
A Security Architecture for Fault-Tolerant
Systems

MICHAEL K. REITER

AT& TBell Laboratories

and

KENNETH P, BIRMAN and ROBBERT VAN RENESSE

Cornell University

Process groups are a common abstraction for fault-tolerant computing in distributed systems. We

present a security architecture that extends the process group into a security abstraction.

Integral parts of this architecture are services that securely and fault tolerantly support

cryptographic key distribution. Using replication only when necessary, and introducing novel

replication techniques when it was necessary, we have constructed these services both to be

easily defensible against attack and to permit key distribution despite the transient unavailabil-

ity ofa substantial number of servers. We detail the design andimplementation of these services

and the secure process group abstraction they support. We also give preliminary performance

figures for some common group operations.

Categories and Subject Descriptors: C.2.O [Computer-Communication Networks]: General—

security and protection; C.2.4 [Computer-Communication Networks]: Distributed Systems;
D.4.5 [Operating Systems]: Reliability —j?mlt tolerance; D.4.6 [Operating Systems]: Security
and Protection—authentication; cryptographic controls; K.6.5 [Management of Computing
and Information Systems]: Security and Protection—authentication

General Terms: Security, Reliability

Additional Key Words and Phrases: Key distribution, multicast, process groups

1. INTRODUCTION

There exists much experience with addressing the needs for security and

fault tolerance individually in distributed systems. However, less is under-

Because the Editor-in-Chief of ACM Transactions on Computer Systems is a coauthor of this

paper, he played no role in the review process or acceptance decision for the manuscript. This

work was performed while the first author was at Cornell University. This work was supported

under I) ARPA/ONR grant NOO014-92-J-1866, and by grants from GTE, IBM, and Siemens, Inc.

Any opinions or conclusions expressed in this document are the authors’ and do not necessarily

reflect those of the ONR.

Authors’ addresses: M. K. Reiter, AT&T Bell Laboratories, Holmdel, NJ 07733; email:

reiter@research.att.tom; K. P. Birman and R. van Renesse, Department of Computer Science,

Cornell University, Ithaca, NY 14853; email: {ken; rvr}(ucs.cornell. edu.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1994 0734-2071/94/ 1100-0340$03.50

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994, Pages 340-371

© ACM, 1994. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/195792.195823.

A Security Architecture for Fault-Tolerant Systems . :341

stood about how to address these needs simultaneously in a single, integrated

solution. Indeed, the goals of security—or more precisely, the goals of secr,ecy

and integrity—have traditionally been viewed as being in conflict with goals

of availability, because the only generally feasible technique for making data

and services highly available, namely replicating them, also makes them

harder to protect [Herlihy and Tygar 1988; Lampson et al. 1992; Turn and

Habibi 1986]. This conflict is particularly pertinent to services that /are

involved in enforcing security policy, or in other words, that are part of the

trusted computing base (TCB) [Department of Defense 1985] of a system.

Prudence dictates that the TCB should be kept as small and localized as

possible, in order to facilitate its protection. Distribution of TCB components

makes its protection more difficult.

We have designed a security architecture for fault-tolerant systems that

illustrates that this conflict need not result in an unreliable or insecure

system. The architecture supports process groups—a comlmon paradigm of

fault-tolerant computing [Amir et al. 1992; Birman and Joseph 1987b; Cheri-

ton and Zwaenepoel 1985; Kaashoek 1992; Peterson et al. 1989] —as its

primary security abstraction, and provides tools for the construction of appli-

cations that can tolerate both benign component failures and advanced

malicious attacks. We have implemented this architecture as part of a new

version of the Isis distributed programming toolkit [Birman and Joseph

1987b; Birman et al. 1991] called Horus, thereby securing Horus’ uirtually

synchronous process group abstraction. An earlier paper [R,eiter et al. 19!32]

presents the design rationale and an overview of the architecture. Here we

emphasize how the security mechanisms have been built to be fault tolerant

and efficient.

The tradeoff between security and availability is addressed in two ways in

our architecture. At the level of user applications, the secure process group

abstraction supported by the architecture provides a framework within which

the user can balance this tradeoff for each application individually. In a

secure group, applications can be efficiently replicated in a protected fashion:

authentication and access control mechanisms enable the group members to

prevent untrusted processes from joining, and if the members admit only

processes on trustworthy sites, the members will enjoy secure communication

and correct group semantics among themselves. These protection mecha-

nisms limit how attackers can interfere with applications and, in particular,

enable the user to control exactly where and how widely each application is

replicated.

The second and more critical level at which this conflict is addressed is

within the core security services in the TCB that underlie thlese mechanisms,

and indeed the security of all process groups. As do other security architec-

tures, ours uses cryptography to protect communication, and this in turn

requires that a secure means of key distribution exist. Most key distribute on

mechanisms employ trusted services whose corruption or failure could result

in security breaches or prevent principals from establishing secure communi-
cation; it is in these services that the conflict between security and availabil-

ity is most apparent. We have developed an approach to reconciling tlhis

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

342 - Michael K. Reiter et al.

conflict that exploits the semantics of these services and novel replication

techniques to achieve secure, fault-tolerant key distribution.

The implementation of our security architecture as part of Horus has

brought performance and user interface issues to the forefront of our work, as

well. By using caching extensively and moving costly operations off critical

paths whenever possible, we have achieved reasonable performance in the

secure version of Horus without resorting to network-wide cryptographic

hardware. This is particularly true for group communication, which we

expect to account for the vast majority of group operations in most applica-

tions. Moreover, the implementation of the security mechanisms in Horus

resulted in minimal changes to the Horus process group interfaces. So, tools

and applications designed for the Horus interfaces should port easily to

secure groups.

We present here the security architecture as realized in Horus and elabo-

rate on the contributions just described. In Section 2 we present the program-

ming model of secure process groups, with an emphasis on the security

features that augment the Horus process group abstraction. Here we also

discuss some implementation challenges posed by the programming model. In

Section 3 we present our method of fault-tolerant key distribution, which we

use to support secure process groups. In Section 4, we detail the implementa-

tion of secure process groups and give performance numbers for common

group operations. We conclude and discuss related work in Section 5,

2. SECURE PROCESS GROUPS

The basic abstraction provided by Horus is the process group, which is a

collection of processes with an associated group address. Groups may overlap

arbitrarily, and processes may create, join, and leave groups at any time.

Processes communicate both by point-to-point methods (e.g., RPC) and by

group multicast, i.e., by multicasting a message to the entire membership of a

group of which it is a member. Further, Horus supports a virtually syn-

chronous [Birman and Joseph 1987a] execution model, so that message

deliveries and changes to the group uiew (i.e., the membership of the group)

appear atomically and in a consistent order at all group members, even when

failures occur.

Our security architecture makes the Horus programming model robust

against malicious attack, while leaving the model itself unchanged. First,

during group joins, the group and the joining process are mutually authenti-
cated to one another. More precisely, the group members are informed of the

site from which the process is attempting to join, as well as the owner of the

process according to that site. Any effort by an intruder to replay a previous

join sequence or to forge the apparent site from which a request is sent will

be detected. And, the joining process knows that responses apparently from

the group are actually from the group that it is trying to join.

Second, a group member must explicitly grant each group join before the

join is allowed to proceed. If the group members choose not to admit the

joiner, they can deny the request, in which case the joiner will not be

ACM Transactions on Computer Systems, Vol. 12, No, 4, November 1994,

A Security Architecture for Fault-Tolerant Systems . :343

6’----7

(34
I authentication

protected

cmnnmnic.t ion

a ~ ““’’’C”’

(a) A process requesting to join is

authenticated to the group members,

who either grant or deny the request.

Inside the group, communication is

protected cryptographically from ac-

tive and, if requested, from passive

network attacks.

(’”J= secure group)

insecure sites

e$

moderately
secure

sites

highly
secure
sit, es

G

(

(b) Applications can be built from many

secure groups to enforc,s internal secu-

rity policies and to limit damage from

site corruptions. A group can span

sites secured to different levels, but is

only as secure as the least secure site

admitted.

Fig. 1. Secure process groups,

admitted provided that all group members are trustworthy. In particular, if

the requesting site is not trusted by the group members to have properly

authenticated the owner of the process requesting to join, the members may

choose to deny the request.

Third, the integrity of these mechanisms and the Eiorus abstractions, as

well as the authenticity of group communication, are guaranteed within each

group that has admitted no processes on corrupt sites, i.e., sites at which an

intruder has tampered with the hardware or operating system. (The require-

ment that a group not admit processes on corrupt sites does not imply tlhat

member processes need not be trusted, since an untrustworthy process could

admit a corrupt site to the group.) Members can also request secrecy, in

which case their messages will be encrypted before being sent, in an effort to

prevent the disclosure of those messages to a network intruder. Secure

point-to-point communication is also supported within and outside of groups,

and in particular between group members and clients of groups [Birmanl et

al. 199 1], although in this article we focus on secure group communication.

The programming model thus presented to the programmer is one in which

each process group can be viewed as a “fortress,” where admission is regu-

lated by the group members themselves (see Figure l(a)). A setting to which

this style of secure group is particularly well suited is one in which a

fault-tolerant service must be provided to a larger, untrustworthy system

against which the service must protect itself [Reiter et a“l. 1992]. Such an
application could be composed of a single secure group located on a small

“island of trustworthy sites. Alternatively, a larger application in which

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

344 . Michael K, Reiter et al,

greater internal control is required could be implemented using many secure

groups, arranged to enforce security policies within the application and to

limit the damage to the overall application from the corruption of a site (see

Figure l(b)). While the groups could span sites with different levels of

trustworthiness, each group is only as secure as the least secure site or

process it contains.

When implementing secure process groups in Horus, we were faced with

many issues in fault tolerance, performance, and integration, including the

following:

—Because process groups are a fault tolerance tool, it was important that the

integration of our security mechanisms not increase the sensitivity of the

process group abstraction to failures. This was most difficult to achieve in

authenticating the origin of join requests, since all known techniques for

authenticating principals in open networks rely on trusted services whose

unavailability could inhibit authentication but whose replication can make

them more difficult to protect. Thus, we were forced to devise new tech-

niques for achieving fault-tolerant authentication and key distribution to

support authenticated group joins.

—In Horus, a process seeking to contact a group to obtain a service, or to

join, will generally not know the current membership of the group and does

not need to. Moreover, requiring this knowledge would involve substantial

changes to Horus and significant overheads in the system. So, it was

important that an outsider’s ability to authenticate group members not

rely on accurate knowledge of the group membership.

—Group communication can offer substantial performance benefits if the

underlying network supports broadcast or multicast [Kaashoek 1992]. We

felt that it was necessary to retain these potential benefits as much as

possible, without requiring that special-purpose cryptographic hardware be

deployed on all sites. This goal was particularly crucial to Horus, since

experience with Isis suggests that group communication will be very

common in Horus.

-Horus offers a variety of ordering guarantees on the delivery of group

multicasts. One of these, the causal ordering property, raises security

issues when causal relationships exist between multicasts in different

overlapping groups [Reiter and Gong 1993; Reiter et al. 1992]. It was

important to identify potential security threats to applications that employ

this ordering property and to provide defenses against these threats when-
ever possible.

The following sections detail how we addressed these and other issues in

the implementation of our security architecture. Section 3 presents tech-

niques to achieve fault-tolerant key distribution, which we use in our archi-

tecture to support authenticated group joins fault tolerantly. However, these

techniques are also of interest outside of the context of our security architec-

ture and could be useful in a wide range of systems, and so in Section 3 we

present them in a general light. A discussion of their use in our security

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

A Security Architecture for Fault-Tolerant Systems o 345

architecture is deferred until Section 4, where we focus on the implemerlta-

tion of secure process groups.

3. FAULT-TOLERANT KEY DISTRIBUTION

In open networks, an intruder can attempt to initiate spurious communica-

tion in two ways [Voydock and Kent 1983]: it can try to initiate communica-

tion under a false identity, or it can replay a recording of a previous initiation

sequence. Many authentication or key distribution protocols have been pro-

posed to protect against these attacks (see Denning and Sacco [19811, CCITT

[1988], Kent [1993], Needham and Schroeder [19781, Steiner et al. [19881).

These protocols allow principals (e.g., computers, users) initiating communi-

cation to verify each others’ identities and the timeliness of the interaction.

Most also arrange for the involved principals to share a secret cryptographic

key by which subsequent communication can be protected, or to possess each

others’ public keys, by which either communication can be protected or a

shared key can be negotiated.

Authentication protocols typically employ a trusted service, commonly

called an authentication seruice [Needham and Schroeder [1978]], to counter

the first type of attack. In shared-key protocols, the authentication service

normally shares a key with each principal and uses these keys to distribute

other shared keys by which principals communicate. In public-key protocols,

the authentication service usually has a well-known public key and uses the

corresponding private key to certify the public keys of principals.

A predominant technique to detect replay attacks in authentication proto-

cols is to incorporate into each protocol message the time at which the

message was generated; the message is then valid for a certain lifetime,

beyond which it is considered a replay if received [Denning and Sacco 1981].

Timestamp-based replay detection has been used in several systems (e.g.,

Steiner et al. [1988], Tardo and Alagappan [1991], Wobber et al. [1993]) land

is often preferable to challenge-response techniques [Needham and Schroeder

[1978]], because it results in fewer protocol messages and less protocol state.

However, using timestamps requires that all participants maintain securely

synchronized clocks. In practice, clock synchronization is usually achieved via

a time seruice, as in Gusella and Zatti [1984] and Mills [1989].

The dependence of authentication protocols on authentication and time

services raises troubling security and availability issues. First, the assur-

ances provided by authentication protocols rely directly on the security of

these services, and thus these services must be protected from corruption by

an intruder. Second, the unavailability of these services may prevent princi-

pals from establishing secure communication, or even open security “holes”

that could be exploited by an intruder. For instance, the unavailability (of a

time service could result in clocks drifting far apart, thereby exposing princi-

pals to replay attacks. To increase the likelihood of these services being
available, they could be replicated. However, as already noted in Section 1,

this is dangerous in some environments, because replicati~lg data or services

makes them inherently harder to protect.

ACM Transactions on Computer Systems, Vol. 12!, No. 4, November 1994.

346 . Michael K. Reiter et al,

We have developed techniques to reconcile the conflict between security

and availability in these services. By using replication only when necessary,

and introducing novel replication techniques when it was necessary, we have

constructed these services to be easily defensible against attack. And, the

transient unavailability of even a substantial number of servers does not

hinder key distribution between principals or expose protocols to intruder

attacks. Client interactions with the services are simple and efficient, and the

services can be used with many different authentication protocols.

3.1 The Time Service

The security risks of clock synchronization failures in authentication proto-

cols are well known [Denning and Sacco 1981; Gong 1992], and the need for a

secure time service that cannot be tampered with or impersonated has been

recognized in several systems (see Bellovin and Merritt [1990] and Mills

[1989]). We claim, however, that the case for a highly available time service
is not as clear. It is true that an extended period of unavailability might

cause principals to have increasingly disparate views of real time, But, in

itself this need not result in security weaknesses or inhibit communication

too quickly, h evidence of this, the algorithm we propose by which clients

estimate real time allows key distribution to proceed securely even during a

lengthy unavailability of the time service. This has allowed us to explicitly

not replicate our time service so that it will be easier to protect, and to

achieve resilience to a time service unavailability through the client algo-

rithm for estimating time.

We describe this algorithm in Section 3.1.1 and discuss alternatives to our

approach in Section 3.1.2, As will be discussed in Section 3.1.2, the algorithm

of Section 3.1.1 is heavily influenced by previous work in clock synchroniza-

tion. As such, its contribution lies mainly in how clock synchronization

techniques can be adapted for use in our setting to achieve simple, fail-safe

time estimation in key distribution protocols with an easily defensible, cen-

tralized time service.

3.1.1 The Algorithm. Clients interact with our time service by the simple
RPC-style protocol shown in Figure 2. We assume that the time server

possesses a private key K; 1 whose corresponding public key ~z is well

known. (There is a similar shared-key protocol.) At regular intervals, a client

queries the time service with a nonce identifier N [Needham and Schroeder

1978], a new, unpredictable value. When the time server receives this re-

quest, immediately it generates a timestamp T equal to its current local clock
value and replies with {N, T}Kj: , i.e., the nonce and the timestamp, both

signed with K;l. The client considers the response valid if it contains N and

can be verified with the public key of the time service. The method by which a

client uses this response rests on the following additional assumptions:

(1) The client has access to a local hardware clock H that measures the length

t – t‘ of a real time interval [t‘, t] with an error of at most p(t – t‘) where

p is a known constant satisfying O s p < 1. That is,

(1 –p)(t - t’) <H(t) –H(t’) s (1 +p)(t –t’). (1)

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994

A Security Architecture for Fault-Tolerant Systems . :347

C+.y: N

Y+ C : {N, T)K:71

Fig. 2. Protocol by which client C interacts with time service.7

H p is estimated too optimistically so that the actual drift rate of the

client is outside of [– p, p], then the client may be subject to replay

attacks or may subject others to replays of its messages. So, the value clf p

should be estimated conservatively; e.g., a p on the order of 10 ‘“5 should

be sufficiently conservative for most types of quartz clocks [Cristian

1989].1

(2) The time server’s clock is perfectly synchronized to real time. Actually, it
suffices for the time server’s clock simply to make progress at the rate of

real time, although assuming that the time server’s clc}ck is identical. to

real time simplifies the following discussion. Moreover, we could incorpo-

rate time server drift into our formulas, but, for all practical purposes,

perfect synchronization can be achieved by attaching a WWV receiver cm-a

very accurate clock to the time server’s processor by a dedicated bus.

(3) There are known, minimum real-time delays mini and minz experienced,

respectively, between when a client initiates a request to the time service

and when the time server receives that request, and between when the

server reads its local clock value and the response is verified as authentic

at the client. The values of mini and minz can be determined by measulre-

rnent in the absence of system load, taking into account the minimum

signature and verification times for all possible reply and key values.

Alternatively, mini and minz can simply be set to zero, although accu-

rately determining these values tends to increase the duration for which

the system can operate without the time service. In our implementation,

min2 is substantially longer than mini, because it includes the delays for

signing and verifying the response.

Under these assumptions, the following theorem holds:

THEOREM 3.1.1.1. Immediately after a client receives cmd verifies a re-

sponse from the time service, the client can characterize the current real time ;

by:

~e[T+minz,T+r/(l–p)–mini], (2)

where T is the timestamp in the response and r is the round-trip time

measured by the client, beginning when it sent the request and ending at time

i?, i.e., after it verified the response.

PROOF. Let min ~ + al and min2 + a2 be the real time delays experi-

enced, respectively, between when the client sent the request and the server

received it, and between when the server read its local clc~ck and the client

had verified the response as authentic. Then, R = mini + minz + al + a!l is

the real round-trip time. Since al, az >0, we have that O < Qz s R – mini

* Keith Marzullo has suggested the possibility of dynamically measuring 1~on a per-client basis

(personal communication, Feb. 1993). However, we do not pursue this here.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

348 . Michael K. Reiter et al.

— minz, and so after the client verifies the response, real time t = T + minz
A

+ ag satisfies

~~[T+minz,T+R–mini]. (3)

By (l), it follows that R < r/(1 – p),and by combining this with (3) we get

the desired result. ❑

Combining (1) and (2), the client can characterize any later time t > ; by:

t ● [L(t), u(t)l, (4)

where

L(t) = (H(t) – H(j)) /(1 + p) + T + min2

and

U(t) = (H(t) –H(f))/(1 – p) + ‘1+ r/(1 – p) – rninl.

To estimate the time, the client uses either L(t) or U(t), depending on which

is more conservative. In particular, to detect replays of authentication proto-

col messages, principals use the following rules for estimating time:

(1) When timestamping an authentication protocol message to allow others
to detect a later replay of that message, the sender sets the message

timestamp to T = L(t).

(2) A recipient accepts an authentication protocol message with timestamp T

as valid at time t only if T + A > LX t), where A is the predetermined

lifetime of the message.

The benefit of this scheme is that it is fail-safe, in the following sense:

THEOREM 3.1.1.2. An authentication protocol message with lifetime A sent

by a (correct) client at time t will never be accepted by another (correct) client

after time t + A.

