A Secure Group Membership Protocol

Michael K. Reiter

AT&T Bell Laboratories, Holmdel, New Jersey

reiterQ@research.att.com

Abstract

A group membership protocol enables processes in
a distributed system 1o agree on a group of processes
that are currently operational. Membership protocols
are @ core component of many distribuied systems and
have proved to be fundamental for maintaining avail-
ability and consistency in distributed applications. In
this paper we present a membership protocol for asyn-
chronous distributed sysiems that tolerates the mali-
cious corruption of group members. Our protocol en-
sures that correct members control and consistently
observe changes to the group membership, provided
that in each instance of the group membership, fewer
than one-third of the members are corrupted or fail be-
nignly. The protocol has many potential applications
in secure systems and, in particular, is a central com-
ponent of a toolkit for constructing high-integrity dis-
tributed services that we are presently implementing.

1 Introduction

A group membership protocolis a protocol by which
processes in a distributed system can reach agreement
on a group of processes that are currently operational.
A process may need to be removed from the group if
the process fails or is perceived to fail because, for
instance, it is disconnected from the network. A pro-
cess may need to be added to the group when, for
example, it rejoins the system after recovering from
a failure, It is the duty of the membership protocol
to ensure that processes observe changes to the group
membership in some consistent fashion. Membership
protocols have received much attention in the scien-
tific literature (e.g., [3, 5, 6, 13, 19, 23, 18, 2, 12]) and
have been implemented in numerous experimental and
commercial systems (e.g., [14, 3, 7, 1, 18]). They have
proved to be fundamental for maintaining consistency
and availability despite process failures in a wide range
of distributed applications.

1063-7109/94 $03.00 © 1994 IEEE

176

In this paper we present the first membership pro-
tocol that is suitable for use in distributed systems
in which some processes may be corrupted by a mali-
cious intruder. More precisely, our protocol provides
strong consistency guarantees regarding the manner
in which correct processes observe changes to the
group membership, despite the efforts of corrupted
processes inside or outside the group. Moreover, ma-
licious processes cannot singlehandedly effect changes
to the group membership or prevent needed changes
from occurring. Our protocol achieves these guaran-
tees in a fully asynchronous system, provided that in
cach instance of the group membership, fewer than
one-third of the group members are corrupted or fail
benignly. To differentiate our work from others, we
note that our protocol is not concerned with the de-
tection of corrupt group members (although our pro-
tocol can be used to remove them from the group once
detected). Thus, its purpose differs from that of in-
trusion detection systems (e.g., [11]). Moreover, the
ability of our protocol to tolerate the corruption of
group members sets it apart from previous security
work in group-oriented systems (e.g., {22, 20]), which
focuses on securing group semantics and communica-
tion against attacks from outside the group only.

There are many reasons for developing a secure
group membership protocol. First, as membership
protocols play important roles for many distributed
applications, they may also present avenues through
which intruders can mount attacks on the availabil-
ity and integrity of distributed systems. By manip-
ulating the membership protocol underlying a repli-
cated service, for example, an intruder might effect the
removal of sufficiently many servers from the server
group to deny service to clients. Similarly, the intruder
might cause servers or clients to observe inconsistent
group memberships, which could result in inconsistent
replies to clients if, say, each reply is computed from
the inputs of some fraction of the group members (e.g.,
{17, 26}). Use of our protocol to maintain membership
information would prevent these attacks.

A second motivation for our protocol is that it facili-
tates the realisation of other security technologies. For
example, the need for group-oriented cryptographic
controls and secure group computing techniques has
long been understood in the cryptographic and dis-
tributed systems communities, and this has given rise
to much research in these areas (see [10, 8] for sur-
veys). These techniques typically require coordination
among group members, and therefore, their use in real
systems can be facilitated by providing members with
consistent group membership information that cannot
be manipulated by corrupt members.

An example of this can be found in a proposed tech-
nique for using group-oriented cryptographic controls
to construct distributed services that remain available
and correct despite the corruption of some of their
component servers [21]. This technique requires that
client requests be issued to servers by an atomic broad-
cast protocol, which ensures that all correct servers re-
ceive requests in the same order. However, it has been
shown that due to the inherent difficulty of detecting
failures in distributed systems, there is no determin-
istic protocol that achieves consensus, or thus atomic
broadcast, even in systems that can suffer only a sin-
gle crash failure [9]. Assuming that only crash failures
occur, several systems have circumvented this impos-
sibility result with the help of a membership proto-
col (e.g., [4, 1]). With our membership protocol and
similar techniques, we can circumvent this impossi-
bility result even when some processes behave mali-
ciously. Our protocol thus completes a set of mecha-
nisms that make the techniques of [21] practical, and
we are presently implementing a toolkit, called Ram-
part, for building high-integrity services using these
techniques. Due to space limitations, however, we de-
fer discussion of Rampart to a future paper.

The rest of this paper is structured as follows. In
Section 2, we describe our assumptions about the sys-
tem. In Section 3, we more carefully define the prop-
erties that our membership protocol satisfies. We give
a high-level presentation of our protocol in Section 4,
deferring a formal treatment to Appendix A. We dis-
cuss performance in Section 5 and conclude in Section
6. We sketch our correctness proofs in Appendix B.

2 The system model

We assume a system consisting of some countable,
possibly infinite number of processes po, p1,p2,... We
will often denote processes with the letters p, ¢ and
r when subscripts are unnecessary. We allow an infi-
nite number of processes to model infinite executions

177

in which processes are continually created. However,
at any point in an execution, only a finite number of
processes are present. A process that behaves accord-
ing to its specification is said to be correct. A process
may fasl either benignly (by prematurely halting) or
maliciously. In the latter case, the process can be-
have in any fashion whatsoever, limited only by the
assumptions stated below, and is said to be corrupt.

Processes communicate exclusively by sending and
receiving messages over a completely connected, point-
to-point network. Communication channels are au-
thenticated and protect the integrity of communica-
tion using, e.g., well-known cryptographic techniques
[29]. Communication is reliable but asynchronous: if
the sender and destination of a message are correct,
then the destination will eventually receive the mes-
sage, but we do not assume a known, finite upper
bound on message transmission times. Assuming such
a bound would be risky in hostile settings, due to the
potential of message delays introduced by denial-of-
service attacks [29]. While we do assume reliability of
communications, only the liveness (but not the safety)
of our protocol depends on it.

Each process p; possesses a private key K; known
only to itself, with which it can digitally sign messages
(e.g., [25]). We denote a message (---) signed with
K; by (--)x,. We assume that each process can ob-
tain the public keys of other processes as needed, with
which it can verify the origin of signed messages. As
we will see, our protocol does not require all messages
to be signed by their senders, but some messages must
be signed to ensure that they are not undetectably al-
tered during forwarding.

Each process p; maintains a local set V; of process
identifiers, which is called its view of the group; it
i8 this set that our membership protocol will update.
Because the set V; changes over time, it makes sense
to talk about the z-th view (i.e., version of ¥;) at p;,
which we denote V?, for each z > 0. For some values
of 2, V;® can be undefined at p; because an z-th view
is never installed. In particular, it will be convenient
to allow the first view installed at a process joining
the group to be V;* for some z > 0, so that views VY,
y < 2, would be undefined. If V* is p;’s current view,
we say that p; is in view z. We assume an initial
state in which there is some nonempty, finite set P
such that for all correct p;, if p; € P then V? = P,
and if p; ¢ P then V? is undefined. This initial state
can be achieved manually by a systems administrator
or automatically under an administrator’s supervision
(see, e.g., [24] and also Section 4.3). We assume that
at least [(2|P|+ 1)/3] members of P are correct. As

we will discuss in Section 4 and Appendix B, this is
necessary for our protocol’s correctness.

