Securing Causal Relationships in Distributed
Systems

MicHAEL REITER AND L1 GONG*

AT&T Bell Laboratories, Murray Hill, New Jersey, USA
*SRI International, Menlo Park, California, USA
Email: reiter@research.att.com,gong@csl.sri.com

In a distributed system, it is often important to detect the causal relationships between events, where event

e, is causally before event e, if ¢; happened before e, and could possibly have affected the occurrence of

e,. In this paper we argue that it can be essential to security that a process determine, in the face of

malicious attack, how two events are causally related. We formulate attacks on causality detection in

terms of causal denial and forgery, formalize possible security goals with respect to causality, and present
simple algorithms to attain these goals in some situations.

Received October 18 1994, revised October 19 1995

1. INTRODUCTION

In a distributed system, it is often important to detect the
causal relationships between events, where event e; is
causally before event e, if ¢; happened before e, and could
possibly have affected the occurrence of e, [1]. Causality
has been recognized as fundamental to distributed
computing and forms the basis for event orderings in
many distributed systems and distributed service imple-
mentations (e.g. [2—6]). For instance, several systems
implement communication primitives that deliver mess-
ages in an order consistent with the causal relationships
among the messages (i.e. among the events in which the
messages were sent). This causal order can be seen as an
extension of FIFO order to a setting with multiple senders
and receivers, and is especially useful in systems that
exploit asynchronous communication for performance [7].

Here we argue that it can be essential to security that a
process determine, in the face of malicious attack, how
two events are causally related. The view of causality that
we take is very different from that taken by previous
treatments of causality in the security literature. Previous
studies of causality and security have occurred in the
context of multi-level information flow, where one goal is,
informally, to prevent events at higher-level objects from
causally preceding events at, and thus carrying informa-
tion to, lower-level objects. That is, in previous works,
causal relationships have been viewed as something to be
avoided in order to achieve non-interference [8].

In contrast, we claim that because of the fundamental
role of causality in distributed systems, the accurate
detection (but not elimination) of causal relationships
can be crucial to security in distributed systems. This was
first illustrated by Reiter et al. [9] by the following
example of ‘insider trading’. Suppose that a trader issues
a request to a trading service to purchase shares of stock,
and then as a result of an (indirect or direct) interaction
with another trader, the other trader infers that this
request has been made. If the latter trader is able to

submit a request to the trading service in such a way that
the two requests appear to be concurrent, the service
could be fooled into processing the latter trader’s request
first. The result could be that the request of the latter
trader could increase the apparent demand for the stock
and thus the price offered to the former trader, or enable
the latter trader to illegally benefit in a fashion similar to
options frontrunning [10]. To prevent these activities, the
trading service must recognize that the request of the
latter trader is causally after that of the former, and
should process that of the former first.

As another example of the importance of causality
detection to security, consider a scenario in which a
company announces to the trading network that it
is merging with another company. Suppose that a
trader with inside information of this merger requested to
buy large quantities of the company’s stock prior to the
announcement but, to avoid suspicion, attempted to make
it appear that the request was initiated causally after the
announcement. If the trading service accepts that the
request was initiated causally after the announcement,
then the insider trading may go undetected.

More generally, because of the fundamental impor-
tance of causality to so many distributed algorithms, the
conversion of these algorithms for use in a hostile
environment necessarily relies upon the accurate detec-
tion of causal relationships despite malicious behaviour.
For instance, consider a service that allocates a
distributed resource to processes in an order consistent
with the causal relationships among their requests [4]. If
such a service is to be fair in a hostile setting, it must be
able to detect causal relationships accurately, despite
attempts of dishonest processes to wrongfully make their
requests appear causally prior to other requests.

The above examples show that the type of causality
detection required can differ from one circumstance to
the next. As shown in the first trading example, it may be
required that if a causal relationship exists, then it is

THE COMPUTER JOURNAL,

VoL. 38, No. 8, 1995

634 MicHAEL REITER AND L1 GoNG

detected. On the other hand, in the second example,
security relies on an inverse requirement, namely that if a
causal relationship is detected, then it actually exists.
Thus, depending on the circumstances, it may be
important that a principal not be able to deny existing
causal relationships or to claim non-existent ones with-
out being detected.

In this paper we formalize possible security goals with
respect to causality and present simple algorithms to
attain these goals in some situations. This work
generalizes and improves upon the treatment of causality
by Reiter et al. [9] in two ways. First, this work presents a
general framework in which attacks on causality can be
examined; in this framework, we were able to identify
attacks that are not considered by [9]. Second, we present
new algorithms to counter these attacks.

The rest of this paper is structured as follows. In
Section 2, we describe the assumptions that we make
about the system. In Section 3, we formally define the
notion of causality. In Section 4 we formalize our
security goals with respect to causality. In Sections 5 and
6 we describe several algorithms for reaching these goals.
A relationship between causality and the notion of
freshness is discussed in Section 7. We summarize and
describe related and future work in Section 8.

2. THE SYSTEM MODEL

We assume a system consisting of a set P = {Py,..., P,}
of processes that are spatially separated and that
communicate exclusively via a completely connected,
point-to-point network.! We often denote processes with
the letters P, Q, R and S when subscripts are
unnecessary. Processes that behave according to their
design specification are said to be correct. Processes may
be corrupted and thereafter may exhibit arbitrarily
malicious behaviour, limited only by the assumptions
stated below.

The execution of each process is modelled as a
sequence of indivisible events. There are two types of
events that can be executed by processes: sending a
message m to a process, denoted by send(m), and
receiving a message m from a process, denoted by
receive(m). (Internal computations are not explicitly
modelled.) Messages are identified by their send events
and not their content, e.g. messages with the same
contents sent in different events are different messages for
our purposes.

