membership� reliable multicast� and atomic
multicast protocols are described in Sections �������� respectively� and
the extension of this atomic multicast implementation to enable clients to
multicast to servers is discussed in Section ���� The protocol architecture
shown in Figure � is similar to that of the Isis system� and indeed Ram�
part was heavily in�uenced by Isis and its successor Horus ��	� Rampart
distinguishes itself primarily by providing robustness against a broader
class of failures than do Isis and Horus� albeit at a signi�cant cost in
complexity and performance�

Transport

Group Membership

Reliable Multicast

Atomic Multicast

Application Server Code

Fig� �� Atomic multicast implementation �server process�



The protocols pictured in Figure � make two main assumptions re�
garding the operational environment in which they run� First� since they
employ digital signature technology �in our present implementation� RSA ���	
�
they assume that the Rampart instance at each server possesses a private
key� which only it knows� and all other servers� corresponding public keys�
This initial key distribution can be performed manually by an operator�
with the help of a key distribution infrastructure �e�g�� ���	
� or simply by
storing servers� public keys in nonvolatile memory at each server� Simi�
larly� the public key of a new server must be communicated to the other
servers before it can be put into operation�

Second� these protocols assume the existence of a message transport
facility that provides a point�to�point� reliable� authenticated commu�
nication channel between each pair of servers� where by �reliable� we
mean that if the sender and destination of a message are correct� then
the destination eventually receives the message� Reliability� however� is
required only for the liveness of our protocols� not their safety� In our
present implementation� this transport facility is provided by the Mul�
ticast Transport Service �MUTS
 ���	� MUTS implements authenticated
point�to�point communication with standard shared�key techniques ���	�
using shared keys distributed via the public keys described above� MUTS
also provides several other facilities �e�g�� threads� timers� and synchro�
nization primitives
 that have signi�cantly simpli�ed our implementation�

It is also worthwhile to reiterate what Rampart�s atomic multicast
implementation does not assume� Because of our desire to model corrup�
tions by an attacker� it does not make assumptions regarding the types
of failures that servers �or clients
 can exhibit� That is� our failure model
is Byzantine �with message authentication ��	
� although the number of
such server failures must be limited to a constant fraction of the servers�
this is discussed further in Sections ��� and ���� In addition� our atomic
multicast protocol assumes no bounds on message transmission times or
clock drifts� That is� the system is asynchronous�

��� Group membership

The foundation of atomic multicast is a group membership protocol ���	�
This protocol provides the abstraction of a group of operational servers
that may change to re�ect the perceived failure or recovery of servers� or
the addition of new servers� More precisely� the group membership pro�
tocol generates a sequence of group views� each of which is a set of server
process identi�ers� and delivers each view to all members of that view�
The membership protocol also provides an interface by which processes



can request additions to or removals from the group� Subject to condi�
tions described below� the membership protocol ensures that if su
ciently
many members of a group view request that a member be removed� then
that server will eventually be removed from the group �i�e�� a view will be
created not containing that server
� and similarly for requests to add a
server to the group� In addition� it ensures that malicious members cannot
cause membership changes or prevent needed changes from occurring�

The semantics provided by the membership protocol are contingent
on an assumption that fewer than one�third of the members of each group
view are faulty� Moreover� since the membership protocol generates agree�
ment on the sequence of group views� it is a type of consensus protocol
and thus cannot be guaranteed to be live due to the impossibility result
of ���	� In our protocol� this limitation manifests itself in that the creation
of a new view can be guaranteed only if there exists a correct group mem�
ber whose removal is not requested for su
ciently long �and thus who is
reachable for su
ciently long
 by more than two�thirds of the current
group members� Advances on reaching consensus in the presence of crash
failures �e�g�� ��	
 hint that it may be possible to somewhat weaken this
requirement� this is a topic for future research�

Changing the group membership �i�e�� generating a new group view

in our present implementation is a heavyweight operation� For instance� if
RSA keys with ����bit moduli are used� then the latency of a group mem�
bership change is roughly ��� milliseconds in a group of size four �see ���	
�
However� since experience with current group�oriented systems suggests
that membership changes are infrequent for most applications ��	� and
since we expect this to be the case in the Rampart applications that we
currently envision� we anticipate that this cost will not be a limiting factor
for most applications� Moreover� since the cost of the group membership
protocol is dominated by RSA operations� substantial improvements can
be realized by using commercially available� special�purpose hardware to
perform these operations ��� �	�

��� Reliable multicast

Reliable group multicast is implemented over the membership protocol�
The reliable group multicast protocol provides an interface by which
group members can multicast messages to the group of servers� The pro�
tocol delivers a sequence of events to each group member� where each
event is either a message that was reliably multicast by a group member
or a group view that was received locally from the membership proto�
col� The reliable multicast protocol delivers group views to each correct



member in the order they are received from the membership protocol� In
addition� the set of messages that it delivers between any two consecutive
group views is the same at each correct server that is not removed from
the group� Thus� this protocol layer implements a virtually synchronous

process group abstraction as originally de�ned by the Isis system ��	�

Our reliable multicast protocol is detailed in ���	� Like the member�
ship protocol� our reliable multicast protocol relies on the assumption
that fewer than one�third of the members of each group view are faulty�
due to both its use of the membership protocol and other details of the
reliable multicast protocol itself� Moreover� in some cases the progress of
the reliable multicast protocol relies on the removal of a member from
the group �in which case the removal will be requested by su
ciently
many members
� Thus� the liveness of our reliable multicast protocol is
contingent upon the liveness of the membership protocol�

Since atomic group multicast is implemented using reliable group mul�
ticast� it is essential that reliable multicast perform well� As in the group
membership protocol� the cost of reliable multicast is dominated by RSA
operations� To lessen this cost� our reliable multicast protocol uses �short�
term� cryptographic keys that are marginally secure and thus faster to
use� To compensate for the use of weak short�term keys� we employ addi�
tional protocols to change these keys frequently� For example� we typically
use RSA keys with only ����bit moduli� and change these keys once per
hour�� Reliable multicast performance for this key size �and in the ab�
sence of failures
 is shown in Figure �� Part �a
 shows the mean latency of
a �multi�RPC�� in which a single member reliably multicasts a message
�of either �� �� or � kilobytes
 to the group and all group members reply
with a null point�to�point message� The latency is the time that elapses at
the initiator between initiating the multi�RPC and receiving all replies�
Part �b
 shows the throughput achieved in tests where either one mem�
ber ��one multicasting�
 or each member ��all multicasting�
 initiated
��� ��byte reliable multicasts to the group� Throughput was computed as
the ratio of the total number of reliable multicasts to the time required
for them to complete� Despite the use of short�term keys� the cost of re�
liable multicast is still dominated by RSA operations� Performance could
be improved by using smaller short�term keys� at the cost of changing
them more often� or by using special�purpose hardware to perform RSA
operations�

� A ����bit RSA modulus should be secure for roughly an hour against an adversary
with the computational resources used in the factorization of the largest general RSA
modulus factored to date 
�� �A� Odlyzko� private communication� May 
�����



40

50

60

70

80

90

100

110

120

130

4 5 6 7 8 9 10

m
ill

is
ec

on
ds

group size

0-kbyte message
1-kbyte message
4-kbyte message

14

16

18

20

22

24

26

28

30

4 5 6 7 8 9 10

0-
by

te
 m

es
sa

ge
s 

/ s
ec

on
d

group size

one multicasting
all multicasting

�a� multi�RPC latency �b� throughput

Fig� �� Server�to�group reliable multicast performance

��� Atomic multicast

Atomic group multicast is implemented over the reliable group multicast
protocol� Like reliable multicast� the atomic multicast protocol provides
an interface for members to multicast messages to the group� and it deliv�
ers a sequence of events to each member� where each event is a group view
or a message� The atomic multicast protocol delivers the same sequence
of events to each correct member that is not removed from the group�

Our atomic multicast protocol is similar to those of the Amoeba ���	
and Isis ��	 systems� which are tolerant to only benign failures� In these
systems� there is a designated member of each group view� called the se�

quencer� that determines the order in which atomic multicasts to that view
are delivered� using one of two methods� In the �rst method� called �PB�
in ���	� the member initiating an atomic multicast does so by sending
the message to the sequencer� Upon receiving the message� the sequencer
forwards it to the group using a FIFO multicast� and all members de�
liver atomic multicast messages in the order they are received from the
sequencer� In the second method� called �BB�� the member initiating
the atomic multicast FIFO�multicasts the message� say m� to the group�
Upon receiving m� the sequencer FIFO�multicasts a second message nam�
ing m as the next atomic multicast message to be delivered� With either
method� atomic multicasts are delivered in the same order at all group
members because their order is dictated by the sequencer� Techniques to
handle the �benign
 failure of the sequencer �or any group member
 are
discussed in ���� �	�

A �rst step to adapting these protocols to handle malicious members
is to replace all FIFO multicasts by �FIFO
 reliable multicasts using the



protocol of Section ���� This modi�cation ensures that all correct mem�
bers deliver the same sequence of atomic multicasts� However� a corrupt
sequencer could still prevent an atomic multicast from being delivered�
e�g�� by ignoring the message when it is received from the atomic multicast
initiator� Such attacks can be countered in the BB protocol� if the correct
members do not deliver an atomic multicast message within some timeout
period after receiving it by reliable multicast from the atomic multicast
initiator� then each correct member requests that the sequencer be re�
moved from the group� Thus� a denial of service attack by the sequencer
will result in the sequencer�s removal in the BB approach �contingent on
the liveness of the membership protocol
� whereas it is more di
cult to
counter such attacks in the PB approach� It is for this reason that the
BB approach was initially employed in Rampart ���	� On the other hand�
the PB approach provides better performance� because there is only one
reliable multicast on the critical path of an atomic multicast �versus two
in the BB approach
� and because many atomic multicast messages can
be communicated to the group in a single reliable multicast from the
sequencer�

For these reasons� in Rampart we have moved to an atomic multi�
cast protocol that is a hybrid of the PB and BB approaches described
above� During normal operation� the protocol uses the PB approach� for
a member to atomically multicast a message� it sends the message to
the sequencer� The sequencer collects messages and periodically reliably
multicasts a message containing a sequence of messages that constitute
the next atomic multicast deliveries� If a member detects that a message
it sent to the sequencer is not being included in the sequencer�s reliable
multicasts� then the member reliably multicasts the message to the group�
If the sequencer still does not inform the group when to deliver this mes�
sage in the atomic multicast delivery sequence� then eventually all correct
group members will request that the sequencer be removed� For brevity�
we defer further details of the protocol to a forthcoming paper�

An example of the throughput attainable with this protocol �in the
absence of failures
 is shown in Figure �� This �gure shows the results
of tests in which either one non�sequencer member ��one multicasting�

or each member ��all multicasting�
 initiated ���� ��byte atomic mul�
ticasts to the group� The throughput was computed as the ratio of the
total number of atomic multicasts to the time required for these atomic
multicasts to complete� In these tests� the sequencer issued a reliable mul�
ticast approximately every ��� milliseconds� Mean latency is not shown
in Figure � because this value may bear little relation to the actual la�



tency experienced per atomic multicast� the latency of an atomic multi�
cast varies based upon the time between the sequencer�s receipt of the
multicast message from the atomic multicast initiator and the sequencer�s
next reliable multicast� The frequency of the sequencer�s reliable multi�
casts is important to the performance of this protocol� �nding optimal
such frequencies is a topic of ongoing work� Another area of ongoing work
is �ow control� the lack of which caused the sequencer to be overwhelmed
in the tests of Figure � for groups of size greater than seven� resulting in
a dramatic decline in throughput�

600

700

800

900

1000

1100

1200

1300

1400

4 5 6 7 8 9 10

0-
by

te
 m

es
sa

ge
s 

/ s
ec

on
d

group size

one multicasting
all multicasting

Fig� �� Server�to�group atomic multicast throughput

��� Clients

While so far this section has focused on atomic multicast from servers to
servers� ultimately our goal is to enable clients to atomically multicast
requests to the servers� In our present implementation� a client issues a
request to the service by sending it to a single server� which forwards the
request by atomically multicasting it to the server group� This approach
has several attractive features� First� it does not require the client to know
for certain where each of the servers is� That is� the client need only be
able to reach one of the correct servers� which it can locate� e�g�� by broad�
casting a query to which the servers respond or by obtaining a hint for the
address of a server from some �not necessarily trusted
 source� Second�
this approach is very e
cient� especially because a server can forward
many client requests to the server group with a single atomic group mul�
ticast� �This is similar to transaction batching as described in ���	�
 For
example� Figure � illustrates the throughput of client requests to a service



consisting of four servers in our present implementation� In these tests�
each client issued ���� ��byte requests to the service� and the through�
put was computed as the total number of requests divided by the time
required for all of them to be delivered to the servers� Each server initi�
ated an atomic multicast to the group �containing perhaps many client
requests
 approximately every �� milliseconds� and the sequencer in the
atomic multicast protocol issued reliable multicasts approximately every
��� milliseconds�

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1 2 3 4 5 6 7

0-
by

te
 m

es
sa

ge
s 

/ s
ec

on
d

number of clients

Fig� �� Client�to�group atomic multicast throughput

The main risk of this approach is that the server to which a client
sends its requests may be corrupted� In this case� the client could be
denied service or� if the client�s requests are not authenticated by the
correct servers� the corrupt server could undetectably alter the client�s
requests in transit� The latter attack can be detected by the correct servers
authenticating client requests using standard cryptographic techniques at
the application layer ���	� If a denial of service occurs� then the client must
locate another server to which to send its requests�

� Output voting

Application servers communicate outputs to clients via output voting pro�
tocols� which ensure that the replies delivered to clients are only those
sent by correct servers �see Section �
� We have implemented two types
of output voting protocols in Rampart� In the �rst� the output from each
server is sent to the client that requested it� and the client performs out�
put voting in the standard way ���	� A disadvantage of this approach
is that the client must be able to identify and authenticate each server



individually� �Note that this set of servers that the client must authen�
ticate is di�erent from� but encompasses� the potentially more dynamic
server group de�ned by the group membership protocol for the purposes
of reliable and atomic multicast� see Section ����


The second protocol is novel in that output voting is performed at
the servers and is transparent to clients ���	� That is� for a client to verify
an output from the service with this protocol� the client need not know
how many servers there are or how to authenticate individual servers�
Instead� it need only possess one public key for the service �not to be
confused with the public keys of individual servers
 and verify one reply
from the service� just as if the service were not replicated� This is achieved
by using cryptographic methods to �split� the private key corresponding
to the service�s public key among the servers� so that the cooperation of
su
ciently many servers is required to sign a response ��	� This protocol
o�ers advantages over the usual approach to output voting if there is no
trustworthy way for clients to identify or authenticate individual servers�

The main disadvantage of this latter approach is that the crypto�
graphic techniques that it employs are costly� if the RSA public key of
the service contains a ����bit modulus� then the latency of output voting
with four servers is roughly ��� milliseconds� Moreover� this key may not
be amenable to frequent change to minimize its size �as in Section ���
�
because this would force clients to stay current with these key changes�
Thus� for many applications this approach to output voting may require
special�purpose hardware at the servers for performing RSA operations�
and in the absence of such hardware� the more standard technique of
output voting may be preferable�

� Status and ongoing work

An initial version of Rampart is nearing completion at the time of this
writing� In particular� prototypes of the group membership� reliable multi�
cast� atomic multicast� and output voting protocols are fully operational�
Preliminary performance numbers for these protocols indicate that Ram�
part is likely to provide performance that su
ces for many of the appli�
cations that initially motivated it� Nevertheless� they also indicate a high
cost for tolerating malicious processes� e�g�� the latency of our reliable and
atomic multicast protocols in our present implementation compare poorly
to those of some published protocols that tolerate only benign failures�

Our current focus is optimizing our protocols and completing the im�
plementation of other mechanisms in Rampart� such as protocols for new



servers to be integrated into a service� In conjunction� we are prototyp�
ing services with Rampart �e�g�� ���	
 that� while of interest in their own
right� demonstrate the toolkit�s utility and provide insight into where the
toolkit is lacking�

Another area of ongoing research is to extend the Rampart proto�
cols to provide support for a wider range of security technologies� For
example� many theoretical techniques to achieve secure distributed com�
putation �see ���	 for a survey
 use reliable multicast as a basic building
block� and thus our reliable multicast protocol might facilitate the real�
ization of these techniques in practice� Similarly� our group membership
protocol has potential applications to intrusion con�nement and main�
taining membership information in groups of processes that are mutually
distrusting�

Acknowledgements

We thank the workshop participants�especially Ken Birman� Danny
Dolev� Vassos Hadzilacos� Farnam Jahanian� G�erard Le Lann� Keith Marzullo�
Andr�e Schiper� Rick Schlichting� Sam Toueg� and Robbert van Renesse�
for discussions that clari�ed many theoretical and practical issues sur�
rounding Rampart� We also thank Matthew Franklin� Stuart Stubblebine�
Sandra Thuel� Rebecca Wright� and the anonymous referees for comment�
ing on drafts of this paper�

References


� Y� Amir� D� Dolev� S� Kramer� and D� Malki� Transis� A communication sub�
system for high availability� In Proceedings of the ��nd International Symposium
on Fault�Tolerant Computing� pages ��	��� July 
����

�� D� Atkins� M� Gra�� A� K� Lenstra� and P� C� Leyland� The magic words are
squeamish ossifrage� In Proceedings of Asiacrypt ���� pages �
�	���� 
����

�� K� P� Birman� A� Schiper� and P� Stephenson� Lightweight causal and atomic group
multicast� ACM Transactions on Computer Systems� ��������	�
�� Aug� 
��
�

�� K� P� Birman and R� van Renesse� editors� Reliable Distributed Computing with
the Isis Toolkit� IEEE Computer Society Press� Los Alamitos� California� 
����

�� E� Brickell� A survey of hardware implementations of RSA� In G� Brassard� editor�
Advances in Cryptology�CRYPTO ��� Proceedings �Lecture Notes in Computer
Science ����� pages ���	���� Springer�Verlag� 
����

�� T� D� Chandra and S� Toueg� Unreliable failure detectors for asynchronous sys�
tems� In Proceedings of the ��th ACM Symposium on Principles of Distributed
Computing� pages ���	���� Aug� 
��
�

�� F� Cristian� H� Aghili� R� Strong� and D� Dolev� Atomic broadcast� From simple
message di�usion to Byzantine agreement� In Proceedings of the �	th Interna�
tional Symposium on Fault�Tolerant Computing� pages ���	���� June 
���� A



revised version appears as IBM Research Laboratory Technical Report RJ����
�April 
�����

�� Y� Desmedt and Y� Frankel� Shared generation of authenticators and signatures� In
J� Feigenbaum� editor� Advances in Cryptology�CRYPTO ��� Proceedings �Lec�
ture Notes in Computer Science ����� pages ���	���� Springer�Verlag� 
����

�� S� R� Duss�e and B� S� Kaliski Jr� A cryptographic library for the Motorola
DSP������ In I� B� Damg�ard� editor� Advances in Cryptology�EUROCRYPT ���
Proceedings �Lecture Notes in Computer Science ����� pages ���	���� Springer�
Verlag� 
��
�


�� M� J� Fischer� N� A� Lynch� and M� S� Paterson� Impossibility of distributed
consensus with one faulty process� Journal of the ACM� ���������	���� Apr� 
����



� M� K� Franklin and M� K� Reiter� The design and implementation of a secure
auction service� In Proceedings of the ���	 IEEE Symposium on Security and
Privacy� May 
���� To appear�


�� M� K� Franklin and M� Yung� The varieties of secure distributed computation� In
Proceedings of Sequences II
 Methods in Communications
 Security and Computer
Science� pages ���	�
�� June 
��
�


�� L� Gong� A secure identity�based capability system� In Proceedings of the ����
IEEE Symposium on Security and Privacy� pages ��	��� Apr� 
����


�� L� Gong� Securely replicating authentication services� In Proceedings of the �th
International Conference on Distributed Computing Systems� pages ��	�
� 
����


�� M� P� Herlihy and J� D� Tygar� How to make replicated data secure� In C� Pomer�
ance� editor� Advances in Cryptology�CRYPTO ��� Proceedings �Lecture Notes
in Computer Science ����� pages ���	��
� Springer�Verlag� 
����


�� M� F� Kaashoek� Group Communication in Distributed Computer Systems� PhD
thesis� Vrije Universiteit� The Netherlands� 
����


�� L� Lamport� R� Shostak� and M� Pease� The Byzantine generals problem� ACM
Transactions on Programming Languages and Systems� ��������	��
� July 
����


�� B� Lampson� M� Abadi� M� Burrows� and E� Wobber� Authentication in dis�
tributed systems� Theory and practice� ACM Transactions on Computer Systems�

��������	�
�� Nov� 
����


�� P� M� Melliar�Smith� L� E� Moser� and V� Agrawala� Broadcast protocols for dis�
tributed systems� IEEE Transactions on Parallel and Distributed Systems� 
�
��
�	
��� Jan� 
����

��� L� L� Peterson� N� C� Buchholz� and R� D� Schlichting� Preserving and using con�
text information in interprocess communication� ACM Transactions on Computer
Systems� ������
�	���� Aug� 
����

�
� F� M� Pittelli and H� Garcia�Molina� Reliable scheduling in a TMR database
system� ACM Transactions on Computer Systems� ��
����	��� Feb� 
����

��� M� K� Reiter� Secure agreement protocols� Reliable and atomic group multicast in
Rampart� In Proceedings of the �nd ACM Conference on Computer and Commu�
nications Security� pages ��	��� Nov� 
����

��� M� K� Reiter� A secure group membership protocol� In Proceedings of the ����
IEEE Symposium on Research in Security and Privacy� pages 
��	
��� May 
����

��� M� K� Reiter and K� P� Birman� How to securely replicate services� ACM Trans�
actions on Programming Languages and Systems� 
��������	
���� May 
����

��� R� L� Rivest� A� Shamir� and L� Adleman� A method for obtaining digital signatures
and public�key cryptosystems� Communications of the ACM� �
����
��	
��� Feb�

����



��� F� B� Schneider� Implementing fault�tolerant services using the state machine
approach� A tutorial� ACM Computing Surveys� ���������	�
�� Dec� 
����

��� S� K� Shrivastava� P� D� Ezhilchelvan� N� A� Speirs� S� Tao� and A� Tully� Princi�
pal features of the VOLTAN family of reliable node architectures for distributed
systems� IEEE Transactions on Computers� �
�������	���� May 
����

��� J� G� Steiner� C� Neuman� and J� I� Schiller� Kerberos� An authentication service
for open network systems� In Proceedings of the USENIX Winter Conference�
pages 
�
	���� Feb� 
����

��� R� Turn and J� Habibi� On the interactions of security and fault�tolerance� In
Proceedings of the �th NBS�NCSC National Computer Security Conference� pages

��	
��� Sept� 
����

��� R� van Renesse� K� Birman� R� Cooper� B� Glade� and P� Stephenson� Reliable
multicast between microkernels� In Proceedings of the USENIX Microkernels and
Other Kernel Architectures Workshop� Apr� 
����

�
� V� L� Voydock and S� T� Kent� Security mechanisms in high�level network proto�
cols� ACM Computing Surveys� 
�����
��	
�
� June 
����


