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Abstract. Rampart is a toolkit of protocols to facilitate the develop-
ment of high-integrity services, i.e., distributed services that retain their
availability and correctness despite the malicious penetration of some
component servers by an attacker. At the core of Rampart are new pro-
tocols that solve several basic problems in distributed computing, in-
cluding asynchronous group membership, reliable multicast (Byzantine
agreement), and atomic multicast. Using these protocols, Rampart sup-
ports the development of high-integrity services via the technique of state
machine replication, and also extends this technique with a new approach
to server output voting. In this paper we give a brief overview of Ram-
part, focusing primarily on its protocol architecture. We also sketch its
performance in our prototype implementation and ongoing work.

1 Introduction

Many techniques for enforcing security policy in distributed systems rely
on trusted services for performing security-critical functions. Examples in-
clude authentication services or certification authorities to support cryp-
tographic key distribution (e.g., [28,18]) and access control services for
the management and enforcement of access control policy (e.g., [13]).
For these types of services to be trustworthy, they must be protected
from tampering by attackers. In addition, since security and liveness in
a surrounding system may rely on the availability of these services, they
may need to be replicated for high availability. It has been argued that
these requirements pose a conflict, in that replicating data or services for
high availability makes them more difficult to protect [29, 15, 14, 18]. This
tradeoff is particularly pertinent to security-critical services of a trusted
computing base, as prudence dictates that these services be localized to
facilitate their protection.

A compromise to balance the needs for security and availability in
some services is to replicate the service in a way that enables it to re-
main correct and available despite the malicious penetration of some of
its component servers by an attacker [15, 14, 24]. Techniques for building
such high-integrity services have been explored primarily under the rubric
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of Byzantine fault-tolerance. The most widely applicable technique for
building high-integrity services is known as state machine replication [26].
In this approach, a service is implemented with multiple identical, deter-
ministic servers, each initialized to the same state. Clients issue requests
to the servers using an atomic multicast protocol, which ensures that all
correct servers process the same requests in the same order and thus pro-
duce the same output for each request. If the correct servers sufficiently
outnumber the faulty ones, then a client can identify the correct output
by output voting, e.g., accepting the output returned by a majority of the
servers.

A substantial impediment to using state machine replication in hostile
environments is its reliance on atomic multicast. While many systems
have demonstrated atomic multicast tolerant of benign process failures in
general-purpose distributed systems (e.g., [20,19, 3, 16, 1]), prior efforts
have demonstrated atomic multicast tolerant of malicious failures only
under the assumption that the underlying network is synchronous, i.e.,
that there are known bounds on message transmission times, processes’
rates of execution, and relative clock drifts [7,21,27]. These synchrony
assumptions make these solutions inappropriate for use in loosely-coupled
systems, and especially for hostile environments in which messages can
be delayed due to denial-of-service attacks [31].

We have undertaken the design and implementation of a protocol
toolkit, called Rampart, to facilitate the construction of high-integrity
services via state machine replication. A main focus of this effort has been
to demonstrate the feasibility of atomic multicast tolerant of malicious
process failures without relying on synchrony assumptions. This work
has yielded a new protocol for asynchronous atomic multicast, as well
as new protocols for reliable multicast (i.e., Byzantine agreement [17]),
process group membership, and output voting [23,24,22]. In addition,
Rampart provides efficient implementations of these protocols to facilitate
the construction of high-integrity services in practice.

Rampart facilitates the construction of high-integrity services by re-
lieving the application programmer of the complexities of server repli-
cation. That is, our goal is to enable a programmer to build a (non-
replicated) application server program and then, with only minor and
very simple changes to the server code, use Rampart to replicate it. The
primary interfaces provided by Rampart enable (i) application clients to
issue requests to the replicated service, which are delivered to all correct
application servers in the same order (i.e., atomic multicast) and (ii) ap-
plication servers to send replies to clients, in a manner that ensures that



the replies delivered to clients are only those sent by correct application
servers (i.e., output voting).

This paper gives a brief overview of Rampart and a snapshot of the
system at the time of this writing. Most of this paper is concerned with
the atomic multicast protocol of Rampart, which is the topic of Section 2.
We discuss the output voting protocols of Rampart in Section 3, and the
status of Rampart and ongoing work in Section 4. All performance num-
bers discussed in this paper were obtained in tests among user processes
running on a network of moderately loaded SPARCstation 10s over SunOS
4.1.3.

2 Atomic multicast

In our present implementation, atomic multicast from clients to servers is
implemented using an atomic multicast protocol from servers to servers.
This latter protocol, moreover, is implemented using two additional pro-
tocols, namely a group membership protocol and a reliable multicast pro-
tocol (see Figure 1). These membership, reliable multicast, and atomic
multicast protocols are described in Sections 2.1-2.3, respectively, and
the extension of this atomic multicast implementation to enable clients to
multicast to servers is discussed in Section 2.4. The protocol architecture
shown in Figure 1 is similar to that of the Isis system, and indeed Ram-
part was heavily influenced by Isis and its successor Horus [4]. Rampart
distinguishes itself primarily by providing robustness against a broader
class of failures than do Isis and Horus, albeit at a significant cost in
complexity and performance.

’ Application Server Code ‘

| Atomic Multicast |
| Reliable Multicast |

| Group Membership |

’ Transport

Fig. 1. Atomic multicast implementation (server process)



The protocols pictured in Figure 1 make two main assumptions re-
garding the operational environment in which they run. First, since they
employ digital signature technology (in our present implementation, RSA [25]),
they assume that the Rampart instance at each server possesses a private
key, which only it knows, and all other servers’ corresponding public keys.
This initial key distribution can be performed manually by an operator,
with the help of a key distribution infrastructure (e.g., [18]), or simply by
storing servers’ public keys in nonvolatile memory at each server. Simi-
larly, the public key of a new server must be communicated to the other
servers before it can be put into operation.

Second, these protocols assume the existence of a message transport
facility that provides a point-to-point, reliable, authenticated commu-
nication channel between each pair of servers, where by “reliable” we
mean that if the sender and destination of a message are correct, then
the destination eventually receives the message. Reliability, however, is
required only for the liveness of our protocols, not their safety. In our
present implementation, this transport facility is provided by the Mul-
ticast Transport Service (MUTS) [30]. MUTS implements authenticated
point-to-point communication with standard shared-key techniques [31],
using shared keys distributed via the public keys described above. MUTS
also provides several other facilities (e.g., threads, timers, and synchro-
nization primitives) that have significantly simplified our implementation.

It is also worthwhile to reiterate what Rampart’s atomic multicast
implementation does not assume. Because of our desire to model corrup-
tions by an attacker, it does not make assumptions regarding the types
of failures that servers (or clients) can exhibit. That is, our failure model
is Byzantine (with message authentication [7]), although the number of
such server failures must be limited to a constant fraction of the servers;
this is discussed further in Sections 2.1 and 2.2. In addition, our atomic
multicast protocol assumes no bounds on message transmission times or
clock drifts. That is, the system is asynchronous.

2.1 Group membership

The foundation of atomic multicast is a group membership protocol [23].
This protocol provides the abstraction of a group of operational servers
that may change to reflect the perceived failure or recovery of servers, or
the addition of new servers. More precisely, the group membership pro-
tocol generates a sequence of group views, each of which is a set of server
process identifiers, and delivers each view to all members of that view.
The membership protocol also provides an interface by which processes



can request additions to or removals from the group. Subject to condi-
tions described below, the membership protocol ensures that if sufficiently
many members of a group view request that a member be removed, then
that server will eventually be removed from the group (i.e., a view will be
created not containing that server), and similarly for requests to add a
server to the group. In addition, it ensures that malicious members cannot
cause membership changes or prevent needed changes from occurring.

The semantics provided by the membership protocol are contingent
on an assumption that fewer than one-third of the members of each group
view are faulty. Moreover, since the membership protocol generates agree-
ment on the sequence of group views, it is a type of consensus protocol
and thus cannot be guaranteed to be live due to the impossibility result
of [10]. In our protocol, this limitation manifests itself in that the creation
of a new view can be guaranteed only if there exists a correct group mem-
ber whose removal is not requested for sufficiently long (and thus who is
reachable for sufficiently long) by more than two-thirds of the current
group members. Advances on reaching consensus in the presence of crash
failures (e.g., [6]) hint that it may be possible to somewhat weaken this
requirement; this is a topic for future research.

Changing the group membership (i.e., generating a new group view)
in our present implementation is a heavyweight operation. For instance, if
RSA keys with 512-bit moduli are used, then the latency of a group mem-
bership change is roughly 200 milliseconds in a group of size four (see [23]).
However, since experience with current group-oriented systems suggests
that membership changes are infrequent for most applications [3], and
since we expect this to be the case in the Rampart applications that we
currently envision, we anticipate that this cost will not be a limiting factor
for most applications. Moreover, since the cost of the group membership
protocol is dominated by RSA operations, substantial improvements can
be realized by using commercially available, special-purpose hardware to
perform these operations [5, 9].

2.2 Reliable multicast

Reliable group multicast is implemented over the membership protocol.
The reliable group multicast protocol provides an interface by which
group members can multicast messages to the group of servers. The pro-
tocol delivers a sequence of events to each group member, where each
event is either a message that was reliably multicast by a group member
or a group view that was received locally from the membership proto-
col. The reliable multicast protocol delivers group views to each correct



member in the order they are received from the membership protocol. In
addition, the set of messages that it delivers between any two consecutive
group views is the same at each correct server that is not removed from
the group. Thus, this protocol layer implements a wvirtually synchronous
process group abstraction as originally defined by the Isis system [3].

Our reliable multicast protocol is detailed in [22]. Like the member-
ship protocol, our reliable multicast protocol relies on the assumption
that fewer than one-third of the members of each group view are faulty,
due to both its use of the membership protocol and other details of the
reliable multicast protocol itself. Moreover, in some cases the progress of
the reliable multicast protocol relies on the removal of a member from
the group (in which case the removal will be requested by sufficiently
many members). Thus, the liveness of our reliable multicast protocol is
contingent upon the liveness of the membership protocol.

Since atomic group multicast is implemented using reliable group mul-
ticast, it is essential that reliable multicast perform well. As in the group
membership protocol, the cost of reliable multicast is dominated by RSA
operations. To lessen this cost, our reliable multicast protocol uses “short-
term” cryptographic keys that are marginally secure and thus faster to
use. To compensate for the use of weak short-term keys, we employ addi-
tional protocols to change these keys frequently. For example, we typically
use RSA keys with only 300-bit moduli, and change these keys once per
hour.! Reliable multicast performance for this key size (and in the ab-
sence of failures) is shown in Figure 2. Part (a) shows the mean latency of
a “multi-RPC”, in which a single member reliably multicasts a message
(of either 0, 1, or 4 kilobytes) to the group and all group members reply
with a null point-to-point message. The latency is the time that elapses at
the initiator between initiating the multi-RPC and receiving all replies.
Part (b) shows the throughput achieved in tests where either one mem-
ber (“one multicasting”) or each member (“all multicasting”) initiated
100 0-byte reliable multicasts to the group. Throughput was computed as
the ratio of the total number of reliable multicasts to the time required
for them to complete. Despite the use of short-term keys, the cost of re-
liable multicast is still dominated by RSA operations. Performance could
be improved by using smaller short-term keys, at the cost of changing
them more often, or by using special-purpose hardware to perform RSA
operations.

1A 300-bit RSA modulus should be secure for roughly an hour against an adversary
with the computational resources used in the factorization of the largest general RSA
modulus factored to date [2] (A. Odlyzko, private communication, May 1994).
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Fig. 2. Server-to-group reliable multicast performance

2.3 Atomic multicast

Atomic group multicast is implemented over the reliable group multicast
protocol. Like reliable multicast, the atomic multicast protocol provides
an interface for members to multicast messages to the group, and it deliv-
ers a sequence of events to each member, where each event is a group view
or a message. The atomic multicast protocol delivers the same sequence
of events to each correct member that is not removed from the group.