We assume that each process receives only messages
that are sent to it (or by it; see below). In particular,
communication channels between correct processes are
authenticated and protect the integrity and the secrecy of
communication, so that corrupt processes cannot tamper
with or receive this communication. In addition, all

!'The results of this paper can be extended for multi-cast commu-
nication, although multicast complicates the algorithms and discussion
with little benefit. Thus, for simplicity we treat only point-to-point
communication here.

communication between corrupt processes is modelled
with explicit sends and receives, regardless of its actual
form (e.g. signals via a covert channel). We also assume
that channels between correct processes provide FIFO
delivery using, for instance, a standard sequence number
mechanism [11].

Many algorithms for detecting causality in benign
environments utilize assumptions of synchronized clocks
or bounded communication delays (e.g. [4]). However,
we do not assume that processes maintain synchronized
clocks, or that message transmission times between
processes or execution speeds of processes are bounded.
That is, the system is totally asynchronous.

Finally, to simplify the following discussion, it is
convenient to stipulate that at each process, the event
send(m) is immediately followed by receive(m), with no
other events occurring between these two. So a message
is received by its sender and (possibly) by its intended
destination.

3. DEFINITION OF CAUSALITY

We use the notion of causality formulated by Lamport
[1]. As described in Section 1, one event is causally before
another if it could have affected that other event. More
precisely, suppose we define the “‘one-step” causality
relation ~ as the smallest relation satisfying the
following conditions:

1. If events e; and e, are executed consecutively at the
same process, then e; ~e;.
2. For any m, send(m) ~ receive(m).

Then, the causality relation — is simply the transitive
closure of ~.

In this paper, we will be concerned with causal
relationships among messages, where two messages are
causally related precisely as the events in which they were
sent. So, if send(m;) — send(m,), then we say that m, is
causally before m, and m, is causally after m;. We
will often use ‘m; — m,’ as an abbreviation for
‘send(m;) — send(m,)’.

Finally, we define a causal chain to be a sequence of
events e, e,,...,e such thate; ~>e, ~ --- ~¢,. Note that
e} — e, if and only if there exists a causal chain
beginning with e; and ending with e,.

4. CAUSAL SECURITY GOALS

In Section 1 we discussed several examples in which the
detection of causal relationships was important for
security. In this section we attempt to formulate security
goals with respect to causality more carefully. We
introduce two notions, denial and forgery, that capture
the ways in which efforts to detect causal relationships
between messages can fail due to malicious or accidental
behavior, and discuss how these notions relate to the
examples of Section 1. Sections 5 and 6 are devoted to
preventing denial and forgery respectively.

Since there is a version of denial and forgery for each

THE COMPUTER JOURNAL,

Vor. 38, No.8, 1995

SECURING CAUSAL RELATIONSHIPS IN DISTRIBUTED SYSTEMS 635

causality detection algorithm, when defining these
notions it is convenient to abstract all such algorithms
as a predicate C on pairs of messages. That is, we assume
that a process determines if message m, is causally before
message m, by evaluating C(mj,m;). If C(my,m;,)
evaluates to true, then the process ‘believes’ that
m; — my; otherwise, it ‘believes’ that m; /4 m,, where
+/+ is the complement of —. Thus, C has the following
desired behaviour:

true if m; — my,

Clmy,mp) = {false otherwise
A correct process P generally need not be able to
evaluate C on all pairs of messages, but should be able to
compute C(my, m,) if both receive(m,) and receive(m,)
are executed at P. (Recall that if a process executes
send(m), then it also executes receive(m).) In the
remainder of this paper, we concern ourselves only
with predicates that a process evaluates on messages it
receives.

Given C, we can now define the notions of denial and
forgery, which can occur due to malicious or accidental
behavior, if C is not robust to such behaviour.

Denial: A causal relationship is denied (with respect to
C) if there exist messages m; and m, such that m; — m,,
but at some correct process C(m,, m,) is false.

Forgery: A causal relationship is forged (with respect
to C) if there exist messages m; and m, such that
my 4 my, but at some correct process C(m;,m,) is true.

We have already seen examples of how denial and
forgery can result in security problems. For instance,
reconsider the trading examples in Section 1, which are
represented pictorially in Figure 1. In the first example,
the second trader Q attempts to deny that its request m,
is causally after P’s request m; as a result of its
interacting with P (possibly through other processes S).
If the attempt is successful, the trading service R may fail
to recognize that m; should be serviced before m,. The
second example illustrates the dangers of forgery: the
trading service R should not interpret the request m,
from the trader Q to be causally after the announcement
m; from the company P when in reality it is not.

The next two sections of this paper are devoted to
finding algorithms to prevent denial or forgery in various
situations. In general, to prevent denial it must be the
case that

D: If m; — m,, then C(m;,m,) is true at any correct
recipient of m; and m;.

On the other hand, the prevention of forgery requires
that precisely the converse hold:

F: If C(my,m,) is true at any correct recipient of m,
and m,, then m; — mj.

In order to rule out trivial solutions that provide no
causal information, we also require that our algorithms

C(my,m3) =7

Process R detects causal relationships between mes-

sages with the predicate C.

FIGURE 1. Causality detection.

satisfy the following property in addition to preventing
denial and/or forgery:

E: If there exists a causal chain ej,...,e such that
ey = send(m;), e =send(m,), and for each
J €{1,...,1}, e; was executed at a correct process, then
at any correct recipient of m; and m,, C(m;,m,) is true
and C(m,, m;) is false.

Property E requires that a causal chain traversing only
correct processes be recognized, and thus intuitively
represents the ‘minimum’ required of a causality detec-
tion algorithm. For our purposes, E serves to rule out
some trivial algorithms that provide no causal informa-
tion, such as ‘C(m,, m,) = false for all m; and m,” (which
satisfies F) and ‘C(m;,m,) = true for all m; and m,’
(which satisfies D).

In Sections 5 and 6 we concentrate on finding
algorithms to satisfy E always, and D or F if the
sender of m, (in the statement of D and F) is correct. In
Section 5 we present two algorithms that satisfy E and
that satisfy D if the sender of m; is correct. Then, in
Section 6, we present two algorithms that satisfy E and
that satisfy F if the sender of m, is correct. What can be
done to satisfy D and/or F when the sender of m; is
corrupt is an open problem. However, the algorithm in
Section 6.2 also satisfies a property with only a slightly
weaker consequent than F, even if both the senders of m,
and m, are corrupt. We suspect that this property may
suffice in some situations.

5. PREVENTING DENIAL

In this section we discuss two methods for preventing
denial attacks. More precisely, the algorithms discussed
in this section ensure that if a correct process R receives
messages m; and m,, where the sender of m; is correct
and m; — mjy, then C(m;, m,) is true when evaluated at
R. So, in the example of Figure 1, these protocols ensure
that if m; is causally before m,, then Q cannot
‘backdate’ m, to appear causally before or concurrent
with m;.

THE COMPUTER JOURNAL,

Vor. 38, No.8, 1995

636 MicHAEL REITER AND L1 GONG

O O

™ @ "

The causality server CS forwards messages destined
for a process to that process in the order in which it

receives those messages.

FIGURE 2. The causality server CS.

5.1. The causality server

Our first solution employs a trusted causality server.
Intuitively, the causality server acts as an intermediary
between all pairs of processes in the system. Each correct
process directly communicates with (i.e. sends messages
to or receives messages from) only the causality server,
via an authenticated, FIFO channel that protects the
integrity and secrecy of communication. For one process
to send a message to another process, the former sends it
to the causality server. For each process R, the causality
server forwards messages destined for R to R, in the
order in which the server receives those messages (see
Figure 2).

This simple causality server ensures that if processes
detect causal relationships with

Cm,m) = {

true if mis received before m,
false otherwise

then it is not possible for a corrupt process to deny the
causal relationships that its messages have with causally
prior messages from correct processes.

THEOREM 5.1. This algorithm satisfies E and satisfies
D if the sender of m, is correct.

Proof. D: Suppose there are messages m; and m,
such that m; — m, and the sender of m, is correct. Also
suppose that R is a (correct) recipient of m; and m;,. If R
is the sender of m; (i.e. R sent m; to another process),
then because m, is received at R immediately after it is
sent, R receives m; before m,. Now suppose some other
process sends m; to R. Because the channel from the
sender of m; to the causality server is FIFO, m; must
arrive at the causality server before any message m such
that m; — m. So, m, is forwarded to (and thus is received
by) R before any such message destined for R, and in
particular, before m;.

E: Suppose there exists a causal chain e,...,e such
that e, = send(m,), e, =send(m;), and for each
Jj€{1,...,1}, ¢ is executed at a correct process. By the
argument for D, C(m,, m,) is true at any correct recipient

of m; and m,. Then, because if m, is received before m,
then m, is received after m;, C(m,, m,) is false. O

A warranted concern with the use of a causality server
is performance: this scheme results in twice as many
messages being transmitted over the network than
without the causality server, and the server may
become a traffic bottleneck in the system. However, the
degree to which a causality server would become a
bottleneck might be less than at first expected, because
the causality server has very little processing to do on
each message it receives and forwards. In fact, in a likely
implementation it would simply need to decrypt the
message, appropriately check and attach channel
sequence numbers (to implement FIFO order), re-
encrypt the message, and forward it. Supposing that
encryption and decryption can be done in hardware, the
performance impact seen by processes could be tolerable.

A second concern with this scheme is that it introduces
a single point of failure, namely the causality server, into
the system, because all communication would cease if the
causality server failed. This problem can be addressed
using known replication techniques (e.g. [4]), albeit at an
additional cost to performance.

5.2. The conservative approach

An alternative approach to the use of a causality server is
for each process P to delay sending a message to its
destination until all messages that P previously sent to
other destinations have been received at those des-
tinations.? In general, a sender can be informed of the
receipt of its messages by acknowledgements. These
acknowledgements would occur as part of a lower layer
protocol, and would not result in additional process
events or be delayed like messages.’ Processes again
detect causal relationships with the predicate

Comms) = {

true if myis received before m,,
false otherwise.

THEOREM 5.2. This algorithm satisfies E and satisfies
D if the sender of my is correct.

Proof. D: Suppose there are messages m; and m;,
such that m; — m, and the sender of m, is correct. Also
suppose that R is a (correct) recipient of m; and m;,. If R
is the sender of m; (i.e. R sent m; to another process),
then because m; is received at R immediately after it is
sent, R receives m; before m,. Now suppose some other
process sends m; to R. If the same process also sends m1,,
then R receives m, first because channels between correct

2 A further condition is required if multicast communication is used
(see [4]). However, as stated in Section 2, we restrict ourselves in
this paper to point-to-point communication.

These acknowledgements could be viewed as introducing additional
causal relationships. However, since acknowledgements carry no
application-specific information, these relationships are unlikely to be
of interest in most settings and thus are omitted from the present
discussion.

THE COMPUTER JOURNAL,

Vor. 38, No.8, 1995

SECURING CAUSAL RELATIONSHIPS IN DISTRIBUTED SYSTEMS 637

processes are FIFO. Otherwise, m, can be sent only after
m, is received at R, because the sender of m; does not
communicate to destinations other than R until R has
received m.

