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Abstract 

Reliable and atomic group multicast have been pro- 
posed as fundamental communication paradigms to sup- 
port secure distributed computing in systems in which 
processes may behave maliciously. These protocols en- 
able messages to be multicast to a group of processes, 
while ensuring that all honest group members deliver 
the same messages and, in the case of atomic multi- 
cast, deliver these messages in the same order. We 
present new reliable and atomic group multicast pro- 
tocols for asynchronous distributed systems. We also 
describe their implementation as part of Rampart, a 
toolkit for building high-integrily distributed services, 
i.e., services that remain correct and available despite 
the corruption of some component servers by an at- 
tacker. To our knowledge, Rampart is the first system 
to demonstrate reliable and atomic group multicast in 
asynchronous systems subject to process corruptions. 

1 Introduction 

In practice, the only support for secure interprocess 
communication in most distributed systems, if any, is 
secure channels [32]. Secure channels by themselves, 
however, provide little support for secure distributed 
computing, especially when global security policies must 
be met despite the malicious behavior of some system 
components. Both practical and theoretical research on 
secure distributed services (e.g., [22]), verifiable secret 
sharing (e.g., [20]), secure distributed elections (e.g., 
[12]), and more general forms of secure distributed com- 
puting (see [9] for a survey) indicate that meeting global 
security requirements can involve substantial crypto- 
graphic and/or communication mechanisms over and 
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above secure channels. If the techniques developed in 
this research are to be realized in practice, support for 
them must be explored. 

Reliable and atomic group multicast are two commu- 
nication paradigms proposed to support some forms of 
secure distributed computing (e.g., [ll, 6, 20, 28, 2, 221; 
also see [9]). Each of these is a protocol by which 
a process can multicast a message to a group of pro- 
cesses. Reliable multicazt, also known as Byzantine 
agreement [15], ensures that all honest group members 
(i.e., members that obey the protocol) deliver the same 
messages, even in the face of malicious multicast ini- 
tiators. Atomic multicast adds the property that hon- 
est members deliver these messages in the same order. 
While reliable and atomic multicast protocols tolerant 
of only benign failures have been the focus of much sys- 
tems research (e.g., [5, 16, 17, 13, 10, 3, l]), relatively 
little has been done to extend. these results to the more 
stringent requirements of security. 

In this paper we present new reliable and atomic 
group multicast protocols tolerant of malicious pro- 
cesses. We have implemented these protocols as part 
of Rampart, a toolkit for building high-integrity dis- 
tributed services, i.e., services that remain correct and 
available despite the corruption of some component 
servers by an attacker. Rampart was motivated by an 
effort in which we are examining ways to support a va- 
riety of security technologies in loosely coupled, large- 
scale distributed systems. This effort exposed the need 
for high-integrity services to support security-critical 
tasks, such as cryptographic key distribution, manage- 
ment and enforcement of global access control policy, 
and secure audit. We developed Rampart to facilitate 
the construction of these services to be both highly 
available and highly secure, even to the extent of tol- 
erating the penetration of some servers by attackers. 

Rampart supports the construction of high-integrity 
services with the techniques of [28], including the secu- 
rity extensions of [22]. Briefly, in this approach a ser- 
vice is implemented with multiple identical, determin- 
istic servers, initialized to the same state. Clients issue 
requests to the servers using an atomic multicast pro- 
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tocol, so that all honest servers process requests in the 
same order and thus produce the same output for each 
request. If the honest servers sufficiently outnumber the 
corrupt ones, then a client can identify the correct out- 
put by using a simple voting scheme, thereby masking 
out the effects of corrupt servers. Note that this ap- 
proach requires atomic multicast in general. Thus, our 
atomic multicast protocol, and the reliable multicast 
protocol on which it is built, are central to Rampart. 

To our knowledge, Rampart is the first system to 
demonstrate the feasibility of reliable and atomic group 
multicast tolerant of malicious processes in loosely cou- 
pled distributed systems. Prior systems that demon- 
strated reliable or atomic multicast tolerant of mali- 
cious processes required a synchronous network for cor- 
rectness, in which there are known bounds on message 
transmission times, process execution rates, and relative 
clock drifts [7, 19, 291. Due to these synchrony assump- 
tions, this work is inappropriate for loosely coupled sys- 
tems, and especially for hostile settings where messages 
may be delayed due to denial-of-service attacks [32]. 