Our atomic multicast protocol is similar to those of the Amoeba [16]
and Isis [3] systems, which are tolerant to only benign failures. In these
systems, there is a designated member of each group view, called the se-
quencer, that determines the order in which atomic multicasts to that view
are delivered, using one of two methods. In the first method, called “PB”
in [16], the member initiating an atomic multicast does so by sending
the message to the sequencer. Upon receiving the message, the sequencer
forwards it to the group using a FIFO multicast, and all members de-
liver atomic multicast messages in the order they are received from the
sequencer. In the second method, called “BB”, the member initiating
the atomic multicast FIFO-multicasts the message, say m, to the group.
Upon receiving m, the sequencer FIFO-multicasts a second message nam-
ing m as the next atomic multicast message to be delivered. With either
method, atomic multicasts are delivered in the same order at all group
members because their order is dictated by the sequencer. Techniques to
handle the (benign) failure of the sequencer (or any group member) are
discussed in [16, 3].

A first step to adapting these protocols to handle malicious members
is to replace all FIFO multicasts by (FIFO) reliable multicasts using the



protocol of Section 2.2. This modification ensures that all correct mem-
bers deliver the same sequence of atomic multicasts. However, a corrupt
sequencer could still prevent an atomic multicast from being delivered,
e.g., by ignoring the message when it is received from the atomic multicast
initiator. Such attacks can be countered in the BB protocol: if the correct
members do not deliver an atomic multicast message within some timeout
period after receiving it by reliable multicast from the atomic multicast
initiator, then each correct member requests that the sequencer be re-
moved from the group. Thus, a denial of service attack by the sequencer
will result in the sequencer’s removal in the BB approach (contingent on
the liveness of the membership protocol), whereas it is more difficult to
counter such attacks in the PB approach. It is for this reason that the
BB approach was initially employed in Rampart [22]. On the other hand,
the PB approach provides better performance, because there is only one
reliable multicast on the critical path of an atomic multicast (versus two
in the BB approach), and because many atomic multicast messages can
be communicated to the group in a single reliable multicast from the
sequencer.

For these reasons, in Rampart we have moved to an atomic multi-
cast protocol that is a hybrid of the PB and BB approaches described
above. During normal operation, the protocol uses the PB approach: for
a member to atomically multicast a message, it sends the message to
the sequencer. The sequencer collects messages and periodically reliably
multicasts a message containing a sequence of messages that constitute
the next atomic multicast deliveries. If a member detects that a message
it sent to the sequencer is not being included in the sequencer’s reliable
multicasts, then the member reliably multicasts the message to the group.
If the sequencer still does not inform the group when to deliver this mes-
sage in the atomic multicast delivery sequence, then eventually all correct
group members will request that the sequencer be removed. For brevity,
we defer further details of the protocol to a forthcoming paper.

An example of the throughput attainable with this protocol (in the
absence of failures) is shown in Figure 3. This figure shows the results
of tests in which either one non-sequencer member (“one multicasting”)
or each member (“all multicasting”) initiated 1000 0-byte atomic mul-
ticasts to the group. The throughput was computed as the ratio of the
total number of atomic multicasts to the time required for these atomic
multicasts to complete. In these tests, the sequencer issued a reliable mul-
ticast approximately every 100 milliseconds. Mean latency is not shown
in Figure 3 because this value may bear little relation to the actual la-



tency experienced per atomic multicast: the latency of an atomic multi-
cast varies based upon the time between the sequencer’s receipt of the
multicast message from the atomic multicast initiator and the sequencer’s
next reliable multicast. The frequency of the sequencer’s reliable multi-
casts is important to the performance of this protocol; finding optimal
such frequencies is a topic of ongoing work. Another area of ongoing work
is flow control, the lack of which caused the sequencer to be overwhelmed
in the tests of Figure 3 for groups of size greater than seven, resulting in
a dramatic decline in throughput.
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Fig. 3. Server-to-group atomic multicast throughput