E: Suppose there exists a causal chain ey,...,¢e such
that e, = send(m;), e, =send(m,), and for each
J€{1,...,1}, ¢ is executed at a correct process. By the
argument for D, C(m;, m,) is true at any correct recipient
of m; and m,. Then, because if m, is received before m,
then m; is received after m;, C(m,, m,) is false. a

This approach, sometimes called the conservative
approach, has been used by several systems to detect
causal relationships in benign environments (e.g. [4,5]). It
is especially attractive in our setting because a correct
process can singlehandedly prevent corrupt processes
from ‘backdating’ their messages to wrongly appear
causally prior to or concurrent with its own. That is, it
need not rely on a third party for this guarantee.
Moreover, this solution introduces no bottleneck or
single point of failure into the system.

Communication performance achieved with the con-
servative approach can vary widely, depending on the
particular communication patterns exhibited by pro-
cesses. Because a process delays sending a message to a
destination only when it does not know of the receipt of a
message it previously sent to a different destination,
processes can achieve the full performance benefits of
asynchronous communication when streaming messages
to a single destination. However, when processes send to
many different destinations in quick succession, the
communications are essentially reduced to synchronous
remote procedure calls.

From a security point of view, the most significant
disadvantage of the conservative protocol is the potential
for denial-of-service attacks. A corrupt process can
prevent a sender of a message from being able to send to
any other destinations by refusing to acknowledge any
messages sent to it. (This form of ‘attack’ can occur even
in benign environments if a process simply crashes.)
Different policies can be implemented to deal with this
problem, and which is best depends on the particular
system and application. One approach is implemented in
the Isis system, which uses a version of the conservative
protocol adapted for multicast communication [5, 9]. In
Isis, a trusted, fault-tolerant service called the failure
detector declares processes faulty when they appear so
and excludes them from the system [12]. Using this
approach with minor modifications to address malicious
process behaviour, it is possible to ensure that a process
that attempts denial-of-service attacks by refusing to
acknowledge messages will eventually be considered
faulty and excluded from the system. Any process waiting
for acknowledgements from the excluded process would
be allowed to proceed with sending to other processes
without jeopardizing causality detection, even if the
excluded process was correct but deemed faulty due to
network delays.

6. PREVENTING FORGERY

In this section we present two algorithms that satisfy F if
the sender of m, is correct. That is, they ensure that if a
correct process R receives m; and m,, the sender of m; is
correct, and m; /4 m,, then C(m;,m,) is false when
evaluated at R. As discussed in Section 4, satisfying F
under only the assumption that the sender of my; is
correct is an open problem. However, the second
algorithm presented here does satisfy a property with
only a slightly weaker consequent than F, even if both
the senders of m; and m, are corrupt. We believe that
especially in the case in which the sender of mj, is correct,
this property may suffice for some applications.

These algorithms use a digital signature scheme. We
assume that each process P; holds a private key K; with
which it can sign information so that any other process
can verify the information’s origin and authenticity.
Information m so signed is denoted {m}g.

6.1. Signed vector timestamps

Our first algorithm originates from a technique intro-
duced by Lamport [1], where he described an algorithm
using logical clocks to detect causal relationships among
messages (in benign environments). In his technique,
each process P; maintains a logical clock ¢; that assigns a
value 7;[e] to each event e executed at P;, according to the
following constraint known as the clock condition:

T1: For any events e
tile)] < gjles].

and e,, if e; — e;, then

(The notation ‘t;[e]’ implies that P; executed e.)

In Lamport’s algorithm, each logical clock #; was
implemented by an integer counter and ‘<’ was normal
integer less than (<); thus, it was not possible to attain
the converse of the clock condition, as well. Later,
however, several researchers (e.g. [13]) extended the
notion of logical clocks to that of vector clocks and
defined a new relation ‘<’ on them so that the converse
condition could also be satisfied:

T2: For any events e; and e,, if t;[e|] < t[e;], then
e — ep.

In the algorithm in [13], each process P; maintains a
vector clock #; = (1},#2,...,t"), where n is the total
number of processes in the system and for each
ke{l,...,n}, t* is a nonnegative integer. Vector clock
values 1= (¢',...,7") and 7= (i',...,i") are ordered
according to the following relation: ¢ < ¢ iff for all
ke{l,...,n}, t* < i*, and there exists a k € {1,...,n}
such that ¥ < 7¥. The algorithm to satisfy T1 and T2 is
as follows:

1. When process P; begins execution, ¢; is initialized to
all zeroes.

2. Process P; increments 7 before executing each event.

3. If send(m) is executed by process P;, then the
timestamp T,, = ¢;is sent with m. t;[send(m)] is defined
to be ¢;.

THE COMPUTER JOURNAL,

VoLr. 38, No. 8, 1995

638 MicHAEL REITER AND L1 GoNG

4. If receive(m) is executed by process P;, then for all
ke{l,...,n}, P;sets tj-‘ to max{t Tf,,} where T, is
the kth component of T,,. tj[recewe(m)] is then
defined to be ¢;.

Because the timestamp on a message m sent by P; is
T,, = t;[send(m)] (by step 3), this algorithm can be seen
as using the following predicate to determine causal
relationships:

C(my,my) = {

true if 7, < T,
false otherwise

In our system model, this algorithm does not suffice to
prevent processes from forging causal relationships,
because a corrupt process can easily manipulate compo-
nents of vector timestamps. For instance, in Figure 1, Q
could easily fabricate a timestamp 7, to make m,
wrongly appear causally after m;,.

We thus propose a technique to prevent this. In our
approach, processes maintain vector clocks as before.
However, each process P; digitally signs the ith
component of each timestamp it includes with a message,
and this signed value is then propagated by other
processes in the ith components of the timestamps they
include with their messages. So, when a process P;
executes send(m), it includes with m a vector timestamp
of the form

Tm = <{tt!}K1a {tiz}Kza LR} {t?}K,,)

where for each k # i, {t¥} x, Was received by P; in a
previous receive event. The requirement that each (non-
zero) component of a vector timestamp be signed by the
corresponding process prevents corrupt processes from
inflating components of correct processes.

More precisely, the algorithm executes as follows:

1. When process P; begins execution, ¢; is initialized to
all zeroes.

2. Process P; increments : before executing each event.

3. If send(m) is executed by process P;, then the
timestamp T,, = (T, ..., T%) is sent with m, where
foreach k € {1,...,n},

Tk _ {o if t¥ =0,
m = k :
{ti}x, otherwise.

4. If receive(m) is executed by process P;, and for all
ke{l,...,n}, T* is properly 51gned by P, or 1s zero,
then for all ke {l,...,n}, P;sets t to max{t m}
where T% =0 if Tk =0, and TX = {Tk}x other-
wise. Then, for each k € {1,. n} such that t >0,
P; saves {t¥ }Kk’ which it either received as Tk or
already had prior to this event. If some non-zero T
not properly signed by P, then because communica-
tion channels between correct processes protect the
integrity of communication, this message must be
from a corrupt process and is therefore ignored.

Note that each T% can always be computed by a
correct process P; in step 3 of this algorithm, because if

k+#i and ¢ #0, then by step 4, T',‘,,:{tf-‘}Kk was
received and saved by P; in a previous receive event.
Processes detect causal relationships between messages
with the same predicate as before, adjusted for the
signatures:

true if T, <7, and Vk €
k
Clmy,my) = {lk, o ,'n}, each of Tml‘ and
T',,is signed by P or is 0
false otherwise
where T, = (T_,l,,, e, THY.

THEOREM 6.1. This algorithm satisfies E and satisfies
F if the sender of m, is correct.

Proof. E: Suppose there is a causal chain ey,...,¢
such that e; = send(m,;), ¢; = send(m,), and for each
J€A{l,...,1}, ¢ is executed at a correct process. By
construction, each component of 7, and T, is
properly signed or zero, and Vke({l,...,n},

T,’;,l T_ by step 4. Moreover, if the sender of m, is P;,

then T}, < TE. y DY step 2. So, by the definition of ““<” for
vector timestamps, T,,,l < T,,,2 and T,,,2 A Tm

F: Suppose that a correct process R receives m; and
my, where the sender P; of m is_correct, and that
C(my,my) is true at R. Then, T,, < T,’,,2 Moreover, by
step 2 of the algorithm, T}, >0, and so T’ must
be signed by P;. If P; sent m2, then m; — m, because
T,",,l < T,",,2 implies that P; sent m, after m,. If another
process sent m,, then there must be a causal chain by
which T,,,2 traveled from P; to the sender of m,. Because
P; released T' only with m; or a causally subsequent
message, it follows that m; — m,. g

In this algorithm, if P; is correct, then corrupt
processes cannot inflate timestamps’ ith components
above their proper values, because the signatures for the
inflated values are not predictable before P; releases
them. Thus, this technique is similar to the use of nonce
identifiers [14], in that causal relationships are estab-
lished by the presence of ‘new’, unpredictable, and
verifiable values (i.e. the signed components) in mes-
sages. However, our algorithm is more powerful because
any process can verify each value, and not just the
process that issued it. This technique also has other
beneficial features; in particular, it requires no centra-
lized servers, and communication can proceed comple-
tely asynchronously.

The primary weakness of this algorithm is its ability to
scale. As n becomes large, signed vector timestamps
could consume significant network bandwidth. Techni-
ques similar to some of those described in [5] for
compressing timestamps in benign systems are appro-
priate for use in our system model but will not be
discussed here. A second threat to scale is that the cost of
computing and verifying signatures could be significant if
n is large. However, a signature scheme with a fast
verification algorithm could lessen this burden, because

THE COMPUTER JOURNAL,

VoL. 38, No.8, 1995

SECURING CAUSAL RELATIONSHIPS IN DISTRIBUTED SYSTEMS 639

in this use, signatures will typically be verified more
frequently than they are created.

6.2. The piggybacking algorithm

Our second algorithm for satisfying F if the sender of m,
is correct is based on a piggybacking technique that, to
our knowledge, was first used in an early version of the
Isis system to detect causal relationships in benign
settings [15]. This algorithm is more costly than that in
Section 6.1. However, it is interesting because it also
satisfies the following property (which is slightly weaker
than F), even if both the senders of m; and m, are
corrupt:

" F': If C(my, m,) is true at any correct recipient of m,
and m,, then there exists a message m; with the same
contents as m; such that m; — mj,.

Note that this property does not ensure that m; — m,,
but only that some message identical to m; causally
precedes m,. While F’ holds with no assumptions on the
senders of m; and m,, it is primarily of interest in the case
in which the sender of my, is correct. In this case, F' can
substantially limit what a corrupt process can choose for
the contents of m; once m, is sent (if C(m;, m,) is to be
true). Moreover, we will describe additions to our
algorithm that place even greater restrictions on the
contents of m;.