PROOF. Suppose a client sends an authentication protocol message at time

t.The timestamp T = L(t) for the message satisfies T < t. Now consider a

recipient at time t + A, where A is the lifetime of the message. Since at the

recipient, t + A < .!7(t+ A), it follows that T + A < U(t + A). Thus, the mes-

sage will be rejected as invalid. ❑

Because the interval (4) grows wider with time, periodically each client

desynchronizes with the time service in order to narrow its interval. A

successful resynchronization results in new values of H(t), r, and T for the

calculation of lJ(t) and L(t).Resynchronization attempts can fail, however,
when the round-trip time r for the attempt exceeds some timeout value.

When this happens, the client continues to attempt to desynchronize with the

service at regular intervals, while retaining the values of T, r, and H(;)

obtained in the last successful resynchronization to calculate L(t) and U(t).

So, if the service becomes unavailable, clients’ intervals will continue to

widen. If the service is unavailable for too long, eventually the principals’
values of U(t) will exceed their values of L(t) by the protocol message

lifetimes, and all messages will be perceived as expired immediately upon

creation.

ACM Transactions on Computer Systems, Vol. 12, NrJ. 4, November 1994.

A Security Architecture for Fault-Tolerant Systems . 349

While this bounds the amount of time that the system can operate without

the time service, calculations in our system indicate that this bound is not

very tight. For example, consider two principals F’l and P2, each of whose

clocks is characterized by p = 10-5, and suppose for simplicity that the
values of f and T corresponding to the last resynchronization for each prior

to a time service crash are the same. Moreover, suppose that rninl = min2 = O

and that the value of r obtained by P2 in its last resynchronization is 0.5

seconds. Then, even if the clocks of PI and P2 drift apart at the maximum

possible rate—i.e., the clocks of PI and P2 are as slow and as fast as possible,

respectively, while still satisfying (l)—it will be over 20.4 hours from i before

the value of U(t) at P2 exceeds the value of L(t) at PI by 30 secondk, a

relatively short message lifetime in comparison to that suggested by Denning

and Sacco [1981]. Additionally, the parameters used in the above calculation

are very conservative for most settings, and tests in our s,ystem show that a

time service unavailability can typically be tolerated for much longer. Tlhese

results lead us to believe that the system, if tuned correctly, should be able to

operate without the time service for sufficiently long to restart the time

service, even if the restart requires operator intervention.

3.1.2 Comparison to Alternative Designs. We derived cur algorithm from
that presented by Cristian [1989] for implementing a time service. The

primary difference between ours and Cristian’s lies in how clients use the

interval (2). In the latter, the client uses the midpoint of (2) as its estimate of

the time at time ;, since this choice minimizes the maximum possible e:rror,

and the client estimates future times as an offset, equal to the measured time

since the last resynchronization, from this midpoint.2 However, like any

other clock synchronization algorithm in which each client maintains a single

clock value, this algorithm is not fail-safe: e.g., if the midpoint of (2) were too

low, then the client’s future estimates of the time would tend to be low, and

thus expired messages may be incorrectly accepted. We feel that our ap-

proach, which is fail-safe, is better for our purposes.

A reasonable alternative to not replicating our time service is to replicate it

for high availability and to compensate for the increased difficulty of protect-

ing the service by making it tolerant of the corruption of some servers. For

instance, a client could use the robust averaging algorithm of Marzullo [1990]

to obtain an interval of bounded inaccuracy containing real time from a set of

n time servers, if fewer than \ n /3] servers are faulty or corrupt, This

approach might be attractive if clients are highly transient, and thus a time

service unavailability will prevent large numbers of clients from synchrcmiz-

ing initially with the service at client startup. However, this is unlikely to be

the case in most systems, where time service clients are sites that do not tend

to reboot frequently. Moreover, a replicated time service places a larger

burden on the administrator of the service than does ours, since the adminis-

trator must protect multiple servers, instead of only one, to ensure the

2This is a simplification of the algorithm by Cristian [1989]; the actual algorithm also takes

measures to ensure that client clocks are continuous and monotonic. These features, however,

are unimportant for our purposes.

ACM Transactions on Computer Systems, Vol. “12, No. 4, November 1994.

350 . Michael K. Reiter et al

integrity of the service. For these reasons and the additional costs of replica-

tion (e.g., authenticating and maintaining multiple time servers), we feel that

a replicated time service is difficult to justify for our purposes.

Also discussed by Marzullo [1990] are approaches to evaluating a predicate

on a physical state variable despite the impossibility of accurately measuring

that variable. It is observed that given a range of values that is known to

contain the actual physical value, safe evaluation of the predicate may

require that all values in the range satisfy the predicate, or that only some

value in the range does. Our approach of estimating time conservatively with

the endpoints of (4) can be viewed as an instance of the former approach,

where the physical state variable being measured is time; the range contain-

ing time is (4); and the predicates of interest relate time to timestamps in

authentication protocol messages.

Numerous other approaches to clock synchronization have been proposed

(see, e.g., Simons et al. [1990]), but for brevity, we do not discuss them all

here. Unlike ours, however, most assume upper bounds on message transmis-

sion times or employ greater distribution, thereby increasing the number of

components that must be protected in the system. Moreover, to our knowl-

edge none provide a fail-safe algorithm for estimating time in authentication

protocols. We thus feel that our approach is unique in providing this property

with relatively few requirements.

3.2 The Authentication Service

Our authentication service is of the public-key variety, that produces public-

key certificates for principals. Each certificate {P, T, KP}~jI contains the

identifier P of the principal, the public key KP of the principal, and the

expiration time T of the certificate, all signed by the private key K,jl of the

authentication service, A principal uses these certificates to map principal

identifiers to public keys, by which those principals (who presumably possess

the corresponding private keys) can be authenticated; the details are dis-

cussed in Lampson et al. [1992], In general, a principal can request a

certificate for any principal from the authentication service.

The need for security in such an authentication service is obvious: as the

undisputed authority on what public key belongs to what principal, the

authentication service, if corrupted, could create public-key certificates arbi-

trarily and thus render secure communication impossible. It would also

appear that, unlike the time service, the authentication service must be

highly available, since its unavailability could prevent certificates from being

obtained or refreshed when they expire. Other researchers have also noted
that both security and availability, and thus the conflict between them, must

be dealt with in the construction of authentication services [Gong 1993;

Lampson et al. 1992]. The most common approach to address this conflict in

public-key authentication services is to implement the service using two

services: a highly secure certification authority that creates certificates, and

a highly available certificate database that distributes them (see CCITT

[1988], Kent [1993], Lampson et al. [19921, Tardo and Alagappan [1991]). Our
approach differs in that it performs both of these functions in a single

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

A Security Architecture for Fault-Tolerant Systems . 351

replicated service, but does so in such a way that the service remains correct

and available despite even the malicious corruption of a minority of servers.

So, the conflict between security and availability is addressed by replicating

the service for availability, but compensating for the increased difficultly of

protecting the service by making the service tolerant of successful attacks on

servers. We first describe our approach, and then compare it in detail to other

alternatives.

3.2.1 The Algorithm. Reiter and 13irman [1994] describe a technique for

securely replicating any service that can be modeled as a state machine. The

technique is similar to state machine replication [Schneider 1990], in which a

client sends its request to all servers and accepts the response that it

receives from a majority of them. In this way, if a majority of the servers is

correct, then the response obtained by the client is correct. The approach of

Reiter and Birman provides similar guarantees but diffkrs by freeing the

client from authenticating the responses of all servers. Instead, the client is

required to possess only one public key for the service and to authenticate

only one (valid) response, just as if the service was not replicated.

We have constructed our authentication service using thk technique. In its

full generality, the system administrator can choose any threshold value k

and create any number n > k of authentication servers such that the service

has the following properties:

Integrity. If fewer than k servers are corrupt, the contents of any properly

signed certificate produced by the service were endorsed by some correct

server.

Availability. If at least k servers are correct, the service produces prop-

erly signed certificates,

As indicated above, a natural choice for the threshold value is k = [n/2 -t1],

so that a majority of correct servers ensures both the availability and the

integrity of the service.

Our technique employs a threshold signature scheme. Informally, a (k, n)-

threshold signature scheme is a method of generating a public key and n

shares of the corresponding private key in such a way that for any message

m, each share can be used to produce a partial result from m, where any k of

these partial results can be combined into the private-key signature for m.

Moreover, knowledge of k shares should be necessary to sign m, in the sense

that without the private key it should be computationally infeasible to

(1) create the signature for m without k partial results fc~r m,

(2) compute a partial result for m without the corresponding share, or

(3) compute a share or the private key without k other shares.

Our replication technique does not rely on any particular threshold signature

scheme. For our authentication service, we have implemented the one of
Desmedt and Frankel [1992], which is based on IWA [Rivest 1978].

Given a (k, n)-threshold signature scheme, we build our authentication

service as follows. Let tti = { AS1, . . ., AS.) be the set of authentication servers.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

352 . Michael K. Reiter et al.

These servers should satisfy the same specification, although they need not

be identical; in fact, it may be preferable that they be developed indepen-

dently, to prevent a (possibly deliberate) design flaw from affecting all of

them [Joseph 1987]. We first choose a threshold value k and create n shares

from the private key K~l of the authentication service. Each authentication

server ASi, when started, is given the ith share of K,;l, its own private key

K;~t, the public key K~8, of each server ASj, and the public keys for all

principals. It is also given the public key of the time service to synchronize its

clock as in Section 3.1.1.

The protocol by which clients obtain certificates from the authentication

service is shown in Figure 3. A client C requests a certificate for a principal P

by sending the identifier for P and a timestamp T to the servers. The

purpose of T is to give the servers a common base time from which to

compute the expiration time of the certificate;3 we discuss later how C

chooses T. When each server AS, receives the request, it extracts T and tests

if T is no more than its current value of L(t). If this is the case, it produces

its partial result pri(P, T + A, KP) for the contents (P, T + A, KP) of P’s

certificate, where A is the predetermined lifetime of the certificate. AS, then

sends pri(P, T + A, KP) to the other servers, signed under its own private

key. (Alternatively, partial results can be sent over point-to-point authenti-

cated channels, rather than being authenticated by digital signatures.) When

AS, has authenticated k – 1 other partial results from which it can create

the certificate for {P, T + A, KP}~,jl, it sends the certificate to C. C accepts

the first properly signed certificate for P with an expiration time sufficiently

far in the future, and ignores any other replies.

It is easy to see why this protocol provides the Integrity and Availability

guarantees just stated. Informally, Integrity holds because if only fewer than

k servers are corrupted by an intruder, then the corrupt servers do not

possess enough shares to sign a certificate; i.e., they need the help of a correct

server. Availability holds because if at least k servers are correct, then the

correct servers possess enough shares to sign a certificate and can do so using

this protocol.

Because each correct server produces a partial result only if T is no more

than its value of L(t), where t is the time at which it receives the request,

any certificate produced from its partial result has an expiration timestamp

of at most t + A. A principal accepts a certificate as valid at some time t only

if the certificate expiration time is greater than the principal’s value of U(t),

which ensures that the certificate expiration time has not been reached. So,
like authentication protocol messages (see Section 3.1. 1), a certificate will

never be considered valid for longer than its intended lifetime.

A client’s choice for T is constrained by two factors. On the one hand, for a

certificate to be produced, each of k different servers must find T to be at

most L(t), were t is the time at which the server receives the request; so,

’31n a prlo r version of this protocol, each server used its value of L(t) when the request was

received as the base to compute the expiration time. This version was more sensitive to clock

drifts and variances in request delivery times.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

A Security Architecture for Fault-Tolerant Systems . 353

C~.#: P>T

(Vi)ASi +M: {P, T+ A,pri(p, T + A, Kp)}Ki~

(vi) As, ~ C : {P, T + A, Kp}K&,

Fig, 3. Protocol by which client C obtains a certificate for principal P.

choosing T too high prevents a certificate from being produced. On the other

hand, since the certificate’s expiration time is T + A, the client shortens the

effective lifetime of the certificate by choosing T too low. SO, a client should

choose T to be close to, but less than, what it anticipates will be the correct

servers’ values of L(t) when they receive the request.

In practice, it works well to have a client, when sending a request at time t,

to set T to its own value of L(t)minus a small offset 8>0, and to increase 8

on subsequent requests if prior attempts to obtain a certificate failed. Be-

cause an unavailability of the time service will generally ca,use clients’ values

of L(t) to drift from those of the servers, during a lengthy unavailability a

client may need to set S to several seconds to obtain a certificate, at the cost

of reducing the effective lifetime of the certificate by that amount. However,

since certificate lifetimes are typically at least several minutes, this would

normally reduce the effective lifetime by only a small fraction.

3.2.2 Comparison to Alternative Designs. As previously mentioned, we are

not the first to notice the conflict between security and availability in the

construction of authentication services. Gong [1993] proposed a methocl for

dealing with this tradeoff in shared-key authentication services such as

Kerberos [Steiner et al. 1988]. Lampson et al. [1992] also discussed this

tradeoff and described a different solution that is appropriate for a public-key

authentication service similar to ours.

In the latter solution, which is also implemented in SPX [Tardo and

Alagappan 1991], certificates are created by a highly secure certification

authority. The certification authority is not replicated and can even be taken

offline, to make it easier to protect (Figure 4(a)). To reduce the impact c,f its

limited availability, it produces long-lived certificates that are stored in and

distributed from an online certificate distribution center (C!DC), which can be

replicated for high availability [Tardo and Alagappan 1991]. Because certifi-

cates are long lived, however, there must be some way to revoke them

securely. For this reason, certificates are obtained only fro:m CDC replicas, so

if necessary, a certificate can be revoked by deleting it from all replicas. That

is, a client accepts a certificate only if both the highly secure certification

authority and a CDC replica endorse it. A disadvantage of this scheme, noted

by Lampson et al, [1992], is that the corruption of a CDC replica could dlelay

the revocation of a certificate.

This problem could be addressed by using the technique described in Reiter

and Birman [1994] to replicate the CDC securely. However, our approach

presented in Section 3.2.1 of securely replicating the authentication se-t-vice

itself (Figure 4(c)) addresses this problem more directly. Since the authen tica-

tion service is online and highly available, it can refresh certificates fre-

quently and create them with short lifetimes. Thus, the window of vulnerabil-

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

354 . Michael K. Reiter et al

<

(usually : CXXl

OSline)

c’ K&@
CDCn

%

ASI

ASI Client

ASn

(a) offline certification authority (b) State machine replication (c) Transparent state machine
(CA) [CCITT 1988; Lampson et [Schneider 1990]. Client authen- replication [Reiter and BIrman
al. 1992; Tardo and Alagappan ticates certificate from each 1992]. Client authenticates sin-

1991]. CA deposits long-lived server and accepts key that OC- gle certificate that could have

certificates in an online, repli- curs in a majority of certificates. been created only by a majority

cated certificate distribution of servers,

center (CD C).

Fig, 4. Design alternatives for a fault-tolerant public-key authentication service.

ity between the disclosure of a principal’s private key and the expiration of

the principal’s certificates can be greatly shortened, making revocation of

existing certificates less crucial. If the ability to revoke certificates is still

desired, however, our authentication service could easily be adapted to

produce certificate revocation lists [CCITT 1988; Kent 1993]. And, of course,

once the disclosure of a principal’s private key is discovered, the principal’s

public key can be removed from the authentication servers so that no more

certificates containing it are produced.

Our technique also has advantages over state machine replication

[Schneider 1990] (Figure 4(b)) of the authentication service (or the CDC of

Lampson et al, [1992] and Tardo and Alagappan [1991]). First, in our

approach a client’s ability to verify the validity of a public key depends only

on its knowledge of a single public key for the authentication service, rather

than on knowledge of the identities of all servers and an ability to authenti-

cate each of them individually, Second, our approach requires less computa-

tion at the client, since the client need not authenticate or retain any other

replies from the service but the first one it accepts as valid. This is especially

beneficial if a principal obtains and forwards its own certificate to its part-

ners in cryptographic protocols, as in the “push” technique described by

Lampson et al. If the service were implemented using state machine replica-

tion, the principal would need to authenticate, collect, and forward a number

of certificates equal to the size of a majority of the servers, and the destina-

tion would need to authenticate all of these certificates, presumably on the
critical path of the key distribution protocol. Third, in our approach the

configuration of the service is largely transparent to clients, and so servers

can be added or removed more easily.

There is, however, at least one disadvantage of our scheme with respect to

the others mentioned here: due to the round of server communication, a client
is likely to wait longer for a response from the authentication service in our

scheme. As illustrated in Section 4, though, in many situations communica-

tion with the authentication service can be performed in the background, off

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

A Security Architecture for Fault-Tolerant Systems . 355

the critical path of any other protocol or computation, and in advance of any

actual need for a certificate. (The certificate so obtained is then cached until

the need for it arises.)

4. SECURE GROUP IMPLEMENTATION

As discussed in Sections 1 and 2, the services of Section 3 were motivated by

the need for fault-tolerant authentication and key distribution in our security

architecture. In this section, we detail the implementation of secure process

groups in the Horus system, and in doing so, elaborate on the use of the

services of Section 3 in our architecture. We also describe the mechanisms

used to address other integration and performance concerns, such as those

enumerated in Section 2.

The implementation of our architecture in Horus is shown in Figure 5. On

each site, the core Horus functionality is implemented in a transport layer

entity called MUTS and a session layer entity called VSYNC, both of which will

reside in the operating system kernel on most platforms [van Renesse et al.

1992]. The purpose of MUTS is to provide reliable, sequenced multicast among

sites; VSYNC then implements the process group and virtual synchrony ab-

stractions over this service. Horus will also provide user-level libraries and

tools to facilitate primary-backup computations, replicated data, etc. While

security mechanisms are included at all levels of the system, the core

functionality of the security architecture exists in MUTS and VSYNC. T’hese

layers have been augmented to distribute and use group keys.

4.1 Group Keys

Group keys form the foundation of security within each process group, The

group keys are a pair of cryptographic keys that are replicated in volatile

memory at each site in the group. While the security dangers of replication

also apply to group keys, we view this replication as acceptable at this level of

the system for two reasons. First, the user has complete control over wlhere

the group members, and thus the group keys, reside. This gives the user the

opportunity to determine a prudent degree of replication for each group,

depending on the nature of the application and the envircmment in which it

will run. Second, the damage resulting from imprudent replication of a

group’s keys is limited, because the disclosure of a group’s keys corrupts only

that group, not the entire system. Group keys are managed in the VSYNC layer

and are never held by user processes. Moreover, group keys are intended to

be used for the entire lifetime of the group, although the members of a group

can effectively change their group keys simply by forming a new group with

the same membership. To minimize the risk of exposing a group’s keys, only

those sites that need them—that is, the sites of current group members—

should possess them at any given time. Thus, if a site leaves a group, it

erases its copy of the group keys for that group in an effort to prevent the

subsequent corruption of this site from disclosing the group keys to an

outsider. In the event of a site failure, we rely on the loss o f volatile storage to

erase the keys from memory.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

356 . Michael K. Reiter et al.

Remote Services

D
Aut entlcatlon

Service

El

.._- —_. —

~

Time
Service

0

L...–.

Key Distribution Groups

~c-rl~ Emq@.iorr/~

Time Keyf Cert. Decryption
/ /

‘UTS Raw Authenticated

Connections Connections
-. . .

Fig. 5. The Horus security architecture

The first of the group keys is a key to a symmetric, or shared-key, cipher.

This key is called the communication key of the group, because it is used by

MUTS and vsmvc to communicate securely with other group members. Group

communication is not protected under the communication key directly. Rather,

the communication key is used by MUTS to establish authenticated connec-

tions within the group, which preserve the authenticity and order of all

internal group communication, and by VS~C to distribute keys for the

encryption of user messages. This indirect use of the communication key

is done to limit the amount of communication protected under, and thus

the amount of exposure of, the communication key. In our implementation,

the communication key consists of two DES [National Bureau of Standards

1977] keys (112 bits), and encryption is performed with it using the triple-

encryption technique of Tuchman [1979].

The second of the group keys is an RSA private key whose corresponding

public key is incorporated into the group address. This private key is primar-

ily used to authenticate sites and processes in the group to outsiders that

possess the group address. Authentication of group members is necessary

whenever a process needs to communicate with a group member, e.g., because

the group is providing a service that the process desires. While group private

keys are held within VS~C, group members can obtain signatures on mes-

sages through a VS~C interface. In the present implementation, the size of

group private keys is a compile-time constant (we typically use 512-bit RSA

moduli), but in the future we will allow the user to choose from a set of sizes
when each group is created.

The group keys for a group are created by a user-level service on the site

where the group is created. This service, called the group key serwice,

generates sets of group keys in the background and caches them in VS~C.

This is done to remove the costly generation of an RSA key pair from the

critical path of group creations. (With the implementation we presently use,

generation of a 512-bit RSA modulus on a 33 MHz Spare ELC workstation

usually costs at least several seconds.) When a local process requests to

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

A Security Architecture for Fault-Tolerant Systems . 357

create a group, VSYNC removes a set of group keys from its local cache ;and

associates them with the group. Additionally, VSYNC creates and returns the

group’s address, which contains, among other things, the public key corre-

sponding to the group private key and a location hint for the group (i.e., a

transport address). Latency of a group creation is minimal unless the VSYNC

cache is empty, which could happen, for instance, if the creation is requested

shortly after the site is booted and before the group key service has produced

a set of group keys.

Because other processes must use this group address to contact the group,

the user process would typically distribute this address in some fashion. How

this is done is up to the process, which has available to it secure group and

point-to-point communication that it can use for this purpose. However, this

distribution will often occur through the Horus name se,wice, a user-level

distributed service that implements a hierarchical name space, much like a

file system. In this case, the user process (communicating over an authenti-

cated channel) registers the group address under a name in the name space,

from which other processes can read the address. To prevent an intruder from

overwriting the address (and thus the public key) for a group, we hlave

enhanced the name service to enforce access controls that restrict what

processes may write addresses to a name. A more detailecl discussion of the

name service and access control is presented by Reiter et al. [1992].

We should note that this use of the name service requires that it be

protected from tampering.4 Since it plays a central role for many applicat-

ions, it might be appropriate to replicate it using the techniques of Reiter

and Birman [1994] as we did with the authentication service of Section 3.2.

However, we have not yet done this in the present implementation, and in

fact, the cost of doing so may be prohibitive for many general-purpose umes.

We hope to explore alternative implementations of name services to address

these issues in the future. We stress, however, that applications are not

bound to use any particular name service or even to name their groups at all.

Also, we permit multiple name services in our architecture, opening the

possibility that highly secure name services could exist side-by-side with less

secure ones.

4.2 The Group Join Protocol

Once a process has obtained the group address for a group, it can request to

join the group. (Alternatively, it can request to become a client of the group;

this is discussed in Section 4.4.) In this section we detail the protocol by

which a process joins the group.

4The need to protect the name service can be reduced by storing group address “certificates” in

it, that bind group names to group addresses with the signature of some authority (which could

be application specific). Our name service will support this possibility but will not require it,

because doing so implies that for each name, there must be some well-known principal(s) trusted

by other principals to certify the group address for that name. Instead of requiring this for all

groups, we have chosen to leave this matter of policy up to each application.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

358 . Michael K. Reiter et al.

In preparation for group joins, each site A is booted with the public keys of

the authentication and time services described in Section 3, and its own

private key KA 1; the authentication service possesses the corresponding

public key KA. VSYNC synchronizes periodically with the time service, It also

obtains a certificate CERT~ for its site from the authentication service and

refreshes this certificate periodically, well before its value of U(t) surpasses

the certificate expiration time.

When a process on site A desires to join a group, it provides to VSYNC the

group address of the group it would like to join. It can also specify a message

m to be sent to the group members. VSYNC then follows the protocol shown in.

Figures 6 and 7. In Figare 6, encryption and signature under key K are

denoted by [.] ~ and {.}~, respectively. (A message is “signed” with a shared

key K by encrypting a one-way hash of the message with K [Stubblebine and

Gligor 1992].)

(1) Site A creates a request containing

—a global identifier G for the group that is obtained from the group

address;

—a timestamp T equal to the site’s current value of L(t);

—the user id U of the apparent owner of the requesting process (although

more generally U could be a representation of the user that the group

members could verify themselves);

—a new, secret 112-bit reply pad RF and new, secret 56-bit DES reply

hey RK, both encrypted under the public key of the group (i.e.,

[Rp, RKl~,,); and
—the user-specified message m, encrypted under RK if the user so

requested (e.g., because m is a password or capability for admission to

the group).5

All of this information is signed with KA’ and preceded by A’s

certificate. A sends this message to the group using the location hint in

the group address. Safety of this protocol does not rely on the hint

being accurate. If it is incorrect, however, the requesting process must

obtain a more current location hint for the group, e.g., through the

name service mentioned in Section 4.1. For the rest of this discussion,

we assume that A’s message reaches a site in the group.

(2) When a site B in the group receives this message, it authenticates the

requesting site by checking the authentication service’s signature on the

certificate, extracting the public key from the certificate, and then check-
ing the signature on the request. Moreover, it verifies the timeliness of

the message by comparing the timestamps in the request and the certifi-

cate to its current value of U(t), as described in Sections 3.1.1 and 3.2.1,

5Long-term capabilities or passwords for admission to the group should not be protected under

RK, because otherwise admission to the group, and thus CK, could be obtained simply by

breaking the relatively weak key RK. If RK is needed to protect long-term information, it should

be of strength comparable to that of CK.

ACM Transactions on Computer Systems, Vol. 12, No, 4, November 1994

(3)

(4)

(5)

A Security Architecture for Fault-Tolerant Systems . 359

A ~ B : CZ?RZ’’, {G, T, U,[RP, RK]~o,[nt]~~)~iI
B + A : {A, N,CK @RF’,[IYG1lCK}~K

A + B : {N]n K

VS~C protocol by which site A joins group G, containing site B.

P..

Access
denied

n

SE
A BCD

Request 1
to join

.,, .,. ,., ,..

K.y 2 . . .
------ _

distribution -.
protocol ---

3 ---

(a) A process on site A requests to join

the group containing (processes on)
(b) In this case, access is granted. The

sites B, C’, and D, A sends the re-
group keys are securely sent to A in

quest to B, which delivers the request
message 2, in parallei. with a group

to its local member. Here, the member
synchronization protocol. After the

denies access, and B replies accord-
keys are acknowledged (message 3),

ingly,
the new group view is j nstalled.

Fig. 7. Overview of the vsmc group join protocol.

respectively. If the message is determined to be valid, B uses the group

private key K; 1 to decrypt RK and, if necessary, RR to decrypt m. Then,

it delivers an upcall to a local member, indicating the group G, site A,

apparent owner U, and message m.

The local member can take any measures including, for example, execut-

ing protocols with other group members or the requesting process, to

determine whether the join should be granted. In particular, if the

member does not trust A to have authenticated the owner of the process

properly, then it should possibly not allow the process to join. Eventually
it informs VSmC of its decision.

If access is granted, B returns the group keys to A as shown in Figure 6:

the group communication key CK is encrypted with the reply pad RP by

bitwise exclusive-or (@), and the group private key K~l is encrypted

under CK (which is done off the critical path of this protocol). B also

includes the identity of A and a nonce N in the message, which it signs

with RK. Note that an attempt by a network intruder to replay this

message to A in the future will be detected because each RK is a new

(i.e., “fresh”) key.

After A authenticates B’s reply and notes its own identity in the mes-

sage, it acknowledges the keys by returning N signed with RK. A sends

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

360 . Michael K. Reiter et al

this message solely for synchronization purposes, to inform B that it has

received the group keys and thus that B can proceed in installing the new

group view containing A (see Figure 7). If B does not receive this

message after retransmitting the group keys several times, it proceeds in

installing the new view anyway. If A did not receive the group keys, it

will later be unable to communicate to group members and thus will be

removed from the group as if it had failed.

There are two reasons that RP and RK are used to encrypt the group

communication key and to sign B‘s response, respectively, versus using KA

and K: 1 for these operations. First, the cryptographic operations with RP

and RK are faster than the corresponding operations with the RSA keys.

Second, in the event that A leaves the group and is later corrupted, the use

of RP prevents this corruption from disclosing CK. That is, if the group keys

were communicated to A encrypted under (only) KA, the corruption of A

would reveal K~ 1 and thus CK if the intruder had previously recorded the

protocol by which A joined the group. Using RP to encrypt CK prevents this

because after the join protocol completes, A and B destroy RP and any state

that could be used to reconstruct it.

Two points are worth emphasizing about our use of the authentication and

time services. First, neither service is on the critical path of the group join

protocol. This is more notable in the case of the authentication service,

because in most systems, the authentication service (or, in Lampson et al.

[1992] and Tardo and Alagappan [19911, the CDC) is on the critical path of

authentication protocols. Second, the transparency of replication in the au-

thentication service simplifies the protocol. If the authentication service were

replicated using state machine replication, each site would need to maintain

certificates from a majority of servers to prepend to its requests. And, the

destination of a request would need to authenticate these certificates on the

critical path of the protocol, possibly resulting in a significant performance

impact.

The latency of a group join in the present implementation, measured over

SunOS 4.1.1 on moderately loaded 33 MHz Spare ELC workstations, is ap-

proximately 2.26 seconds on average. This cost is independent of group size,

except for very large groups. Over 90% of this cost can be attributed to the

modular exponentiation routines of the (software) RSA implementation we

use presently:G with the modular exponentiation operations removed, the

cost of a group join drops to 195ms on average. Clearly hardware support for

GIn these tests we used the C implementation of RSA provided with the RSAREF toolkit,

licensed free of charge by RSA Data Security, Inc. The RSAREF toolkit was developed to support

privacy-enhanced electronic mail, not interprocess communication, and much faster software

implementations of RSA exist. For example, Cryptolib performs RSA operations reportedly, with

a 512-bit modulus and an 8-bit public exponent, at the rate of 160ms per signature and 30ms per

verification on a Spare 2 [Lacy et al. 1993]. With such an implementation, the cost of a group join

should drop to roughly 600ms on such a platform. However, with any software implementation of

which we are aware, the cost of RSA operations would continue to be the limiting factor in the

performance of the group join protocol.

ACM Transactions cm Computer Systems, Vol. 12, No. 4, November 1994.

A Security Architecture for Fault-Tolerant Systems . 361

modular exponentiation would be of value for applications in which group

membership is very dynamic. However, experience with Isis (see Birman et

al. [1991]) leads us to believe that most Horus applications will employ

largely static groups, and so we do not expect that most applications will

require such hardware to use the security architecture effectively.

4,3 Secure Group Communication

As discussed in Section 2, all communication within a secure group is

protected cryptographically from tampering by a network intruder. And, if

requested, group members’ messages will be encrypted before being sent on

the network. The mechanisms for performing these functions are decoupled

in our system: verification of message authenticity is performed by MIJTS,

whereas encryption to prevent the release of message contents is performed

in vmmc.

The decision to decouple the mechanisms for preserving authenticity and

secrecy is supported by several factors. First, maximum benefit from the

authenticity mechanisms is achieved by incorporating them at the lowest

layer of the system, within MUTS. This enables the VSYNC protocols to rely on

the abstractions provided by MUTS, because all illUTS messages, and thus the

MUTS abstractions, are protected from tampering by a network intruder. On

the other hand, because only user messages need to be encrypted (we make

no effort to address traffic analysis attacks [Voydock and Kent 1983]), the

encryption mechanisms are incorporated at a much higher level, in VSYNC.

This enables the encryption mechanisms to exploit the abstractions provided

by the lower layers in its algorithms. Finally, decoupling these mechanisms

allows us to use faster algorithms for each.

The algorithms for preserving authenticity and secrecy both rely on the

cryptographic strength of a one-way hash function. Informally, a one-way

hash function f has the properties that it is computation!ally infeasible to

produce two inputs ml and m,z such that f(m,l) = f(m,z) or to produce any

input m such that f(m) = h for a given, prespecifled value h, In recent years,

several fast one-way hash functions have been proposed; our implementation

presently offers the use of either MD4 [Rivest 1991] or MD5 [Rivest 1992].

Both of these functions process inputs of arbitrary length ;n 64-byte blocks,

maintaining a 16-byte state between blocks, to produce a lGbyte hash value.

MD5 is conjectured to be stronger than MD4, but in our tests is also

approximately 30% slower.

4.3.1 MUTS Packet Authentication. Messages, or more accurately, MIJTS

packets, are authenticated on a per-connection basis. A MUTS connection is a

logical data path from one MUTS instance to others. Only the instance that

opened the connection can send data across it, although recipients on a
connection also acknowledge packets over that connection.

The first packet sent on a connection includes a new, unpredictable connec-

tion key, encrypted under the communication key of the group in which the

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1’994,

362 . Michael K. Reiter et al.

01 secret
packet

I +
suffix

, +1 ctr

~~ h I

IV

b

f
3

f

J

(a) A MUTS packet is “signed” by ap- (b) VSYN(: encrypts a message by XOR-

pending to it a secret suffix and apply- ing it with a key stream that is pro-

ing a one-way hash function f, initial- duced by applying a one-way hash

ized with a secret initialization vector function f to a counter. The counter is

(IV). incremented between applications.

Fig. & Cryptographic operations

connection is opened. ‘I’he connection key consists of a 16-byte initialization

vector (IV) and a suffix whose size is a compile-time constant (typically 16

bytes). This packet also contains a timestamp to allow the recipients to detect

replay attacks, as described in Section 3,1.1,

To send a subsequent packet on the connection, the sender initializes the

internal state of the hash function f to IV and then applies f to the packet

and the suffix. (Alternatively, a secret prefix, that is processed by f before

the packet, can be used in lieu of the IV [Tsudik 1993].) The result is placed

in the packet header, as shown in Figure 8(a). A recipient of a packet verifies

it by copying the hash value out of its header, clearing the hash field,

applying f (initialized with the IV) to the packet and the suffix, and compar-

ing the result to that copied from the packet. If the hash values match, then

the recipient considers the packet authentic. Replays of packets are detected

using sequence numbers in the packet headers, Acknowledgments on the

connection are authenticated in the same manner.

To our knowledge, this form of message authentication was first proposed

by Tsudik, although a variation of this approach was employed by Galvin et

al. [199 1], and a similar use of one-way hash functions in authentication

protocols was proposed by Gong [1989]. Its security relies on the assumption

that it is infeasible to determine the initialization vector and the suffix from

packets and their hash values, and that the secrecy of the initialization vector

and the suffix prevents a network intruder from forging proper hash values

on packets. A substantial advantage of this approach over techniques that

use encryption is speed, because fast one-way hash functions are typically

much faster than encryption functions (e.g., MD4 in software is over three

times as fast as the fastest software DES implementations [Lampson et al.

1992]).

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994

A Security Architecture for Fault-Tolerant Systems . 363

4.3.2 ~SYNC Message Encryption. Because MUTS assures authentic, se-

quenced multicast in groups containing no corrupt sites, the encryption

algorithm we employ in VSYNC to encrypt user messages need not attempt to

protect the authenticity of those messages. This allows us to use faster

encryption algorithms that are generally not suitable for protecting message

authenticity in open networks. The form of cipher we have chosen is typically

known as a synchronous stream cipher [Diffie and Hellman 1979].

In a stream cipher, the ciphertext of a message m = ml mz . . . is obtained

by enciphering the ith element m~ with the ith element k, of a secret key

stream klkz . . . A stream cipher is said to be synchronous if the key stream is

generated independently from the message stream. In our implementation,

each mi and k ~ is a single bit. The key stream is generated using the counter

method of Diffie and Hellman: 16 bytes of the key stream are generated by

applying a one-way hash function f to a 16-byte integer counter, and the

counter is then incremented before the next application of ~ to obtain the
next 16-bytes of the key stream (see Figure 8(b)). If f is sufficiently strong,

then future portions of the key stream will be unpredicti~ble to those not

knowing the value of the counter, even if previously used portions of the key

stream are discovered. So, the initial value of the counter is the key for

producing the key stream. The ith bit c1 of the ciphertext is simply the

exclusive-or of ki and mi (i.e., Ci = kz @ mi).

We use this cipher as follows. On each message installing a new group view

containing n sites, the VSYNC instance sending the message includes a list of

n new, unpredictable 16-byte integers encrypted under the communication

key for the group. Each site in the group decrypts this list and initializes n

integer counters to the n values in the list. The i th site in the group encrypts

a message to the group using the key stream generated from the ith counter.

Sites decrypt messages from the ith site by exclusive-oring the next portion

of the ith key stream against the received message.

One requirement in using a synchronous stream cipher is that the key

streams of the sender and receivers remain synchronized with one another.

We have implemented these encryption mechanisms at a level within VSYNC

that allows us to exploit some process group semantics for this purpose. In

particular, the level at which encryption is performed within VSYNC ensures

that a message encrypted while the group is in one view will be decrypted at

all recipients in the same view. This makes view changes an appropriate time

to reset the integer counter for each site in the group to a new value, which

should be done occasionally to make cryptanalysts more difficult. Additicm-

ally, the level at which encryption is performed also ensures that messages

from the same site are decrypted in the order they were encrypted, which

automatically keeps the key stream for each site synchronized at all sites in

the group between view changes.

An advantage of synchronous stream ciphers over other encryption meth-

ods is that they allow much of the work for encryption tcj be done in the
background. In our system, we precompute and cache portions of the key

stream for each site in a group so that the key stream is immediately

available for use. This reduces the encryption latency of messages smaller

ACM Transactions on Computer Systems, Vol. 12, .No. 4, November 1994.

364 . Michael K. Reiter et al.

40

no sfxunty + [
auowaticmcd -t ,“

35 - .mryp%d, 2kb each -R-~ ~~-
amy@d, 5kb cacb M ‘

.;’

30 ,,’D
,.”

25
,.”

p’

20 -
,.,’

15

10

I
5

012345
mm.g. size

16

n. semrq +- [

15 mhmimucd -+ .’
encrypted, 2kb cache -a ,,’,,,

... ,.,
14 .,. ,,

..’ ,,
,, ,,,

13 d’ .$’

12

II

r.
10 --------

9

8
2 3 4 5

(a) Latency of member-to-group (b) Latency of member-to-group

RPC (ins) as a function of mes- RPC (ins) as a function of group

sage size (kb). Group of size two. size. Message of size lkb.

703

F=

no s-swrity *
mthenu mted 4-

6@3 encrypted, 2kb cache .0..

51M

. . .
402 -..

-*..-.

3wl -.. ...+

+-----

203

“2 3 4 5
group SIX

(c) Member-to-group bandwidth

(kb/s) as a function of group

size.

Fig. 9. Preliminary performance of group communication.

than the cache, as encrypting these messages requires simply exclusive-oring

the precomputed key stream against the message (provided that the cache is

full). The size of the cache for each site in a group is presently a compile-time

constant, although this size could be dynamically adjustable.

4.3.3 Performance. Preliminary performance figures for group communi-

cation are pictured in Figure 9. In each graph, the line labeled “no security”

indicates performance when no security mechanisms are employed. The line

labeled “authenticated” indicates performance when packets are authenti-

cated by MUTS. The lines labeled “encrypted, 2kb cache” and “encrypted, 5kb

cache” indicate performance when packets are authenticated by MUTS and

when user messages are encrypted by VSYNC. In the former case, each VSYNC

instance maintained a 2 kilobyte (kb) cache of precomputed bits for each key

stream; in the latter case, these caches were of size 5kb. These tests used

MD4 for f and were performed between user processes on distinct, moder-

ately loaded 33 MHz Spare ELC workstations running SunOS 4.1.1. The

implementation of MD4 that we used in these tests is able to process up to

1.75 megabytes (Mb) of input per second on this platform.

In parts (a) and (b) of Figure 9 are average latencies for member-to-group

RPC interactions. In a member-to-group RPC, one member multicasts a

single message to the group, and all other members acknowledge (with a null

message). The latency is the measured time at the sender between sending

the initial message and receiving all acknowledgments. Part (a) illustrates

this latency in milliseconds (ins) as a function of message size, and part (b)

illustrates this latency as a function of group size, with a constant message

size of lkb. Part (c) of Figure 9 indicates member-to-group bandwidth, i.e.,

how much data can be pushed from a single member to the other group

members per second. Each data point was obtained by performing a lMb

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994

A Security Architecture for Fault-Tolerant Systems . 365

member-to-group RPC and dividing lMb by the time required for this RPC to

complete.

Two items are worth noting about the graphs in Figure 9. First, in part (a)

the rapid rise of the “encrypted, 2kb cache” curve relative to the “encrypted,

5kb cache” curve beginning after the 2kb message is due to the fact that in

the 2kb-cache tests, the VSYNC instances each precomputecl only 2kb of the

key stream. So, while their cache contents sufficed to encrypt and decrypt the

2kb message, the 3kb message exhausted their caches and forced them to

generate parts of the key stream before sending or delivering the message.

Similarly, in part (c) the large impact of encryption is partly due to the

immediate exhaustion of the VSYNC caches when encrypting and decrypting

very large (in these tests, lMb) messages. Put another way, precomputing

portions of the encryption key stream helps very little in increasing band-

width.

The second item of interest regards the graph in part (b). While not

surprising, it is still interesting to note that group size has virtually no effect

on the cost of message encryption or packet authentication. The increase in

latency as a function of group size is primarily a result of sending the

message to increasingly many destinations, and if hardware multicast were

available, this increase should virtually disappear. At the time of this writ-

ing, however, we have not yet experimented with hardware multicast.

In addition to hardware multicast, we plan to pursue other optimization to

the performance of group communication. We are continuing to optimize the

cryptographic mechanisms of our implementation. Also, we intend to incorpo-

rate flow control mechanisms into MUTS to improve perfbrrnance. At the

present time, MUTS provides little flow control. So, to prevent packets from

being dropped by the operating system in the tests of Figure 9, we had to uwe

small packet sizes and frequent acknowledgments, resulting in a large num-

ber of packets and thus cryptographic operations at the MUTS layer. We

anticipate that flow control mechanisms will improve the performance of

MUTS transport substantially.

4.4 Clients of Groups

When a process obtains a group address for a group, it may choose to become

a client of the group [Birman et al. 1991], rather than requesting to join the

group. The client abstraction gives a process a way to communicate efficiently

with group members, without exposing the group members to the risk

resulting from admitting the process to the group, This abstraction is most

useful when a process group is intended to provide a service to a less trusted

system.

Clients are a user-level notion managed by user-level toollkit protocols; i.e.,

VSYNC does not support clients of groups, except to provide generic secure

point-to-point channels over which clients and group members communicate.

To be more precise, the protocol by which a process becomes a group client

begins by the process asking VSYNC to establish a secure channel to the

address found in the location hint of the group address. Once this channel is

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994,

366 . Michael K. Reiter et al

established, the process uses the public key in the group address to verify

that the process at the other end of this channel is a group member, by

asking that process to sign a random challenge with the group private key.

The process, now a client, communicates to the group via this member: for

example, the client can multicast to the group by sending the message to the

group member, which forwards the message to the group on behalf of the

client.

The role of VSYNC in the above protocol is only to implement the secure

point-to-point channel requested by the client process. As a part of this

channel establishment, VSYNC informs both the client and the group member

of the site at the other end of the secure channel, as well as the owner of the

other process according to that site. This enables group members to make

application-specific access control decisions based on this information. The

key distribution protocol by which VSYNC establishes secure channels uses

standard and well-known techniques, and will not be discussed here. Nor will

the implementation of these channels be discussed, as it is simply a special

case of the multicast channels discussed in Section 4.3.

4.5 Causal Ordering Properties

As mentioned in Section 2, Horus offers several different ordering guarantees

on the delivery of group multicasts to group members. One of these is a

causal ordering guarantee. Informally, if one multicast was initiated prior to

another and could have caused the other to occur, then the fh-st multicast is

said to be causally before the second [Lamport 1978]. If desired, Horus will

ensure that if one multicast is causally before another, then the former is

delivered before the latter at any common destination. Moreover, these

guarantees can be provided even if the multicasts occurred in different

(overlapping) groups.
Reiter et al. [1992] discussed how these causal ordering guarantees raise

security issues when causally related multicasts occur in overlapping groups,

one of which contains a corrupted site. Depending on the causality detection

protocol employed, it might be possible for the corrupt site to effect a violation

of causality in the sequence of messages delivered to a process on a correct

site in a group not containing the corrupt site. For instance, if groups G and

H intersect, and H contains a corrupt site not in G, then that site might be

able to cause a multicast in H to be delivered to a member in the intersection

of G and H before a causally prior multicast in G. Reiter et al. also described

how this could result in a violation of an application’s security policy.

As part of this research, we have sought to better understand the impor-

tance to security of accurately detecting causal relationships despite mali-

cious behavior, as well as possible attacks on attempts to detect causal

relationships and ways to defend against them. The results of this effort are

reported in Reiter and Gong [1993]; briefly, this article presents a framework

within which these attacks can be examined, and several algorithms to

prevent them in some situations. A variant of one of these algorithms is

ACM Transactions on Computer Systems, Vol. 12, No, 4, November 1994

A Security Architecture for Fault-Tolerant Systems . 367

already employed in Horus. A possible direction for future work in the system

is to implement additional defenses against such attacks.

5. SUMMARY AND DISCUSSION

We have presented a security architecture for fault-toleramt systems. The

architecture provides the programming abstraction of secure process groups,

within which users can replicate applications in a protected fashion. The

foundation of security in each process group is the group’s keys, which are

distributed to members during the group join protocol. These keys are used to

communicate securely within the group and to authenticate group members

to outsiders. The mechanisms for ensuring the authenticity and secrecy of

group communication have been decoupled to allow the use of faster algo-

rithms for each, and in particular, to exploit caching to accelerate encryption.

Preliminary performance results are encouraging.

The group join protocol relies on authentication and time services that

support cryptographic key distribution securely and fault tolerantly. We have

chosen to replicate the authentication service, because by making the authen-

tication service highly available, we gain greater flexibility in choosi:ng

certificate lifetimes and thus less reliance on a secure revocation mechanism

than in approaches that use a nonreplicated service. To compensate for the

security risks of this replication, the service is built to toleri~te a minority of

server corruptions.

The time service is not replicated, so that it is easier to protect. Moreover,

its unavailability does not result in security breaches or hinder clients that

continue to operate correctly. In fact, it could be temporarily taken offline for

further protection if the need arises. While techniques exist. for replicating

time services so that some number of server corruptions could be tolerated,

we have found that the additional costs of replication are difficult to justify.

By integrating our architecture into Horus, we have secured Horus’ virtu-

ally synchronous execution model within each secure grou;p. We have also

identified security concerns that arise when applications employ causal cm--

dering guarantees on the delivery of multicasts in multiple overlapping

groups, and have elsewhere provided algorithms to address these concerns in

some situations.

Changes to the Horus process group interfaces due to the security mecha-

nisms are minimal, consisting only of additional routines to grant or deny

join requests and additional options to some routines to indicate when

communication should be encrypted. Thus, applications and group programm-

ing toolkits designed for the Horus interfaces should port easily to work

over secure groups and thenceforth can be relied upon in a secure group that

has not admitted a corrupt site or process. Such toolkits planned for Horus

will facilitate primary-backup computations, data replication, automatic sync-

hronization among group members, client-server computations, etc.

5.1 Status of the System

At the time of this writing, all of the mechanisms described in Sections 3 and

4 have been fully implemented, with the exception of the name service

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

368 . Michael K, Reiter et al

discussed briefly in Section 4.1 and the user-level portion of the group client

protocol discussed in Section 4.4. Presently we have a preliminary name

service running with limited functionality. A name service with the described

functionality is intended for development in the near future, as is the

implementation of the user-level toolkit that includes the client protocol.

5.2 Related Work

To our knowledge, consideration of security issues unique to group-oriented

systems first occurred in the design of the V kernel [Cheriton and Zwaenepoel

1985]. V supports a notion of process groups, but with weaker semantics than

that of Horus. While V is not a security kernel and does not support key

distribution or secure communication, V does make efforts to restrict group

membership for security reasons. In principle, the security architecture pro-

posed here could be integrated with V to further these efforts, although not

without changes to some algorithms for using group keys.

Reiter [1994] documents research in the design and implementation of

process groups that are not only secure against attacks from outside the

group, but that are also resilient to the malicious corruption of group mem-

bers. The Reiter [1994] algorithm enables correct members to control and

observe changes to the group membership consistently, provided that fewer

than one-third of the members in each instance of the group membership are

corrupt.

There have also been attempts to address security issues in systems that

support fault-tolerant computing using approaches other than process groups.

One example is the Strongbox extension to the Camelot distributed transac-

tion processing facility [Tygar and Yee 1991]. Strongbox provides mecha-

nisms for mutually authenticating clients and servers and for encrypting

communication between them.

In addition to our work outlined in Section 4.5 and detailed in Reiter and

Gong [1993] and Reiter et al. [1992], another effort has identified the detec-

tion of causal relationships as being important to security and has attempted

to provide defenses against attacks on efforts to detect causal relationships

[Smith and Tygar 1993].

Work related specifically to the topic of fault-tolerant key distribution was

outlined in Sections 3.1.2 and 3.2.2.

5.3 Future Work

One important area for future work in the area of fault-tolerant key distribu-
tion is in adapting the services described in Section 3 to very large systems.

These services in their current form cannot scale to very large systems, for

both security and performance reasons. In a very large system, the services

may become overwhelmed, and there may not be a single authority trusted to

protect them. To alleviate this, an instance of these services could be em-

ployed per administrative domain, as in Kent [1993], Lampson et al. [1992],

and Steiner et al. [1988]. An alternative deployment of the authentication

service would be to place each domain in charge of a different server. These

directions hold many possibilities for future results.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

A Security Architecture for Fault-Tolerant Systems . 369

A second possible direction for future work is the development of secure

audit and recovery procedures that are compatible with our security architec-

ture. In particular, because all group members possess the group keys fcm a

group, it is not presently possible to audit reliably the actions of particular

group members within the group. Additionally, in the event of the penetra-

tion of a site, the groups containing that site should ideally be informecl of

that penetration once it is detected. Our system presently provides no auto-

matic measures for this.

There are several other issues that we have not attempted to address in

this work but that should be addressed in systems in which this technology is

employed. Examples include securely booting sites and user authenticate on.

To aid in booting sites we have built a boot server, which provides to each site

its initial keys using a secret boot key that must be provided to the site by an

operator. (Alternatively, these initial keys can be stored on the site in

nonvolatile memory [Lampson et al. 1992].) However, we do not take mea-

sures to verify the integrity of the operating system or Horus when the

machine is booted; for one approach to doing this, see Lampson et al. We view

these issues, and other intranode issues such as protected address spaces and

local interprocess communication, as more general operating system security

issues that have not been goals of this work.

We have also not attempted to address the issue of user authentication.

However, the mechanisms described in this article facilitate several solutions

to this problem. For instance, the authentication service of Section 3.2 amd

our boot service could easily be extended to provide user certificates and

users’ private keys, respective y, similar to the Certificate Distribution Cen-

ters and Login Enrollment Agent Facility of SPX [Tardc) and Alagappan

199 1]. The secure channels provided by our architecture also facilitate sim-

pler password-based user authentication mechanisms.