In addition to its view, each process has a mech-
anism by which it may come to suspect that another
process is faulty or correct. These suspicions can be
mistaken and can differ between processes. This mech-
anism is independent of the membership protocol and
does not affect processes’ views. Rather, it simply of-
fers suspicions on which the membership protocol may
act, to add or remove a process from processes’ views.
In real systems, this mechanism might be implemented
with the help of periodic “heartbeat” messages [12] or
hints from a higher-level application. The safety of our
protocol does not rely on this mechanism, but liveness
does; we discuss this in Appendix B. If process p sus-
pects g of being faulty, then faulty(q) is true at p.
Otherwise, correct(q) holds at p.

3 Protocol requirements

As described in Section 1, the goal of a member-
ship protocol, generally speaking, is to enable correct
processes to agree on a group of processes that they
believe to be currently operational. Beyond this, how-
ever, the precise semantics from one membership pro-
tocol to the next can vary substantially. Therefore, in
this section we more carefully state some properties
that our protocol satisfies. Some of these properties
are common to a number of membership protocols,
and others are a result of the need to guard against a
malicious intruder. These semantics facilitate the im-
plementation of a variety of group-based mechanisms
and, in particular, an atomic broadcast protocol for
use in hostile settings, as discussed in Section 1.

First, our protocol ensures that for any z, the z-th
view at each correct process is the same.

Uniqueness: If p; and p; are correct and V* and VP
are defined, then V® = V2.

Uniqueness is common to many membership proto-
cols, including [6, 23], but is also stronger than the
ordering semantics of some others. For instance, with
the protocol of [18] and the “weak” and “hybrid” pro-
tocols of [12], concurrent failures may result in the
failed processes being removed from processes’ views
in different orders.

The second property is also shared with other mem-
bership protocols. Intuitively, this property says that
views “make sense”: each correct process is a member
of its own view and the correct members of its view are
(eventually) aware of their membership in the group.

178

Validity: If p; is correct and V;® is defined, then p; €
V;® and for all correct p; € V;?, V¥ is (eventually)
defined.

Note that by Uniqueness, V?, once defined, equals V;*.
Validity and Uniqueness imply that those correct p; at
which V;® is defined are exactly the correct members
of all such V;®. So, the correct processes with defined
z-th views intuitively form a group, i.e., a set of pro-
cesses that mutually believe one another to be mem-
bers. For convenience, we thus define the z-th group
view V= to be V7 for any correct p; such that V® is
defined. If there is no such p;, then V* is undefined.

While Uniqueness and Validity correspond to re-
quirements of several other membership protocols,
other membership protocols satisfy them only when
processes fail benignly. Our protocol, however, must
satisfy them even when processes behave maliciously.
Moreover, the fact that processes can behave ma-
liciously forces us to add additional requirements,
to prevent corrupt processes from manipulating the
group membership.

Integrity: If p € V® — V=*1, then faulty(p) held at
some correct ¢ € V=, and if p € V=1 — V®, then
correct(p) held at some correct ¢ € V=,

This property prevents corrupt processes from single-
handedly causing membership changes to occur. Fi-
nally, we would like a liveness requirement to en-
sure that corrupt processes cannot prevent member-
ship changes from occurring. Here we state our live-
ness guarantee informally, as follows.

Liveness: If there is a correct p € V= such that
[(2]V=| + 1)/3] correct members of V= do not
suspect p faulty, and a process ¢ € V* (resp.,
g ¢ V®) such that faulty(q) (resp., correct(q))
holds at |(|[V*| — 1)/3] + 1 correct members of
V=, then eventually V*+1! is defined.

Intuitively, Liveness says that if sufficiently many cor-
rect members want to add or remove a process ¢ and
there is some correct member p that is not suspected
faulty by sufficiently many correct members, then the
membership is eventually changed. This property may
seem weaker than desired, as we might prefer to also
know that ¢ is eventually added or removed. In fact,
with minor modifications, our protocol does ensure
that if for all y > z, [(2{V¥| + 1)/3] correct members
of V¥ do not suspect p faulty and |(JV¥|—1)/3] +1
correct members of V¥ suspect g faulty (if ¢ € V*) or
operational (if ¢ € V*), then ¢ is eventually added or
removed. For simplicity, however, here we content our-
selves with the Liveness guarantee presented above.

4 The protocol

Our protocol was most heavily influenced by that of
[23, 24], which solves a similar membership problem in
asynchronous systems where only crash failures occur.
In our protocol we adopt a manager-based protocol
structure that is similar to that of [23, 24]. However,
our consideration of malicious corruptions of group
members, in addition to member crashes, results in
a substantially more complex protocol.

Our protocol executes on a per-view basis: when a
process in view z installs view z + 1, it terminates the
protocol for view z and begins the protocol for view
z+1. The protocol for each p; in view z operates under
the premise that Uniqueness and Validity are satisfied
for processes’ z-th views, and thus that V* is well-
defined. If this is the case, the protocol ensures that
they are satisfied for processes’ (z + 1)-th views. As
stated informally in Section 1, however, our protocol
requires that at most |(|V*|—1)/3] members of V* are
faulty (and thus that at least [(2|V*|+1)/3] members
are correct). That is, if one-third of the members of a
group view fail, then we cannot ensure that Unique-
ness, Validity, Integrity and Liveness will continue to
be satisfied, or indeed that the next group view is well-
defined. Recall that in Section 2, we assumed views
V? at all p; that satisfy Uniqueness and Validity, and
that at least [(2|V°| + 1)/3] members of the initial
group view VO are correct.

Each p; in view z assigns to each p € V;® a unique
rank in the set {1,...,|V;#®|}, thereby totally ordering
the members by rank. Our protocol requires that cor-
rect processes in the same view rank processes in the
same way. This can be done, e.g., by ranking processes
based upon a well-known total order on process identi-
fiers or upon seniority in the group. In each view V=,
there is a distinguished member called the manager
that is, by definition, the member with the highest
rank (i.e., with rank |V®|) at each correct p; € V*,

The protocol for a process p; in view z is pre-
sented formally in Appendix A. In the remainder of
this section, our goal is to present this protocol in a
high-level and intuitive manner, highlighting the basic
techniques used and some of the issues that must be
addressed. To enable the reader to correlate our dis-
cussion to the presentation in Appendix A, however,
we annotate our discussion with references to the line
numbers of Figures 5, 6, and 7 in Appendix A.

At its highest level, our protocol executes as fol-
lows. In each view V*, the manager is responsible for
suggesting an update to the view, which is the name
of a process that, based on the recommendations of
group members, should be added to or removed from

179

the group.! V*=*! is obtained by the members of V*
cither adopting the manager’s suggestion and updat-
ing the group membership accordingly, or removing
the manager from the group. Our protocol ensures
that each correct member of V*® takes the same ac-
tion; intuitively this is how we achieve Uniqueness.

4.1 Correct manager

In this section we outline the execution of the pro-
tocol in the case in which the manager is correct and
is not suspected faulty by correct members. The case
in which the manager is suspected faulty by correct
members is discussed in Section 4.2. The protocol in
the case in which the manager is correct and not sus-
pected faulty is shown in Figure 1.

As mentioned previously, in each view V* it is the
manager’s responsibility to suggest an update, based
on the recommendations of group members, to apply
to V® to obtain V=11, To facilitate this, when a mem-
ber p; € V® comes to suspect that another member
g is faulty or that a non-member g is operational,
it sends a notification (notify g)x; to the manager
(Figure 5, line 5.5), indicating that it believes that
¢'s membership status should be changed (i.e., that
¢ should be removed from or added to the group).
The manager, say p;, collects notifications from group
members until for some process g, it has received noti-
fications from |(|V;*|—1)/3] +1 members to change ¢'s
status. The number |(|V;*|—1)/3]+1 is significant be-
cause, under the assumption that (V® is well-defined
and) at most |(|V*|—1)/3] members of V* are faulty,
it ensures that some correct member of V* wants to
change the status of g.

Having received messages {(notify ¢)x,}p;cp for
some P C V*® where |P| = |(|V®| - 1)/3] + 1, the
manager p; sends a suggestion (suggest {(notify
9)x;}p;ep) to the members of V# (Figure 6, line 6.4).
When each process p; receives this message from the
manager, it tests whether the message was created
correctly, i.e., if it contains {(notify g¢)x,}p.ep for
some ¢ and P C V}* where |P| = [(JV*| - 1)/3] + 1.
If 80, p;j returns to p; a signed acknowiedgement (ack
P q)k; for p;’s suggestion (line 5.13). In addition,
p; adjusts its state so that it will never send another
acknowledgement to p; in this view (lines 5.11-12).

The manager p; waits for [(2|V;®|+ 1)/3] acknowl-
edgements for its suggestion (line 6.12). The num-
ber [(2|V;®| + 1)/3] is significant because, if at most
[(IV®] — 1)/3] members of V* are faulty, it ensures

1Our protocol can easily be modified to accommodate up-

dates consisting of multiple joining and leaving processes, al-
though for simplicity, here we treat only one process at a time.

Lun; (suggest (proposal {commit
” {(notity a)x;}p;eP) {(ack po @)x;}5;ep) {(ready po a)x;}p;ecpn)
e 7 N N N\
/4 N/ N/ \\
N/ \
(notify q)x; {ack po q)x; (ready po q)x;

Figure 1: Protocol when manager is correct.

that a majority of the correct members of V* have
acknowledged the manager. Since a correct process
acknowledges only one suggestion from the manager,
there can be at most one update for which there are
[(2|[V®] + 1)/3] acknowledgements. And, if at most
[(IV®]—1)/3] members of V* are faulty, the manager
will receive [(2|V*| + 1)/3] acknowledgements.

Upon receiving messages {(ack p; ¢)x; }p,ep Where
P C V7 and |P| = [(2[V7] + 1)/3], the manager
sends a proposal (proposal {(ack p; q)x;}p,ep) con-
taining these acknowledgements to the members of V;®
(line 6.13). When a process p; receives the proposal,
it verifies that the proposal was created correctly (line
5.24) and if so, returns (ready p; ¢)x, (line 5.27), indi-
cating its readiness to commit the update. Note that
even if p; were corrupt, it could not convince a correct
process p; to send (ready p; ¢')k; for some ¢’ # g,
due to p;’s requirement that there be [(2|V®| +1)/3]
acknowledgements for ¢’. Once p; collects a set of mes-
sages {(ready p; q)x,}p;cp for some P C V® where
[P| = [(2|VF#] + 1)/3] (line 6.15), it broadcasts® a
commit message (commit {(ready p; ¢)x,}s;cp) (line
6.16). A process p; € V*® that receives this message
verifies that it was created correctly (line 5.28) and, if
80, installs V;-""l by adding or removing g (lines 5.31-
32). {(2|v=[+ 1)/3] ready messages are required so
that a committed update will be detected if the man-
ager later fails, as is discussed in Section 4.2.

4.2 TFaulty manager

The protocol can become much more complex if the
manager is suspected faulty by some correct processes.
In this case, some process, called a deputy, may need
to take over for the manager and attempt to complete

2 As discussed in Appendix A, this broadcast must ensure
that the commit message reaches all correct members, if it
reaches any of them. This can be implemented very efficiently
in our system model (see Appendix A).

180

the transition to the next view. The next view may
be obtained by removing the manager from the group
or, if the manager could have already committed an
update to some correct process, by ensuring that all
correct members commit that update. In either case,
it must be ensured that all correct members commit
the same update, even if the deputy is corrupt.

A process p;, which is not the manager, becomes a
deputy if enough members suspect all other members
with rank higher than p; of being faulty. To be precise,
if a member p; suspects all members with rank higher
than p; of being faulty, it sends a message (deputy
Pi)x; to pi, to indicate that it thinks p; should become
a deputy (line 5.7). If p; receives messages {(deputy
B)x; }p,cp where P C Vi and [P| = [([V*|-1)/3]+1,
then it initiates the deputy protocol by sending {(query
{(deputy pi)x,}p,ep) to the group (line 6.7). This
message shows that some correct member believes that
pi should become a deputy.

In response to this query message (if it is properly
constructed), each member p; returns (last p; S)x;
where S is the set of acknowledgements contained in
the last valid proposal message it received, or @ if
it has not yet received a proposal (line 5.10). p; also
adjusts its state so that it will not respond to the man-
ager or deputies of higher rank than p; (line 5.9). The
set S is returned to convey any update that could have
been committed by the manager or a deputy of higher
rank than p;: since [(2[V®| + 1)/3] processes must
send ready messages for an update to be committed
(8ee Section 4.1), if an update were committed, then
the acknowledgements for the update were already re-
ceived at a majority of the correct members of V.
So, if the deputy p; receives [(2|V*|+1)/3] last mes-
sages, at least one of these messages contains a set of
acknowledgements for the committed update.

Upon receiving [(2|V®| + 1)/3] last messages
{(1ast p; Sj)k,}p;ep, pi sends to the group a sug-

gestion (suggest {(last p; Sj)x;}p;ep) that contains
these messages (line 6.10). From this point the pro-
tocol continues much like that of Section 4.1, as if p;
had sent a suggest message as the manager, but with
one major difference. It is simple for a process that re-
ceives a manager’s suggest message to determine the
update it should acknowledge—it is just the update
in the included notitfy messages (see Section 4.1). In
this case, however, a receiving process p must derive,
from the messages {(last p; Sj)x;}p,ep, an update
to acknowledge. This is simple if all 1ast messages
indicate that all p; € P received no prior proposal
(in which case p acknowledges the update naming the
manager) or the same prior proposal (in which case
p acknowledges the update in that proposal). How-
ever, these last messages may indicate that different
processes received different last proposals.

As shown in Figure 2, this could happen even if no
processes behave maliciously. In Figure 2, the man-
ager’s proposal is received only by p;. The first deputy
pes attempts to install the next view, but fails after
sending its proposal message to remove the man-
ager. (pe's messages are also delayed to p;.) Then,
the second deputy p; collects 1ast messages from the
remainder of the group and sends its suggest mes-
sage. Note that the last messages in p;’s suggestion
contain a set of acknowledgements for g, the update
initially proposed by the manager po, and a set of ac-
knowledgements for the update po. Moreover, it is not
difficult to extend this example to one in which some
correct process may have actually committed one of
these updates and installed its next view. If this oc-
curred and processes py, . . ., ps acknowledge the wrong
update, then Uniqueness could be violated.