Intuitively, the algorithm is very simple. When a
process P sends a message m, it ‘piggybacks’ on (i.e.,
includes with) m a set H,, of all messages that P received
in the past and the messages piggybacked on them. This
is illustrated in Figure 3, where P sends m; to R and then
mto Q, and then Q sends m, to R. A process that receives
two messages m; and m, considers m; to be causally
before m, only if (a message with the same contents as)
m appears in H,,

More precisely, the algorithm executes as follows:

1. Each process P; maintains a set A; that is initially
empty.

2. If P; executes send(m), H,, = h; is sent with m.

3. If P; executes receive(m), it sets h; to

Processes detect causal relationships as follows:

C(my,my) = {

Here, ‘m; € H,,,” means that a message with contents
identical to m, appears in H,,.

While the algorithm already satisfies F’, additional
measures must be taken to satisfy E and to satisfy F if the
sender of m, is correct. To satisfy F under only the
assumption that the sender of m, is correct, it must not
be possible for the sender of m, to include (the contents
of) m; in H,, unless m; — m,. That is, m; must be
unpredictable. In addition, to satisfy E, the contents of
messages sent by correct processes must be unique. To

true if m; € H,,,,
false otherwise.

{mn m}, ma
————

Hom, Hem,

Here P sends m; to R and then sends m to Q, piggy-
backing m; on m. Then, Q piggybacks m, and m on
message ma to R.

FIGURE 3. The piggybacking algorithm.

see why, suppose there exist messages m; and m, such
that m; causally precedes m, by means of a causal chain
traversing correct processes only. If the sender of m;, had
previously sent a message whose contents were identical
to those of m,, then this message could appear in H,, ,
causing C(m,, m;) to be true at a correct recipient of m,
and my.

One way to make correct processes’ messages unique
and unpredictable is for the kth message m from P; to P;
to be constructed in the form ‘{i,j,k : data}y’ where
data denotes the data to be sent in the message (not
including H,,). Specifying i, j and k in the message makes
the message contents unique, and including the signature
makes the message contents unpredictable. Then, we can
prove

THEOREM 6.2. This algorithm satisfies E and F', and
satisfies F if the sender of m, is correct.

Proof. E: Suppose there exists a causal chain
e,...,e; such that e; = send(m;), e, = send(m,), and
foreachj € {1,...,1}, ¢; is executed at a correct process.
By construction, m; € H,,; so, C(m;,m,) is true. In
addition, since the signature in m, first appeared when
m, was sent and because m, /4 m;, m, could not be in
H,

my -

F': Suppose that a correct process R receives m; and
my, and that C(m;,m;) is true at R. Then, m; € H,,,.
Consider any causal chain ey, ..., ¢; of maximum length
such that e; = send(m) for some m, e, = receive(m,) at
R, and m; € H,,. Such a chain exists because, e.g., the
chain send(m,) ~ receive(m,) satisfies these require-
ments. Then, there is some message m’ identical to m,
such that receive(m’) was executed at the sender of m
before send(m).* So, m — my.

F: Suppose that a correct process R receives m; and
m,, the sender P of m, is correct, and C(m;, m,) is true at

4 Strictly speaking, the sender of m, if corrupt, could have created m’
and included m’ in H,,, without receiving m'. For all practical purposes,
however, this can be modelled as it sending m' to itself (and thus
receiving m’) before sending m.

THE COMPUTER JOURNAL,

VoL. 38, No. 8, 1995

640

MicHAEL REITER AND L1 GoNG

R. Then, m; € H,,. If P sent m,, then because each
message sent by P is unique, m; € H,, implies that
m; — m,. If another process sent mj,, then m; — m,
because the contents of m; cannot be predicted by the
sender of m;. a

As mentioned earlier, F’ is of interest primarily when
the sender of m, is correct (and thus does not cooperate
with the sender of m; to forge causal relationships). To
see why, suppose that a corrupt process P intends to send
a message mj, m; /> my, so that C(my,my) is true at a
correct common destination R. F’ dictates that P choose
the contents of m; from those messages m; such that
m3 — my. If m, has not yet been sent, P could try to
predict its possible choices for m; and send these to the
sender of m,. Once m, is sent, however, P’s choices are
limited.

Moreover, by adding some additional checking to our
algorithm, we can further narrow the choices available
for the contents of m,. Note that after receiving m; (on
the channel from P) and m;,, R can detect if

e the sender and receiver listed in m; are not P and R,
respectively;

e m; is the kth message that R received from P but the
sequence number listed in m, is not k;

e m; is not properly signed by P; or

e there are multiple (non-identical) messages in H,,,
listing the same sender, receiver, and sequence number
as m; and bearing P’s signature.

Suppose that R defines C(m;, m,) to be false if any of
these hold (and thus P is corrupt), even if m; € H,, .
Then, once m; is sent, P has at most one choice for the
contents of each message m; it sends on its channel to R
that will make C(m;, m,) true at R.

Several improvements to this algorithm can be made
in practice. First, instead of piggybacking H,, on each
message m, a process need only piggyback those
messages in H,, not piggybacked on a prior message to
the same destination. If the destination maintains
messages piggybacked from each sender, then H,, can
be reconstructed when m is received. Second, in some
cases it may be appropriate to forgo transmitting a
message separately if it will eventually reach its destina-
tion piggybacked on another message. However, this
delays the former message to be received no earlier than
the latter.