Our protocols rely on no synchrony assumptions, 
even though it is impossible to (deterministically) solve 
atomic multicast without them [8]. We circumvent this 
impossibility result with a method similar to that used 
in some systems that provide atomic multicast tolerant 
of benign failures (e.g., [3, I]). Specifically, we build our 
group multicast protocols over a secure group member- 
ship protocol [21] that enables honest group members 
to collectively remove unresponsive members from the 
group during a multicast, so the honest members can 
make progress. This carries the risk of removing an hon- 
est but unreachable member from the group (and the 
multicast protocol). But it also removes the theoreti- 
cal barrier that prevents atomic multicast from being 
solved-i.e., that it is impossible to tell if a member has 
failed or is only unreachable-by deeming unresponsive 
members corrupt and removing them from the proto- 

col. A removed process must rejoin the group via the 
membership protocol before it can take part in further 
multicast protocols. Our protocols (and the protocol of 
[21]) require that more than two-thirds of the members 

in each instance of the group membership are honest. 

In our present implementation, our protocols offer 
performance that suffices for many applications, includ- 
ing those that initially motivated Rampart. However, 
they also indicate a high cost for tolerating malicious 
processes. In fact, the latencies of our protocols in our 
present implementation exceed those of some published 
protocols for benign failures by an order of magnitude; 
similar results hold for multicast throughput. Most of 
our protocol cost is computational due to the crypto- 
graphic operations performed, and exploiting special- 
purpose hardware for these operations would greatly 
improve their performance. 

The rest of this paper proceeds as follows. In Sec- 
tion 2 we state our assumptions about the system. In 
Section 3, we detail the semantics of our multicast pro- 
tocols. In Section 4, we present a protocol that we use to 
implement our multicast protocols, and Sections 5 and 
6 present the multicast protocols themselves. Section 7 
explores a way to strengthen the semantics of our proto- 
cols. Section 8 discusses our protocols’ performance in 
our present implementation. Appendix A proves some 
properties of our protocols, although for brevity, we de- 
fer most proofs to a forthcoming extended paper. 

2 System model 

We assume a system consisting of some number of 

processes PI, m, p3, . . . We will often denote processes 
with the letters p, q and r when subscripts are unnec- 
essary. A process that behaves according to its specifi- 
cation is said to be honest. A corrupt process, however, 
can behave in any fashion whatsoever, limited only by 
the assumptions stated below. Corrupt processes in- 
clude those that fail benignly. 

Processes communicate via a network that provides 
a FIFO point-to-point communication channel between 
each pair of processes. These channels are authenticated 
and protect the integrity of communication using, e.g., 
well-known cryptographic techniques [32]. To show live- 
ness of our protocols, we assume that communication is 
reliable, in the sense that if the sender and destination 
of a message are honest, then the destination eventu- 
ally receives the message. However, we do not assume 
known, finite upper bounds on message transmission 
times; i.e., communication is asynchronous. Moreover, 
we do not assume that processes maintain synchronized 
clocks or clock rates. While our protocols do use time- 
outs to ensure progress, these uses do not require clock 
synchronization among processes. 

Each process pi possesses a private key Ki known 
only to itself, with which it can digitally sign messages 
using a digital signature scheme (e.g., [26]). We denote 
a message (. . .) signed with K; by (. . .)K;. We assume 
that each process can obtain the public keys of other 
processes as needed, with which it can verify the origin 
of signed messages.’ 

As discussed in Section 1, we assume the existence 
of a group membership protocol that provides a process 
group abstraction to processes [Zl]. This protocol gener- 

‘This assumption and the previous assumption of secure chan- 
nels may seem to con&t with a motivation discussed in Section 
1, namely that Rampart will be wed to build services that sup- 
port cryptographic key distribution. In this case, our assumptions 
equate to only a requirement that the cryptographic key aeruera 
can communicate sccurcly among themselves and have access to 
each others’ public keys, e.g., by a “manual” administrative ac- 
tion. The service will then distribute keys to a larger system with 
the availability and integrity guarantees outlined in Section 1. 
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ate9 a sequence V1, V’, . . . of group views, each of which 
is a set of process identifiers. Each Vztl differs from V” 
by the addition or removal of a single process. Our pro- 
tocols (and the protocol of [21]) require that at most 
[(IV”1 - 1)/3J members of each Vz are corrupt, and 
thus that at least [(2jV”l + 1)/3] members of each Vz 
are honest. The membership protocol ensures that each 
honest p receives V” iff p E Vz, and that p receives Vz 
before Vv if z < y (and p is in both). The membership 
protocol also supports interfaces by which processes can 
influence future membership changes. For this paper, 
two of these interfaces are important: a member of Vr 
can execute remove(a, p) to request that some p E Vz 
be removed from the group to form Vztl, and it can 
execute adds(z) to enable additions to occur in view z. 