Intuitively, given a suggestion (suggest {{last p
S;j)K;}p;eP), a process should acknowledge the update
r with the property that for some p; € P, S; = {{ack
4 7)K. }paeq (for some appropriate Q) and g is the low-
est ranked process in the set of all processes ¢’ ranked
greater than p such that for some r’ and p; € P,
S; = {(ack ¢’ ')k, }pueq@; (for some appropriate Q;).
For instance, in Figure 2, after receiving p;’s sugges-
tion each process p; should reply with (ack p; po)x;,
since the process that proposed to remove pg, namely
D, is the lowest ranked of all processes (with rank
greater than p;) that made a proposal. As we prove in
Appendix B, the strategy of acknowledging the update
proposed by this lowest ranked proposer ensures that
this update will be the same as any update that could
have been previously committed to another member.
This update is identified in lines 5.15~21 of Figure 5.

Once a process p; determines the update ¢ to ac-

181

knowledge, the protocol continues as in Section 4.1.
That is, p; sends (ack p; ¢)x, to the deputy p; (line
5.23). Upon receipt of [(2|V;®| + 1)/3] acknowledge-
ments for g, p; then sends its proposal message (line
6.13). When a process p; receives this proposal, it
verifies that it was created correctly (line 5.24) and,
if 8o, sends (ready p; g¢)x; to pi. Once p; obtains
[(2|V;®|+1)/3] such ready messages, it broadcasts its
commit message, thereby causing correct processes to
add or remove gq.

Our protocol masks malicious behavior by corrupt
processes, and it is worth recalling how this is done.
First, a manager’s suggest message or a deputy’s
query message must contain signed notify or deputy
messages, respectively, from [(|[V*®| - 1)/3] + 1 mem-
bers of V® to be considered valid. This ensures that
a process cannot be added or removed without the
agreement of at least one correct member. Second, a
proposal message must contain [(2|V*®| + 1)/3] ac-
knowledgements for an update—and thus acknowl-
edgements from a majority of correct processes in
V=—for the proposal to be considered valid. There-
fore, it is impossible for a corrupt process to send
valid proposals for different updates to different pro-
cesses. Third, if an update is committed to a mem-
ber, then any valid suggest message sent by a subse-
quent deputy, even if the deputy is corrupt, will con-
tain evidence that this update was committed. This
is true because [(2|V*®|+ 1)/3] members must send
ready messages for the update to be committed, and
because the deputy’s suggest message must contain
last messages from [(2|V*®| + 1)/3] members—and
thus a 1ast message from some correct member that
sent a ready message for the update. This ensures
that once an update has been committed somewhere,
correct processes will acknowledge only the same up-
date, and thus that Uniqueness will be maintained.
These arguments are formalized in Appendix B.

4.8 Joiner protocol

In the protocol described in Sections 4.1 and 4.2,
pi installs V°*! after receiving a message of the form
(commit {(ready pq)x;}p,ep) for some P C V;* where
|P| = [(2|VF#| + 1)/3]. For p; to interpret or verify
the validity of a commit message, it must know the
contents of V=, because otherwise it is not able to, e.g.,
determine if P is of the proper sise or form. However,
a joining process p; may not know the contents of V*
(because V= is not defined), and so we must take other
measures to ensure that p; will install a proper V°+1.

In this section we present a simple approach to ad-
dress this problem. The basis of this approach is that

(proposal

o L e e gl (s':‘{&“::::’}ix;'e;’,:m
m"“;:" .. Ox;lpser)x, 0 L{ack pe po)x, bpieqr otherwise
pr — (last ps @) x; (ack ps po)x; B / /
;o | A N . i N
e — |\ A\ Y / \
o B T —
(query (1ast p;
Pe —-- — {(deputy {(ack po
{query (suggest (proposal P:)x, }p,-en) Po)x; }p,-eq')x.-
{(deputy {{1ast pg {{ack ps
Pe)x;}pieq) 0)x;}peq) Po)x;}p;eq!)

Figure 2: Processes p;,..., ps are informed of two different proposals for the next view.

it suffices for p; to obtain the contents of some past
group view V¥ where y < z, and the commit messages
sent in views y through z that tell it how to transform
V¥ into V®+1. To be able to provide these commit
messages to joining processes, correct members main-
tain a history set containing, for each prior view, a
valid commit message sent in that view S}ine 5.29).
Before a correct p; € V* installs a view V*+! contain-
ing a new member p;, it sends (history SS to p; where
S is its history set, including the commit message sent
in view z (line 5.30).

The joiner’s part of this protocol is shown formally
in Figure 7 of Appendix A. Informally, the protocol
begins with the joining process obtaining the contents
of some past group view V?; below we discuss ap-
proaches by which this information can be obtained.3
The joiner then waits to receive a history message
and, upon receiving one (Figure 7, line 7.4), extracts
commit messages from the history and constructs as
many views V*, z >y, as it can (lines 7.6-13).

The joiner does not make use of only one history
message, but rather employs as many as it receives.
The reason for this is that while a corrupt process can-
not undetectably provide a false history, it can provide
a history that is “too short”, i.e., that does not reflect

sDepenc:ling on how members are ranked, it may be helpful
for the contents of the view V¥ obtained by the joiner to convey
the ranks of the members of V¥. For instance, if members are
ranked by seniority in the group (in the manner of [23, 24]) and
the obtained contents of V¥ are ordered by rank, then the joiner
can determine the rank of each process in later views, because
any two processes in V¥ are ranked in the same relative order
in later views (until one of them is removed).

182

all the views up to the latest. To see why this can be
problematic, suppose that when a process p is added
to the group in the z-th view, a corrupt member pro-
vides to it a history that enables p to construct only
V¥ for some y < z. If p accepted no more history
messages, then it would never come up-to-date with
the other processes and would possibly remain stuck
in that view until removed. It is not difficult to ver-
ify that, in this way, corrupt processes could starve
p from ever becoming a participating member of the
group. Processing all received history messages pre-
vents this problem.

This scheme relies on the ability of a joining process
to obtain the contents of a prior group view. There
are several possible ways to enable this:

1. A trusted authority (e.g., the group creator or ad-
ministrator) could deposit with the group mem-
bers the contents of some group view signed by
the authority’s private key. Then, the members
themselves could send the signed view to a pro-
cess prior to adding the process to the group. Pro-
vided that the process could obtain the author-
ity’s public key, the process could verify the va-
lidity of the group view and then save the view to
distribute to other processes. A variation of this
approach is to store the signed view in a repli-
cated database that holds signed views for many
groups. Processes could obtain the view from the
database if at least one database server is cor-
rect. Since many public-key distribution systems
employ such databases to distribute public keys

(e.g., [27, 16]), this alternative may require little
extra mechanism or administrative overhead in a
system already employing public key technology.

2. Using the techniques of [26, 21], a high-integrity
service could be constructed to maintain and
distribute recent group views for possibly many
groups. Each group’s initial view could be stored
at the service as part of the group creation, and
then copies of commit messages for that group
could be forwarded to the service to update the
group view held in the service. Processes wishing
to join a group would first query the service to ob-
tain a group view for the group. This approach,
however, requires additional assumptions bound-
ing the number of the service’s component servers
that could be corrupted [26, 21]. Moreover, the
techniques of [26] would require processes wishing
to join a group to learn the complete membership
of the server group prior to using the service.

3. If it is known that for all z > 0, V*® C P for some
known finite set P, then the set V° can be writ-
ten to local stable storage at each member of P as
part of the group creation, so that a process join-
ing the group will at least know V°, Moreover,
if each p; € P writes the contents of VY to local
stable storage when it installs V¥, then a joining
process will know a more recent view if it were
previously a member. This approach would work
well, say, for a group of servers whose members
are drawn from a small, static set P.

Depending on how joining processes obtain group
views, steps may need to be taken to ensure that the
view obtained by a joining process is indeed a past
group view. For example, in the second approach
above, if a process is added to the group and addi-
tional views are committed before the process can ob-
tain a view from the service, the process might obtain
a view after that in which it was added. Such con-
fusions can be avoided if, e.g., each correct p; € V*
delays sending (notify ¢)x, for some ¢ ¢ V* until
¢ has obtained a view. (For simplicity, such synchro-
nizations are omitted from Figures 5-7.)

As our protocol is presented in Figures 5-7, each
member retains a commit message for every view up-
date committed (lines 5.29, 7.5). In practice, a commit
message sent in view z can be discarded when it is
known that every correct process that joins in the fu-
ture will know the contents of V¥ for some y > =z.
For instance, in the first approach described above, if
the trusted authority periodically updates the signed
group view to a more recent view V¥, then the commit

183

messages sent in views V*, z < y, can be discarded
after each update. Here there is a tradeoff between the
amount of state that members must maintain and the
frequency with which the authority updates the signed
view. However, as experience with group-oriented sys-
tems suggests that membership changes infrequently
in most applications (e.g., see [4]), storage costs at
members should typically be modest even if the signed
view is updated infrequently. In the second approach,
a process could discard the commit message for view z
after this message is received at the service. While this
could force a joining process to obtain a group view
from the service multiple times (if the membership
changes after the process obtains a view but before it
can join the group), this is unlikely to be a significant
problem in practice. In the third approach, once each
pi € P has installed (and written to local stable stor-
age) some VY where y > z, all commit messages for
view z could be discarded from processes’ histories.

5 Performance

As just mentioned, experience with current group-
oriented systems has shown that membership changes
are infrequent for most applications. Based on this, we
do not expect our protocol to be the primary factor
limiting performance in most applications that use it.
Nevertheless, if our protocol is to be useful in a wide
range of applications, efficiency will be important, and
this weighed heavily in the design of our protocol. For
instance, we chose a manager-based protocol struc-
ture, versus a symmetric protocol involving more mes-
sages (but possibly fewer phases of communication), to
minimise message traffic. Moreover, the traffic gener-
ated by our protocol as presented in Section 4 and
Appendix A can be further reduced by various opti-
misations (e.g., only |(|[V*|-1)/3]+1 members of V*
must be designated to send history messages to join-
ing processes). We have omitted these optimisations
here, however, for purposes of clarity.

We implemented a prototype of our protocol as
part of the Rampart effort mentioned in Section 1.
Our implementation employs CryptoLib [15] for its
cryptographic operations and runs over the Multicast
Transport Service [28], which supports point-to-point
authenticated channels [20]. Figures 3—4 illustrate the
protocol cost in milliseconds (ms) for removing a group
member with this implementation. These figures show
average times between the initiation and termination
of the protocol at group members in the cases in which
a non-manager process is removed via the protocol of
Section 4.1 (Figure 3) and in which the manager is

g

T L) L] L)
manager (total) -o— ' ¥
280 | manager (CPU) —+—- 4
other (total) -8~
270 other (CPU) ~»— -

group size

Figure 3: Protocol cost (ms), correct manager

380 L 1) T L) L] Jl
deputy (total) ~—
deputy (CPU) —+-

360 | other (total) -B-~ -

other (CPU) -%-—-

340

group size

Figure 4: Protocol cost (ms), faulty manager

removed via the protocol of Section 4.2 (Figure 4).
Those curves marked “total” show the average elapsed
real time between initiation and termination at each
member, and the curves marked “CPU” show the av-
erage CPU time consumed by the protocol between
initiation and termination at each member.

The tests described in Figures 3—4 were performed
between user processes running over SunOS 4.1.3 on
moderately loaded SPARCstation 10s spanning sev-
eral networks. In these tests, we used RSA [25) as
our public key cryptosystem, with 512-bit moduli and
public exponents equal to three. Even though Cryp-
toLib provides a very efficient software implementa-
tion of RSA (roughly 52ms for signature generation
and 2ms for signature verification, for the described
platform and parameters), RSA operations still ac-

184

counted for over 70% of managers’ and deputies’ CPU
costs and over 80% of others’ CPU costs. Clearly
our protocol’s performance would benefit from special-
purpose processors for performing RSA computations.

In these tests, each member initiated the protocol
immediately upon suspecting the eventually-removed
process faulty, which, for the purposes of these tests,
was triggered by a multicast to the group. So, each
member initiated the protocol at approximately the
same instance. In reality, the moments at which group
members come to suspect a process faulty and to ini-
tiate the protocol can vary widely with both the types
of failures exhibited and the failure detection mech-
anisms employed. Therefore, the numbers in these
figures should be viewed as protocol costs only, rather
than the actual duration between a process failure and
its removal from the group.

6 Conclusion and ongoing work

In this paper we presented a group membership pro-
tocol for asynchronous distributed systems that toler-
ates the corruption of group members by a malicious
intruder. Our protocol provides strong membership
semantics, including a total ordering of membership
changes among all correct group members, provided
that less than one-third of each group view is faulty.
Moreover, these faulty members are powerless to sin-
glehandedly alter the group membership or prevent
membership changes from occurring.

The primary focus of our present work is com-
pleting the implementation of Rampart, a toolkit for
constructing high-integrity distributed services that is
based upon the protocol described in this paper. This
toolkit will provide protocols and other support for
constructing replicated services that can retain their
integrity and availability despite the malicious corrup-
tion of some of their component servers. The member-
ship protocol presented in this paper, and the imple-
mentation of atomic broadcast it facilitates, complete
a set of techniques that make such a toolkit practical.
An initial version of Rampart is nearing completion,
and we will report on this effort in a subsequent paper.

Acknowledgements

We thank Jack Lacy and Robbert van Renesse for
their assistance in using CryptoLib and the Multicast
Transport Service, respectively. We also thank Ran
Atkinson, Matt Blase, Jack Lacy, and the anonymous
referces for presentational suggestions.

References

[

(2]

3]

(4]

(8]

[6

—

7

—

8]

o

—

(10]

(11]

[12)

[13]

[14)

(18]

(16]

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A
commmunication sub-system for high availability. In Pro-
ceedings of the 22nd International Symposium on Fault-
Tolerant Computing, pages 76—84, July 1992.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
and P. Ciarfella. Fast message ordering and membership
using a logical token-passing ring. In Proceedings of the
13th International Conference on Distributed Computing
Systems, May 1993.

K. P. Birman and T. A. Joseph. Reliabl ication in

the presence of failures. ACM Transactions on Computer

Systems, 5(1):47-76, Feb. 1987.

K.P. Bu-m-n, A. Schiper, and P. Stephenson. Lightweight
l and atomi Iticast. ACM Transactions on

Computer Systems, 9(3) 272-314, Aug. 1991.

B. A. Coan and G. Thomas. Agreeing on a leader in real-
time. In Proceedings of the 11th Real-Time Systems Sym-
posium, pages 166-172, Dec. 1990.

F. Cristian. Reaching agreement on processor group mem-
bership in synchronous distributed systems. Dsistributed
Computing, 4:175-187, 1991.

F. Cristian, B. Dancey, and J. Dehn. Fault-tolerance in
the advanced automation system. In Proceedings of the
20tk International Symposium on Fault- Tolerant Comput-
tng, pages 6-17, June 1990.

Y. Desmedt. Threshold cryptosystems. In Proceedings of
AUSCRYPT 92, 1992.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374-382, Apr. 1985.

M. K. Franklin and M. Yung. Varieties of secure distributed
computing. In Proceedings of Sequences II, Methods in
Commaunications, Security and Computer Science, pages
392417, June 1991.

K. llgun. USTAT: A real-time intrusion detection system
for UNIX. In Proceedings of the 1993 IEEE Symposium on
Research in Security and Privacy, pages 16-28, May 1993.

F. Jahanian, A. Fakhouri, and R. Rajkumar. Processor
group membership protocols: Specification, design and im-
plementation. In Proceedings of the 18th Symponnm on
Reliable Distributed Systems, pages 2-11, Oct. 1993.

H. Kopets, G. Griinsteidl, and J. Reisinger. Fault-tolerant
membership service in a synchronous distributed real-time
system. In A. Aviiienis and J. C. Laprie, editors, Depend-
able Computing for Critical Applications, pages 411-429.
Springer-Verlag, 1991.

N. P. Kronenberg, H. M. Levy, and W. D, Strecker. VAX-
clusters: A closely-coupled distributed system. ACM
Transactions on Computer Systems, 4(2):130-146, May
1986.

J. B. Lacy, D. P. Mitchell, and W. M. Schell. Cryp-
toLib: Cryptography in software. In Proceedings of the
4th USENIX Security Workshop, pages 1-17, Oct. 1993.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.

ACM Transactions on Computer Systems, 10(4):265-310,
Nov. 1992.

185

[17] K. Marsullo. Tolerating failures of continuous-valued sen-
sors. ACM Trensactions on Computer Systems, 8(4):284—
304, Nov. 1990.

[18] S. Mishra, L. L. Peterson, and R. D. Schlicting. A mem-
bership protocol based on partial order. In J. F. Meyer and
R. D, Schlicting, editors, Dependable Computing for Crit-
ical Applications 2, pages 309-331. Springer-Verlag, 1992.

[19] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Mem-
bership algorithms for asynchronous distributed systems.
In Proceedings of the 11th International Conference on
Distributed Computing Systems, pages 480—488, May 1991.

[20] M. K. Reiter. A Secwrity Architecture for Fault- Tolerant
Systems. PhD thesis, Cornell University, Aug. 1993.

[21] M. K. Reiter and K. P. Birman. How to securely replicate
services. To appearin ACM Transactions on Programming
Languages and Systems, 1994,

[22] M. K. Reiter, K. P. Birman, and L. Gon; Inteputm;lecu
rity in a group oriented distributed sy In P
of the 1992 IEEE Symposivm on Ruurck in Security and
Privacy, pages 18-32, May 1992.

[33] A M. Ricciardi and K. P. Birman. Using process groups to
1 t failure detection in asynchronous environments.
In Pmcedmgl of the 10th ACM Symposium on Principles

of Distributed Computing, pages 341-351, Aug. 1991.

[24] A. M. Ricciardi and K. P. Birman. Process membership
in asynchronous environments. Technical Report 93-1328,
Department of Computer Science, Cornell University, Feb.
1993.

[25] R. L. Rivest, A. Shamir, and L. Adleman. A method for
btaining digital signatures and public-key cryptosystems.
Commaunications of the ACM, 21(2):120-126, Feb. 1978.

[26] F. B. Schneider. Impl ting fault-tolerant services using

the state nudnne approach: A tutorial. ACM Computing
Surveys, 22(4):299-319, Dec. 1990.

[27] J. J. Tardo and K. Alagappan. SPX: Global authentication
using public key certificates. In Proceedings of the 1991
IEEE Symposium on Research in Security and Privacy,

pages 232-244, May 1991, ;
[28] R. van Renesse, K. Birman, R. Cooper, B. Glade, and
P. Steph Reliable multicast bet microkernels. In

Pmudinn of the USENIX Microkernels and Other Ker-
nel Architectures Workshop, Apr. 1992.

[28) V. L. Voydock and S. T. Kent. Security mechanisms in
high-level network protocols. ACM Computing Surveys,
15(2):135-171, June 1983.

A Formal protocol description

The protocol discussed informally in Sections 4.1
and 4.2 is presented formally in Figures 5 and 6. For
clarity, we have divided the protocol description into
those steps that each p; in view z executes in the role
of a “regular member” (Figure 5) and those that it
executes as a manager or deputy (Figure 6). Never-
theless, Figures 5 and 6 describe a single protocol, to
be executed in its entirety by each p; in view z. In

protocolstate — 3|V ®|

(5.2) lastproposal «— @
(5.3) repeat
(54) | 3((pE VS A faulty(p)) V (p g V* A correct(p))
(5.5) : send (notify p)x; to mgr
(56) | 3p€V(p# mgr A Vg € V2(rank(q) > raak(p) = faulty(q)))
(8.7 : send (deputy p)x; to p
(58) | 3pe Ve, P C VP (revd(p, (query {{deputy P)x;}p;€pP)) A 3rank(p) < protocolstate A |P| = (V] - 1)/3] +1)
(5.9) : protocolstate — 3rank(p)
(5.10) send (last p lastproposal) x, to p
(5:11) | 3p,P C V¥ (revelmer, (suggest {(aotify p)x;},cp)) A
3rank(mgr) — 1 < protocolstate A |P| = (VeI -1)/3) +1)
(5.12) : protocolstate «— 3rank(mgr) — 1
(5.13) send (ack mgr p)x; to mgr
(5.14) | 3pe Ve.PC Ve {S:'}p,'EP(m"(Pl (suggest {{last p SJ')Kj }pjeP» A
3rank(p) - 1 < protocolstate A |P| = [(2|V?| + 1)/3])
(5.15) : lowestrank « V| +1
(5.16) lowestupdate — mgr
(5.17) repeat
(5.18) ftrue: if3p;ePgeVarQC VE(S; = {{ack g r)x, }paeq A
raak(p) < rank(g} < lowestrank A [Q] = [(2[V}"] + 1)/3])
(5.19) lowestrank + rank(q)
(5.20) lowestupdate «— r
(5.21) else : terminate repeat
(5.22) protocolstate «— 3rank(p) — 1
(5.23) send (ack p lowestupdate) x; to p
(5.24) | 3p € V?2,4q,P C VP (rcvd(p, (proposal {(ackp g)x;}p,ep)) A
3rank(p) — 2 < protocolstate A |P| = [(2IV®] +1)/3])
(5.25) : protocolstate «— 3rank(p) — 2
(5.26) lastproposal — {{ack p g)x;}p,ep
(5.27) send (ready p g)k; to p
(5.28) | 3g € V2, p,r, P C V2(rcv(p, (comit {(ready q)x;}p;er)) A [P|= [(2lVe] +1)/3])
(5.29) : history «— history U {{commit {(ready q T)K;}p,eP)
(5.30) ifr g V®: send (history history) to r
(5.31) Vo o installview(V® U {r})
(5.32) else : ifp;#r: VO o installview(Ve — {r})
(5.33) terminate repeat

Figure 5: Member protocol for each process p; in view z.

Figure 5, rank(p) denotes the rank of p, and mgr de-
notes the manager. We will also use this notation in
the remainder of our discussion.

In Figures 5 and 6, the protocol is presented in
terms of if statements (e.g., lines 5.30-32) and repeat
statements (e.g., lines 5.3-33). The execution of “if C
: A; else: A;” proceeds in the natural way: if condi-
tion C holds then the (possibly compound) statement
A, is executed, and otherwise A; is executed. The
else clause can also be omitted, as in the innermost if
statement of line 5.32. The semantics for

repeat

n C1 : A1
[] Cy: A
[Cn: A,

186

are that the following step is repeated: some condi-
tion C} is evaluated and, if true, the statement A; is
executed. The evaluation of C) and the execution of
A, are atomic, so that no other conditions are evalu-
ated or statements executed concurrently. Evaluating
conditions and executing statements as appropriate
are repeated until the repeat statement is terminated
with a terminate repeat statement. A terminate
repeat terminates only the closest encompassing re-
peat statement. We assume that the condition eval-
uated in each iteration is chosen fairly, so that if a
condition is continuously satisfied, then eventually the
corresponding statement will be executed (if the re-
peat statement is not terminated). Moreover, if there
are several witnesses that satisfy an existential condi-
tion, then eventually the corresponding statement will
be instantiated and executed with each.

(6.1) mdstate +— begin

(6.2) repeat

(6.3) | mdstate = begin A 3¢, P C V°(Vp; € P(rcvd(p;, (notify a)x;)) A IPI=[(IV®]-1)/3] +1)
(6.4) : send (suggest {(notify g)x;;}p;cp) to V?

(6.5) mdstate ~— sentsugg

(6.6) | mdstate = begin A 3P C V*(Vp; € P(rcvd(p;, (deputy Pi)x;)) A Pl =[(IV®l-1)/3] +1)
(6.7) : send (query {(deputy Pi)x;}p;ep) to VT

(6.8) mdstate «— sentquery

(6.9) | mdstate = sentquery A 3P C V*,{S;j},.ep(Vp; € P(rcvd(p;, (last p; Si)x;)) A |Pl=[(21V?| +1)/3])
(6.10) : send (suggest {(last p; S;) K;}p;ep) to V?

(6.11) mdstate «— sentsugg

(6.12) | mdstate = sentsugg A 3q, P C V;*(Vp; € P(rcvd(p;, (ack p; a)x;)) A [Pl =[(3[Ve| +1)/3])
(6.13) : send (proposal {{ack p; g)x;}p,cp) to VS

(6.14) mdstate — sentprop

(6.15) | mdstate = sentprop A 3q,P C V®(Vp; € P(rcvd(p;, (ready p; a)x;)) A |P|=[(2IVP+1)/3])
(6.16) broadcast (commit {(ready p; q)x;}p;eP) to V*

(6.17) terminate repeat

Figure 6: Manager/deputy protocol for each process p; in view z.

In Figure 5, the outer repeat statement is termi-
nated immediately after the protocol changes to the
next view by executing

V‘.'+1 + installview(. ..)

in line 5.31 or 5.32. The operation V®+! «
installview(S) installs the view V**' = § and ini-
tiates the protocol for view z 4 1 at the top of Figures
5 and 6.

Each message sent by a correct process in view z
is labeled with z. (We have omitted these labels from
the figures to simplify the presentation.) In particu-
lar, a digitally signed message contains the label as
part of its signed contents. Received measages that
are labeled with a view number greater than that of
the receiver’s current view are buffered until the pro-
cess installs that view. Received messages that are
labeled with a view number less than that of the re-
ceiver’s current view are immediately discarded and
ignored, as are messages that are labeled for one view
but that contain messages labeled for a different view.
The predicate rcvd(p, m) in Figures 5 and 6 is true iff
process p; received the message m from p, and m and
all messages it contains are labeled for view z.

In contrast to other messages, commit messages
are broadcast to the members of V= (e.g., line 6.186).
We assume that this broadcast is implemented by a
distributed protocol that ensures that if any correct
member of V* receives a valid commit message, then
all correct members do, even if the process initiating
the broadcast is faulty. For this reason, broadcast-
ing is different than a process p; simply sending a
message m to each member of V®, which we abbre-

187

viate by “send m to V=" (e.g., line 6.4), because in
the latter, if p; is faulty then m might, e.g., reach
only some correct members. In our present imple-
mentation, a broadcast of a commit message is imple-
mented by the initiator sending the message to the
entire group, and when each p € V* first receives a
valid commit message for view z, p forwards this mes-
sage to the [([V®| — 1)/3] + 1 members g satisfying
rank(p) < rank(g) < rank(p) + [(|V*] - 1)/3] +1 or
0 < rank(g) < [(IV*| - 1)/3] + 1 — ([V*| - rank(p)).
More efficient implementations may be possible using
negative acknowledgement schemes.

In Figure 7 is the formal description of a joining
process’ protocol, which was discussed in Section 4.3.
In that figure, oldview and oldviewnumber denote, re-
spectively, the contents of a past view V¥ and its view
number y that were obtained by the joining process.
Approaches to obtaining these were discussed in Sec-
tion 4.3. The label(m) operation in line 7.7, where
m = (commit {(ready ¢ r)x;}p,cp), returns the num-
ber of the view in which m and the messages {(ready
4 7)K,;}p;ep were sent according to their view labels
(which are required to be the same). Other than this,
view labels are ignored in Figure 7.

For reasons discussed in Section 4.3, the outer re-
peat statement of Figure 7 does not terminate. Since
this protocol may install a view (line 7.11), though,
thereby initiating the protocol of Figures 5 and 6 for
that view, this protocol may execute in parallel with
the protocol of Figures 5 and 6. Thus, these execu-
tions must be coordinated so that, e.g., views are not
installed multiple times. The necessary synchronisa-
tions are obvious and have been omitted for simplicity.

¢ + oldviewnumber

|P| = [(3}view| +1)/3] A label(m) = =)

(7.2) view « oldview

(7.3) repeat

(7.4) | 3p, S(rcvd(p, (history S)))

(7.5) : history «— historyu §

(7.6) repeat

(7.7) I true: if 3¢ € view,r,m € history, P C view(m = {commit {(ready g r)x;}p,ep) A
(7.8) broadcast m to view

(7.9) if r € view : view + view - {r}

(7.10) else : view +— view U {r}

(711) if p; € view : V*! « installview{view)
(7.12) Te—z+1

(7.13) else : terminate repeat

Figure 7: Protocol for a joining process p;.