A third improvement, which is incompatible with the
second, uses message digests to limit the size of
piggybacked messages. A message digest algorithm
(e.g. [16]) produces a fixed length message digest from
an input of arbitrary length, in such a way that it is
computationally infeasible to produce any input having a
prespecified target message digest, or to produce two
inputs having the same message digest. So, for all
practical purposes, a message digest uniquely identifies
an input. Using a message digest algorithm f, the
algorithm can be modified to limit the length of

piggybacked messages as follows:

1. Each process P; starts with £; initially empty.

2. If P; executes send(m) and m is P;’s kth message to P;,
then H,, = h; and D,, = {i,j, k : f(m)} g, are sent with
m.

3. If P; executes receive(m), it sets h; to

hjU H,, U {D,,}
The predicate to detect causal relationships becomes

if {ivjvk :f(ml)}K,- € Hmz
where m;is of the form
{i,j,k : data} g,

false otherwise

true

C(mlamZ) =

The four previously mentioned checks on m; and H,,
can also be employed in this new algorithm. Moreover, it
is not difficult to verify that while the item D,, created
during a send(m) must contain a signature, the message
m does not. So, this algorithm can be optimized further
by not requiring a signature on m and removing the third
of the four additional checks enumerated above.

Other possible improvements include garbage collect-
ing messages from the 4;’s (at the cost of sacrificing E in
some cases), when causal relationships involving those
messages are no longer of interest.

7. ON CAUSALITY AND FRESHNESS

Forgery prevention has applications to detecting
freshness, a property that has been examined extensively
by the security community. A message is fresh in a run of
a protocol if its contents have not appeared in another
message sent before this run of the protocol began
[17,18]. Freshness is most commonly studied in the
context of cryptographic protocols in order to prevent
replay attacks, in which an intruder replays messages
from previous runs of the protocol in hopes of
convincing the participants, e.g. to accept now-obsolete
cryptographic keys. A predominant technique for
detecting freshness in cryptographic protocols uses
challenge-response techniques in conjunction with
nonce identifiers [14]: P challenges Q with a new nonce
identifier, which Q must include in its response to P. The
appearance of the nonce identifier in the response
convinces P that Q’s response is fresh.

This method for detecting freshness can be generalized
using the notion of causality, in the following way. Given
a predicate C that satisfies F, the freshness of a message
m, can be detected according to the following rule: if m,
is considered fresh and C(m;, m,) is true, then m, should
be considered fresh. The use of nonce identifiers as
described above is simply an instance of this rule, in
which the nonce identifiers are used to implement C. That
is, the appearance of the nonce identifier in Q’s response
to P is the condition on which C will indicate that Q’s
message is causally after P’s.

This relationship between freshness and causality,
which we earlier noted in the preliminary version of this

THE COMPUTER JOURNAL,

Vor. 38, No.8, 1995

SECURING CAUSAL RELATIONSHIPS IN DISTRIBUTED SYSTEMS

641

paper [19], was later (independently) presented in a
somewhat different framework by Yahalom [20]. In that
work, a related but different notion of freshness is
studied, in which freshness is tied to the duration of time
between two events. That is, a message is considered
fresh if its sending preceded its receipt by at most a
prespecified number of ticks on the recipient’s local
clock. In order to detect this condition, Yahalom argues
that a means of verifying precedence and succession
between events—or in our parlance, detecting causal
relationships between events in a way that prevents
forgery—is both necessary and sufficient.

8. SUMMARY AND DISCUSSION

In this paper we have attempted to formalize the
problems with detecting causality in hostile environ-
ments and to provide algorithms to overcome these
problems in some situations. In particular, we have
introduced two new notions—denial and forgery—that
capture the ways in which causality can be mistakenly
not detected or detected. We have presented two
algorithms for preventing denial and two algorithms
for preventing or limiting forgery in some situations.

Our previous studies of detecting causality in hostile
environments include a research effort directed at
building secure distributed systems [9]. As part of that
effort, a variant of the conservative protocol of
Section 5.2 has been implemented. One direction for
future work is the implementation of other algorithms so
that comparisons between them can be made in real
systems. Other directions for future work are discussed in
Section 8.2.

8.1. Related work

Smith and Tygar [21] have also examined the detection of
causal relationships in hostile environments. In their
work, they have similarly identified the detection of
causal relationships to be important in hostile environ-
ments and have pursued ways of detecting causal
relationships despite malicious behavior. In particular,
they independently discovered a protocol similar to that
of Section 6.1 of this paper [21].

Despite these similarities, however, the works are also
substantially different. Smith and Tygar arrived at a
different formulation of the problem of detecting causal
relationships and, to our knowledge, developed only an
approach to preventing (what we call) forgery, namely
the technique of signed vector timestamps described in
Section 6.1 of this work. On the other hand, while we
have studied causality detection only as an essential
aspect of preserving integrity in distributed systems, they
also raise consideration of the ramifications of causality
detection on secrecy requirements. In particular, they
introduce notions of forward confinement and backward
confinement, which characterize requirements that
information about a process not leak to other processes
executing events causally after or before its own,

respectively. Subsequent work by Smith and Tygar [10]
examines the application of trusted hardware coproces-
sors to these problems.

In other related work, Reiter [22] addresses the issue of
preventing causal denial specifically among requests
issued to a replicated service, some of whose clients
and servers may have been corrupted by an intruder. The
approach presented there does not fully prevent denial in
the sense of the present paper, but nevertheless may
suffice for many applications.

8.2. Future work

There are several directions for future work that we hope
to pursue. The most obvious is to find better algorithms
to detect causal relationships. In particular, what can be
done toward satisfying D or F if the sender of m, is
corrupt should be examined more closely. Less general
algorithms that exploit knowledge of communication
patterns are also of interest, especially if applicable to
large classes of distributed algorithms.

Another direction for future research is to explore the
degree to which patterns of communication must be
restricted to prevent denial and forgery in certain
situations. It is interesting to note that both of our
algorithms for preventing denial synchronize commu-
nication, in that they eliminate all executions in which
there are messages m; and m, such that the sender of m,
is correct, m; — m,, and yet m, is received before m, at a
correct common destination. On the contrary, neither of
our algorithms for preventing forgery restrict patterns of
communication at all. We suspect that these are not
properties of our algorithms alone, but suggest require-
ments inherent in the problems.