ACKNOWLEDGMENTS

We thank Brad Glade for commenting on an early version of this article, and

especially for suggesting the inclusion of the timestamp in the first message

of the protocol of Figure 3. We are also grateful to Tushar Chandra, Fred

Schneider, Stuart Stubblebine, Mark Wood, and the anonymous referees for

providing helpful comments.

REFERENCES

AMIR, Y., DOLEV, D., KRAMER, S., AND MALKI, D. 1992. Transis: A communication sub-system

for high availability, In Proceedings of the 22nd International Symposium on Fault-Toler,znt

Computing. IEEE, New York, 76-84.

BELLOVIN, S, M., AND MERRITT, M. 1990. Limitations of the Kerberos authentication system.

Comput. Commun. Rev. 20, 5 (Oct.), 119-132.

BIRMAN, K. P., AND JOSEPH, T. A. 1987a. Exploiting virtual synchrony in distributed systems.

In Proceedings of the 1 lth Symposium on Operating Systems Principles. ACM, New York,

123–138.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

370 . Michael K. Reiter et al

BIRMAN, K. P., ANII JOSEPH, T. A, 1987b. Reliable communication in the presence of failures,

ACM Trans. Comput. Syst. 5, 1 (Feb.), 44-76.

BIRMAN, K. P., SCHIrER, A., AND STEPHENSON, P. 1991, Lightweight causal and atomic group

multicast. ACM Trans. Cornput. Syst. 9, 3 (Aug.), 272–3 14.

CCITT. 1988, The directory—authentication framework, Recommendation X.509. Interna-

tional Telegraph and Telephone Consultative Committee, Geneva, Switzerland.

CHWUTON, D. R., AND ZWAEN~~OIH., W. 1985. Distributed process groups in the V kernel. ACM

Trans. Comput. Syst, 3, 2 (May), 77-107.

CRISTIAN, F. 1989. Probabilistic clock synchronization. Di.strih. Comput. 3, 3, 146-158.

DEINNINC+, D. E., ANII SACCO, G. M. 1981. Timestamps in key distribution protocols. Cornmun.

ACM 24, 8 (Aug.), 533-536.

DEPARTMENT OF DEFENSE. 1985. Department of Defense trusted computer system evaluation

criteria. DOD 5200.28 -STD, Washington, D.C.

DESMEDT, Y., AND FRANKEL, Y. 1992. Shared generation of authenticators and signatures. In

Advances in Cryptology —CRYPTO ’91 Proceedings, J. Feigenbaum, Ed. Lecture Notes in

Computer Science, vol. 576, Springer-Verlag, New York, 457-469.

DIFFIE, W., ANII HELLMAN, M. E. 1979. Privacy and authentication: An introduction to cryptog-

raphy. Proc. IEEE 67, 3 (Mar.), 397–427.

GALWN, J. M., MCCLO~HRIE, K., AND DAVIN, J. R, 1991. Secure management of SNMP net-

works. In Integrated Network Management. Vol. 2. Elsevier Science Publishers B.V. (North-

Holland), Amsterdam.

GONG, L. 1993. Increasing availability and security of an authentication service. IEEE J. Set.

Areas Commun. 11, 5, (June), 657-662.

GONG, L. 1992. A security risk of depending on synchronized clocks. ACM Oper. Syst. Rev. 26,

1 (Jan.), 49-53.

GOIXG, L. 1989. Using one-way functions for authentication. Comput. Commcm. Reu. 19, 5

(Oct.), 8-11.

GUSEM.A, R., ANII ZATTI, S. 1984. TEMPO—A network time controller for a distributed Berke-

ley UNIX system. In Proceedings of the USENIX Summer Conference. USENIX Assoc.,

Berkeley, Calif., 78-85.

H~RI,lHY, M. P., AND TY~AR, J. D. 1988. How to make replicated data secure. In Aducmces in

Cryptology —CRYPTO ’87 Proceedings, C. Pomerance, Ed. Lecture Notes in Computer Science,

vol. 293. Springer-Verlag, Ncw York, 379–391.

JOSEPH, M. K. 1987. Towards the elimination of the effects of malicious logic: Fault tolerance

approaches. In pr[~ceedings of the 10th NBS/NCSC National Computer Security Conference.

NBS\ NCSC, Baltimore, Md., 238-244.

KAASHORK, M. F. 1992. Group communication in distributed computer systems. Ph.D. thesis,

Vrije Universiteit, The Netherlands.

KENT, S. T. 1993. Internet privacy enhanced mail, Commun, ACM 36, 8 (Aug.), 48-60.

LACY, J. B., MITCHEI.I., D. P., AND SCH~LL, W. M. 1993. CryptoLib: Cryptography in software,

in Proceedings af the 4th USENIX Security Workshop. USENIX Assoc., Berkeley, Calif., 1-17.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commcm,

ACM 21, 7 (July), 558-565.

LAMPSON, B., ABADI, M., BURROWS, M,, AND WOBBER, E. 1992. Authentication in distributed

systems: Theory and practice. ACM Trans. Comput. S,yst. 10, 4 (Nov.), 265–310,

MAMUM.0, K. 1990. Tolerating failures of continuous-valued sensors. ACM Trans. Comput.

S,yst. 8, 4 (Nov.), 284-304.

MILJS, D. L. 1989. RI?C 1119: Network Time Protocol (version 2) specification and implemen-

tation. Internet Activities Board. Sept.

NATIONAL BIJR~AU OF STANDARDS 1977. Data encryption standard. Federation Information

Processing Standards Publication 46, Government Printing Office, Washington, DC.

NE?W) ItAM, R. M., AND SCHRO~OBIZ, M. D. 1978. Using encryption for authentication in large

networks of computers, Commun. ACM 21, 12 (Dec.), 993–999.

PETERSON, L. L., BUCHHOLZ, N. C., AND SCHLICHTING, R. D. 1989, Preserving and using context

information in interprocess communication. ACM Trans. Comput. Syst. 7, 3 (Aug.), 217–246.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994,

A Security Architecture for Fault-Tolerant Systems . 371

RINTER, M. K. 1994. A secure group membership protocol. In Proceedings of the 1994 IEEE

Symposium on Research. in Security and Privacy. IEEE, New York, 176--189.

RiHT~R, M. K., AND BIRMAN, K. P. 1994. How to securely replicate services. ACM Trans.

Program. Lang. Syst. 16, 3 (May), 986-1009.
RFHTER, M. K., AND GONG, L. 1993. Preventing denial and forgery of causal relationships in

distributed systems. In Proceedings of the 1993 IEEE Symposium on Research in Security and.

Privacy. IEEE, New York, 30-40.

REIT~R, M. K., BIRMAN, K. P., AND GONG, L. 1992. Integrating security in a group oriented

distributed system. In Proceedings of the 1.992 IEEE Symposium on Research in Security and

Privacy. IEEE, New York, 18-32.

RIVIMT, R. L. 1991. The MD4 message digest algorithm. In Advances in Cryptology -CRYPTO

’90 Proceedings, A. J. Menezes and S. A. Vanstone, Eds. Lecture Notes in Computer Science,

vol. 537. Springer-Verlag, New York, 303–311.

RIV~ST, R. L., AND Dussi?, S. 1992. RF’C 1321: The MD5 message-digest algorithm. Internet

Activities Board.

RIvmT, R. L., SHIINHR, A., AND ABLIIMAN, L. 1978. A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21, 2 (Feb.), 120--126.

SCHNEIDER, F, B, 1990. Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Comput. Surv. 22, 4 (Dec.), 299-319.

SIMONS, B., WELCH, J. L., AND LYNCH, N. 1990. An overview of clock synchronization. In

Fault-Tolerant Distributed Computing, B. Simons and A, Spector, Eds. Lecture Notes in

Computer Science, vol. 448. Springer-Verlag, New York, 84-96.

SMITH, S., AND TYGAR, J. D. 1993, Signed vector timestamps: A secure protocol for partial order

time. Tech, Rep. CMLI-CS-93-116, School of Computer Science, Carnegie Mellon Univ., Pitts-

burgh, Pa.

SIIEINEIt, J. G., NIWMANI, C., AND SCHII,LEIR, J. 1. 1988. Kerberos: .An authentication service for

open network systems. In Proceedings of the USENIX Winter Conference. USENIX Assoc.,

Berkeley, Calif,, 191-202.

STUBIH,JIBINE, S. G., AND GLJGOR, V. D. 1992. On message integrity in cryptographic protocols.

In Proceedings of the 1992 IEEE Symposium on Research in Security ancl Privacy. IEEE, New

York, 85--104,

TARDO, J, J., AND ALAGAPPAN, K. 1991. SPX: Global authentication using public key certifi-

cates. In Proceedings of the 1991 IEEE Symposium on Research in Security and Priuacy. IEEE,

New York, 232-244.

TSUDIK, G, 1992. Message authentication with one-way hash functions, In Proceeding-s of

IEEE INFOCOM ’92. IEEE, New York, 2055-2059,

TUCHMA~, W. 1979. Hellman presents no shortcut solutions to the DES. .TEEE Spectrum .76, 7

(July), 40-41.

TIJRN, R,, AND HABIBI, J. 1986. On the interactions of security and fault-tolerance. In Proceed-

ings of the 9th NBS/NCSC National Computer Security Conference. NEIS-NCSC, Baltimore,

Md., 138-142.

‘f YGAR, J. D., AND YIW, B. S. 1991. Strongbox, In Camelot and Avalon, A Distributed Transact-

ion Facility, J. L. Eppinger, L. B. Mummert, and A. Z. Spector, Eds, Morgan Kaufmann, San

Mateo, Calif., 381-400.
VAN REIVESSE) R., fJIRMAN, K,, COOPER, R., GLADE, B., ANII ST~pHENSON, P. 1992. Reliable

multi cast between microkernels. In ProSeedings of the USENIX Microkern els and Other Kernel

Architectures Workshop. USENIX Assoc., Berkeley, Calif.

VOYDOCK, v. L., AIID wNT, S. T. 1983. Security mechanisms in high-level network protocols.

ACM Comput. Suru, 15, 2 (June), 135-171.

WOEFI~R, E., ABADI, M., BURROWS, M., AND LAMPSON, B. 1993. Authentication in the TaOS

operating system. In Proceedings of the 14th ACM Symposium cm Operating Systems Princi-

ples. ACM, New York, 256-269,

Received August 1993; revised April 1994; accepted June 1994

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.