B Correctness

In this appendix we sketch the proofs that our pro-
tocol satisfies Uniqueness, Validity, Integrity and Live-
ness. Of the four properties, the proof for Uniqueness
is the most complex, as it must address the issues
raised in Section 4.2 of ensuring that if an update
is committed to some members by the manager or a
deputy, then no different update can be committed to
other members by a future deputy. The full proof is by
induction on views and employs the assumption that
at most |(|[V*| — 1)/3] members of each view V= are
faulty. In what follows, all messages are assumed to
be labeled for view z (see Appendix A). The following
lemma is the key to the inductive step.

Lemma 1 If a process receives (commit {(ready p
")k;Jpscp) where P C V* and |P| = [(2]V=] 4 1)/3],
then the only v for which a correct p; € V= will send
(ack ¢ r')x,, where rank(q) < rank(p), is ' =r.

Proof. Suppose a process receives (commit {(ready p
7)K,}p;ep) where P C V* and |P| = [(2|V*|+1)/3].
Then, each process p; in some majority of the correct
processes in V* gent (ready p r)k, in line 5.27 and
assigned lastproposal = {(ack p r)x;}p,ep, in line
5.26, for some P, C V= where |Pe| = [(2|V*|+1)/3].

Now suppose that a correct process p; € V*® sends
(ack ¢ #')x, where rank(q) < rank(p). To do this,
pi must have received a message (suggest {(last g
Si)K;}pjeq) where @ C V*® and |Q| = [(2(V*]+1)/3].
Because |Q| = [(2]V*|+1)/3], each process p; in some
majority of the correct processes in V= must have sent
(1ast g Si)x,. Moreover, at least one of the correct
processes p; in that majority must have previously set
lastproposal = {(ack pr)x;},,ep, a8 described above.

188

We now show by induction on rank(p) — rank(q)
that »' = r. So, for the base case, suppose that
rank(p) — rank(g) = 1. Then for some correct p; €
PNQ, Si = {(ack p r)x;}p,cp,. Moreover, since p
is the lowest ranked process with rank greater than q
and there could not be any S; = {(ack p r)k;}p,ep
where P, C V*, |B| = [(2|V*| +1)/3], and ' #£ r, it
follows (from 5.17-21) that »’ = r.

Now suppose that rank(p) — rank(g) > 1, and con-
sider the lowest ranked process ¢’ such that rank(q’) >
rank(q) and there exists a p € Q and a r" such
that Sp = {(ack ¢’ r")k;}p,;eq' where Q' C V* and
|Q'l = [(2|V*®|+1)/3]. Since there is some correct pro-
cess in PNQ, it is guaranteed that there is some such ¢’
and, moreover, that rank(p) > rank(q’). If rank(p) =
rank(q') (i.e., p = ¢'), then the result follows as in
the base case. Otherwise, since rank(q’) > rank(g),
we know that rank(p) — rank(q’) < rank(p) — rank(q),
and so r” = r by the induction hypothesis; the result
follows. O

Theorem 1 This protocol satisfies Uniqueness.

Proof. (Sketch.) The full proof is by induction
on views. The core of the induction step is as fol-
lows. For a correct process p; to execute V2+!
installview(...), it must receive a message (commit
{(ready p r)x,}p;ep), where P C V* and |P| =
[(2|V®| + 1)/3], that commits the update r to ap-
Ply to the z-th view. Consider the p € V* of largest
rank such that some process receives (commit {(ready
P 1)K, }p;ep), for some P where P C V* and |P| =
[(2|V*] +1)/3]. Since a correct p; € V* sends (ready
P r)k; for at most one update r, it is not possible for a
different correct process to receive (commit {(ready p
r')Kj}ijP')v where P/ C V*, |P'| = [(2|V®] + 1)/3},

and r # r. Moreover, Lemma 1 says that the only
update value r”” for which a correct process p; € V*
will create (ack ¢ »")x, where rank(q) < rank(p), or
thus (ready ¢ r')xk,, is v’ =r. O

Theorem 2 This protocol satisfies Validily.

Proof. (Sketch.) By the conditions guarding the in-
stallview operations on lines 5.31, 5.32, and 7.11, Vi"”
is defined at a correct process p; only if p; € V‘-"“. We
have to show that for any correct p; € V=11, 1;-"“ is
eventually defined. This is done by induction on views:
our induction hypothesis is that if V;® is defined and
pj € V¥, then V7 is defined.

First suppose that V"“ is installed in line 5.31 or
5.32 of Figure 5. Because the broadcast by which the
commit message is disseminated ensures that all cor-
rect members of V® receive it, if p; € V;®, then p;
installs Vj’“. If p; ¢ V=, then because communica-
tion is reliable, p; will eventually receive a history
message from p; sent in line 5.30, which will cause it
to install V.i=+1 (line 7.11). Now suppose that V*+!
is installed in line 7.11 of Figure 7. Since p; broad-
casts to V*® a commit message sent in view z (line
7.8), each correct p; € V* will eventually receive a
commit message for view z and install V;°*?, and will
send a history message to any joining p; so that it
will install a proper Vj""l. o

Theorem 3 This protocol satisfies Integrity.

Proof. (Sketch.) Suppose that p € V= — V=+1, Then,
at least |(|[V*=| — 1)/3] + 1 members of V= sent ei-
ther notify messages indicating that p should be re-
moved or, if p were the manager of V*, deputy mes-
sages indicating that some member ranked lower than
p should become a deputy. Since there are at most
[(IV#| —1)/3] faulty members of V* and since correct
members send notify and deputy messages in accor-
dance with their failure suspicions, it follows that some
correct member of V* suspected p faulty. The argu-
ment for p € V=+! — V= ig similar. O

The remaining theorem to prove is that this proto-
col satisfies Liveness. In order to do this, however, we
must constrain the criteria by which processes do or
do not suspect other processes of being faulty. To see
why, suppose that a member p fails and that all correct
processes suspect it of being faulty, but the (corrupt)
manager refuses to suggest that p be removed from
the group. Unless correct members come to suspect
the manager of being faulty and remove the manager,
a next view may never be installed. For this and other
reasons, we informally stipulate that faulty(p) hold at

189

a correct process r if r desires a change in the group
membership, faulty(g) holds at r for all members ¢
such that rank(q) > rank(p), and sufficiently long
passes without a change in the group membership oc-
curring. Given this stipulation, Liveness follows easily.

Theorem 4 This protocol satisfies Liveness.

Proof. (Sketch.) Suppose there is a correct p € V*
such that [(2|V*| + 1)/3] correct members of V*
do not suspect p faulty, and a process ¢ such that
[(IVv®|—1)/3] + 1 correct members of V* want to add
or remove g. Since [(2|V®|+ 1)/3] correct members
of V® do not suspect p faulty, no member with rank
lower than p can generate a valid query message con-
taining |(|V®|—1)/3] +1 deputy messages. Therefore,
if p is the manager and sends a suggest message, or
if p acts as a deputy and sends a query message, then
each correct member of V* will reply to p (if it has
not already installed a new view) and p will be able to
complete the protocol and install a new view. Liveness
then follows from the above stipulation on failure sus-
picions, because the |(|V*®|—1)/3|+1 correct members
of V*® desiring to add or remove g will either provide p
with enough notify messages to make a suggestion as
manager or, if a member with rank higher than p does
not succeed in committing a new view, with enough
deputy messages to make a query as deputy. O