Finally, another difficult problem is how a process P
can determine whether it has received all messages sent to
it that are causally prior to a certain received message.
Such determinations are necessary if, e.g. P must deliver
received messages to an application in an order
consistent with the causal relationships among them
(e.g. [4,5]). The algorithms of Section 5 ensure that all
causally prior messages have been received if all such
messages are sent by correct processes, but this does not
necessarily hold if a causally prior message is sent by a
corrupt process.

ACKNOWLEDGEMENTS

We are very grateful to Tushar Chandra for suggesting
the idea of piggybacking, which led us to the algorithm of
Section 6.2. Comments made by Ken Birman, Brad
Glade, Andre Schiper, Robbert van Renesse and
anonymous referees improved our presentation. A
preliminary version of this paper appeared in the
Proceedings of the 1993 IEEE Symposium on Research
in Security and Privacy. The first author was partially
supported under DARPA/ONR grant N00014-92-J-
1866, and by grants from GTE, IBM, and Siemens,
Inc. Any opinions, conclusions or recommendations

THE COMPUTER JOURNAL,

Vor. 38, No. 8, 1995

642

MicHAEL REITER AND L1 GoNG

expressed in this document are those of the authors and
do not necessarily reflect the views or decisions of the
ONR.

REFERENCES

(1]

(2]

B3]

4

(5]

(6]

(7]

8]

]

(10]

(11]

Lamport, L. (1978) Time, clocks, and the ordering of
events in a distributed system. Communications of the
ACM, 21(7), 558-565.

Peterson, L. L., Buchholz, N. C. and Schlichting, R. D.
(1989) Preserving and using context information in
interprocess communication. ACM Transactions on Com-
puter Systems, 7(3), 217-246.

Herlihy, M. P. and Wing, J. M. (1990) Linearizability: a
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems,
12(3), 463-492.

Schneider, F. B. (1990) Implementing fault-tolerant
services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4), 299-319.

Birman, K. P., Schiper, A. and Stephenson, P. (1991)
Lightweight causal and atomic group multicast. ACM
Transactions on Computer Systems, 9(3), 272-314.
Ladin, R., Liskov, B., Shrira, L. and Ghemawat, S. (1992)
Providing high availability using lazy replication. ACM
Transactions on Computer Systems, 10(4), 360-391.
Birman, K. P., Cooper, R. and Gleeson, B. (1991) Design
Alternatives for Process Group Membership and Multicast.
Technical Report 91-1257, Department of Computer
Science, Cornell University.

Goguen, J. A. and Meseguer, J. (1982) Security policies
and security models. In Proceedings of the 1982 IEEE
Symposium on Security and Privacy, 11-20.

Reiter, M. K., Birman, K. P. and Gong, L. (1992)
Integrating security in a group oriented distributed
system. In Proceedings of the 1992 IEEE Symposium on
Research in Security and Privacy, 18-32.

Smith, S. W. and Tygar, J. D. (1994) Security and privacy
for partial order time. In Proceedings of the 7th Interna-
tional Conference on Parallel and Distributed Computing
Systems.

Voydock, V. L. and Kent, S. T. (1983) Security mechanisms

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

in high-level network protocols. ACM Computing
Surveys, 15(2), 135-171.

Ricciardi, A. M. and Birman, K. P. (1991) Using process
groups to implement failure detection in asynchronous
environments. In Proceedings of the 10th ACM Sympo-
sium on Principles of Distributed Computing, 341-351.
Mattern, F. (1989) Virtual time and global states in
distributed systems. In Proceedings of the International
Workshop on Parallel and Distributed Algorithms, Elsevier
Science Publishers B. V. (North-Holland) 215-226.
Needham, R. M. and Schroeder, M. D. (1978) Using
encryption for authentication in large networks of
computers. Communications of the ACM, 21(12), 993—
999.

Birman, K. P. and Joseph, T. A. (1987) Reliable
communication in the presence of failures. ACM Transac-
tions on Computer Systems, 5(1), 47-76.

Rivest, R. L. (1991) The MD4 message digest algorithm.
In Menezes, A. J. and Vanstone, S. A., editors, Advances
in Cryptology—CRYPTO 90 Proceedings (Lecture Notes
in Computer Science 537), Springer-Verlag, 303-311.
Burrows, M., Abadi, M. and Needham, R. (1989) 4 Logic
of Authentication. Technical Report 39, Digital Equip-
ment Corporation Systems Research Center.

Abadi, M. and Tuttle, M. R. (1991) A semantics for a
logic of authentication. In Proceedings of the 10th ACM
Symposium on Principles of Distributed Computing, 201—
216.

Reiter, M. K. and Gong, L. (1993) Preventing denial and
forgery of causal relationships in distributed systems. In
Proceedings of the 1993 IEEE Symposium on Research in
Security and Privacy, 30—40.

Yahalom, R. (1993) Optimality of multi-domain proto-
cols. In Proceedings of the Ist ACM Conference on
Computer and Communications Security, 38—48.

Smith, S. and Tygar, J. D. (1993) Signed vector time-
stamps: A secure protocol for partial order time.
Technical Report CMU-CS-93-116, School of Computer
Science, Carnegie Mellon University.

Reiter, M. K. and Birman, K. P. (1994) How to securely
replicate services. ACM Transactions on Programming
Languages and Systems, 16(3), 986—1009.

THE COMPUTER JOURNAL,

VoL. 38,

No. 8, 1995