2.4 Clients

While so far this section has focused on atomic multicast from servers to
servers, ultimately our goal is to enable clients to atomically multicast
requests to the servers. In our present implementation, a client issues a
request to the service by sending it to a single server, which forwards the
request by atomically multicasting it to the server group. This approach
has several attractive features. First, it does not require the client to know
for certain where each of the servers is. That is, the client need only be
able to reach one of the correct servers, which it can locate, e.g., by broad-
casting a query to which the servers respond or by obtaining a hint for the
address of a server from some (not necessarily trusted) source. Second,
this approach is very efficient, especially because a server can forward
many client requests to the server group with a single atomic group mul-
ticast. (This is similar to transaction batching as described in [21].) For
example, Figure 4 illustrates the throughput of client requests to a service



consisting of four servers in our present implementation. In these tests,
each client issued 1000 0-byte requests to the service, and the through-
put was computed as the total number of requests divided by the time
required for all of them to be delivered to the servers. Each server initi-
ated an atomic multicast to the group (containing perhaps many client
requests) approximately every 40 milliseconds, and the sequencer in the
atomic multicast protocol issued reliable multicasts approximately every
100 milliseconds.
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Fig. 4. Client-to-group atomic multicast throughput

The main risk of this approach is that the server to which a client
sends its requests may be corrupted. In this case, the client could be
denied service or, if the client’s requests are not authenticated by the
correct servers, the corrupt server could undetectably alter the client’s
requests in transit. The latter attack can be detected by the correct servers
authenticating client requests using standard cryptographic techniques at
the application layer [31]. If a denial of service occurs, then the client must
locate another server to which to send its requests.

3 Output voting

Application servers communicate outputs to clients via output voting pro-
tocols, which ensure that the replies delivered to clients are only those
sent by correct servers (see Section 1). We have implemented two types
of output voting protocols in Rampart. In the first, the output from each
server is sent to the client that requested it, and the client performs out-
put voting in the standard way [26]. A disadvantage of this approach
is that the client must be able to identify and authenticate each server



individually. (Note that this set of servers that the client must authen-
ticate is different from, but encompasses, the potentially more dynamic
server group defined by the group membership protocol for the purposes
of reliable and atomic multicast; see Section 2.1.)

The second protocol is novel in that output voting is performed at
the servers and is transparent to clients [24]. That is, for a client to verify
an output from the service with this protocol, the client need not know
how many servers there are or how to authenticate individual servers.
Instead, it need only possess one public key for the service (not to be
confused with the public keys of individual servers) and verify one reply
from the service, just as if the service were not replicated. This is achieved
by using cryptographic methods to “split” the private key corresponding
to the service’s public key among the servers, so that the cooperation of
sufficiently many servers is required to sign a response [8]. This protocol
offers advantages over the usual approach to output voting if there is no
trustworthy way for clients to identify or authenticate individual servers.

The main disadvantage of this latter approach is that the crypto-
graphic techniques that it employs are costly: if the RSA public key of
the service contains a 512-bit modulus, then the latency of output voting
with four servers is roughly 200 milliseconds. Moreover, this key may not
be amenable to frequent change to minimize its size (as in Section 2.2),
because this would force clients to stay current with these key changes.
Thus, for many applications this approach to output voting may require
special-purpose hardware at the servers for performing RSA operations,
and in the absence of such hardware, the more standard technique of
output voting may be preferable.

4 Status and ongoing work

An initial version of Rampart is nearing completion at the time of this
writing. In particular, prototypes of the group membership, reliable multi-
cast, atomic multicast, and output voting protocols are fully operational.
Preliminary performance numbers for these protocols indicate that Ram-
part is likely to provide performance that suffices for many of the appli-
cations that initially motivated it. Nevertheless, they also indicate a high
cost for tolerating malicious processes; e.g., the latency of our reliable and
atomic multicast protocols in our present implementation compare poorly
to those of some published protocols that tolerate only benign failures.
Our current focus is optimizing our protocols and completing the im-
plementation of other mechanisms in Rampart, such as protocols for new



servers to be integrated into a service. In conjunction, we are prototyp-
ing services with Rampart (e.g., [L1]) that, while of interest in their own
right, demonstrate the toolkit’s utility and provide insight into where the
toolkit is lacking.

Another area of ongoing research is to extend the Rampart proto-
cols to provide support for a wider range of security technologies. For
example, many theoretical techniques to achieve secure distributed com-
putation (see [12] for a survey) use reliable multicast as a basic building
block, and thus our reliable multicast protocol might facilitate the real-
ization of these techniques in practice. Similarly, our group membership
protocol has potential applications to intrusion confinement and main-
taining membership information in groups of processes that are mutually
distrusting.
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