These operations have the following semantics: 

. If p E V” and for all Ic such that p E no..k,..6 Vz+k’, 

at least [(IV”+‘I - 1)/3] + 1 honest membersof Vztk 
execute remove(z + k, p), then there exists some Vu, 
y > z, such that p @ Try. 

. If no honest member of V2 executes adds(z) prior to 
the generation of Votl, then Vztl c Vz. 

Intuitively, the first property says that if enough hon- 
est members of each Votk, k > 0, request to remove p 
from the group, then p is eventually removed. For sim- 
plicity, we assume that if an honest Q E V2 executes 
remove(z, p), then it also executes remove(z + k, p) for 
each Vrtk it receives such that (p, q} c &,.k,..k Vztk ; 
i.e., q executes remove(z + k, p) until eiXheY it or p 
is removed. Even with this, however, to remove p it 
may not suffice for all honest members of Vz to exe- 
cute remove(z, p), because if processes are then added 
to the group, those processes that requested p’s removal 
may no longer constitute enough of the group to remove 
p. This is precisely the motivation for the second prop 
erty above, which provides a way for honest members 
to prevent additions to the group until a member can 
be removed. We will see how this is used in Section 5 
and Appendix A. 

These properties are somewhat different from those 
of the membership protocol described in [21]. However, 
they can be achieved (or effectively approximated in 
practice) with minor modifications to that protocol. 

3 Multicast semantics 

In this section we more carefully state the seman- 
tics of our reliable and atomic group multicast proto- 
cols. Our reliable multicast protocol provides an inter- 
face R-mcast(m), by which a process can multicast a 
message m to the group. A process delivers a message 
m from p via the reliable multicast protocol by execut- 
ing R-deliver(p,m). In addition, if a process receives 

the z-th group view Vz, it can deliver that view via the 
reliable multicast protocol by executing R-deliver(P). 
FLmcasts and R-deliveries at an honest process occur 
strictly sequentially, and group views are R-delivered in 
order of increasing x. An execution of R-mcast or R- 
deliver at a process p is said to occur in view x if the 
last view R-delivered at p prior to that execution is V’. 
It is convenient to assume that an honest process does 
not R-mcast the same message twice in the same view; 
this can be enforced, e.g., by the process including a 
sequence number in each message. 

As described in Section 1, the task of a reliable mul- 
ticast protocol is to ensure that group members de- 
liver the same messages. We capture this semantic in 
four properties: Integrity, Agreement, Validity-l, and 
Validity-2. As stated below, Agreement, Validity- 1, 
and Validity-2 restrict behavior only at honest processes 
that are not removed from the group after some point 
(in practice, for sufficiently long). We can strengthen 
these properties in various ways; Section 7 covers one al- 
ternative. For now, however, we content ourselves with 
the properties below. 

Integrity: For all p and m, an honest process executes R- 
deliver(p, m) at most once in view x and, if p is honest, 
only if p executed El-mcaat(m) in view z. 

Agreement: If p and q are honest members of Vztk for 
all k > 0 and p executes R-deliver(r, m) in view z, then 
q executes R-deliver(r, m) in view x. 

Validity-I: If p is an honest member of Vztk for all 
Ic 2 0, then p executes R-deliver(P). 

Validity-a: If p and q are honest members of Vzt6 for 
all L > 0 and p executes R-mcast(m) in view x, then q 
executes R-deliver(p, m) in view x. 

Agreement roughly captures our intuitive definition of 
reliable multicast-i.e., that honest members deliver the 
same messages-but Integrity is also needed to meet 
this description. Validity-l,2 rule out trivial solutions 
by requiring that views and messages be R-delivered. 
Validity-2 is noteworthy as it ensures the R-delivery of 
messages from honest members only. In fact, as pre- 
sented here our protocol does not allow multicasts from 
outside the group (i.e., groups are closed [13]), but it 
easily extends to allow such interactions. 

The specification of atomic multicast includes In- 
tegrity, Agreement, Validity-l, and Validity-2, and adds 
a property that ensures that messages are delivered 
by group members in the same order. More precisely, 
our atomic multicast protocol provides an interface A- 
mcast(m), by which a process can multicast a message 
m to the group. A process delivers a message m from 
p via the atomic multicast protocol by executing A- 
deliver(p, m). As before, a process can also deliver a 
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view V” via the atomic multicast protocol by execut- 
ing A-deliver( V’), and an execution of A-mcast or A- 
deliver at a process p is said to occur in view x if the 
last view A-delivered at p prior to that execution is view 
x. We again assume that an honest process does not A- 
mcast the same message twice in the same view. Our 
atomic multicast protocol A-delivers messages to group 
members according to the following semantics. First, 
Integrity, Agreement, Validity- 1, and Validity-2 hold 
(with R-mast and R-deliver replaced with A-mast and 
A-deliver, respectively). Second, atomic multicast pro- 
vides the following additional property: 

Order: If p and q are honest members of Vr+’ for 
all le 1 0 and p executes A-deliver(r, m) before A- 
deliver(r’, m’) in view x, then q executes A-deliver(r, m) 
before A-deliver(r’, m’) in view 2. 

A consequence of stating these properties (except In- 
tegrity) in a way that restricts behavior only at hon- 
est processes that are not removed from the group is 
that for these properties to be meaningful in practice, 
corrupt processes must not be able to easily cause the 
removal of honest members from the group. Our pro- 
tocols (and the membership protocol of [21]) are de- 
signed to ensure that corrupt members cannot cause the 
removal of honest members except by performing net- 
work denial-of-service attacks that delay messages sent 
between honest members to the extent that some hon- 
est members appear unreachable. For brevity, we omit 
further discussion of these issues here. 

4 Echo multicast 

A core component of our reliable and atomic mul- 
ticast protocols is a protocol called echo multicast. In 
fact, in the absence of membership changes, a reliable 
multicast essentially reduces to a single echo multicast. 
Our echo multicast protocol provides an interface E- 
mcast(z, m) by which a process in Vz can multicast a 
message m to the members of V2. A process delivers a 
message m for view x from p E Vz via the echo multicast 
protocol by executing Edeliver(p, x, m). The echo mul- 
ticast protocol ensures that the I-th E-deliveries from p 
for view x at any two honest processes are the same. 

4.1 The basic protocol 

Echo multicast is perhaps best understood in a sim- 
plified form that enables a single p E V” to multi- 
cast only a single message m to V2. To initiate the 
multicast, p sends m to all members of V2. When a 
member receives a message rn from p, it “echoes” m 
by digitally signing m and returning this to p; addi- 
tional messages received from p are not echoed. Once 

time 
- (commit:po,z,m, 

{(echo:po,+,l,f(m))~,}pj~p) 

IY 

I 

(echo:po, =,I, f(m))Kj 

Figure 1: Echo multicast 

p receives [(21V” 1 + 1)/31 echoes for m, it sends these 
echoes to all members of V’. When a process receives 
these [(2\VzI + 1)/31 ec h oes for m and verifies their sig- 

natures, it E-delivers m. The number [(2(Vzl + 1)/31 is 
significant because if at most [(IV” I - 1)/3J members of 
V= are corrupt, it ensures that a majority of the hon- 
est members of Vz echoed m. Since an honest member 
echoes only one message from p, honest members cannot 
E-deliver different messages, even if p is corrupt. 

To generalize this protocol to handle many multi- 
casts from different processes, each echo is modified to 
include the name of the multicast initiator, the view 
number, and a sequence number in its signed contents. 
The protocol also employs a message digest function 
to reduce the number of times that the message m is 
transmitted on the network. A message digest function 
f maps any arbitrary length input m to a fixed length 
output f(m) and has the property that it is computa- 
tionally infeasible to determine two inputs m and m’ 
such that f(m) = f(m’). Several efficient message di- 
gest functions have been proposed; the Rampart toolkit 

currently offers MD4 [24] and MD5 [25]. 
The echo multicast protocol then executes as follows. 

Each p E Vz maintains a set of counters (cT}~~~v~, each 

initially zero, and a set commitd of messages, which 
is initially empty. Each counter CT keeps track of the 
number of messages that have been E-delivered for view 
x from pi, and is used to E-deliver messages from pi in 
FIFO order. The steps of the protocol are listed below 
(see Figure 1). 

1. If E-mcast(x, m) is executed at some p E V”, p sends 

(init: 2, f(m)) 

to each member of V” . (A message sent by a process 
to itself is received immediately when it is sent.) This 
process is called the multicast initiator. 

2. If pj receives (init: z, d) from some p E V= and this is 
the I-th message of the form (init: x, *)a that pj has 

‘As a notational convenience, throughout this paper WC USC 
“ + ” to mean “anything”, i.e., a wild-card value. 
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received from p, then pj sends 

(echo: p, z, I, d)~~ 

to p. 

Once the initiator p has received a set of echoes 

i(echo:p, x,1, f(m))KjlpjEP f or some 1 and some P 2 
Vz where ]P] = [(21Vzj + 1)/3], it sends 

(commit:p, X, m, {(echo:p, X, 1, f(m))Kj}pjeP> 

to each member of V2. 

If a process receives 

(commit:pi, 2, m, ((echo:n, 2, I, f(m))Kj}pjEP) 

for some 1 > c4 and some P c V” where ]P] = 

[( 2 IV= I + 1)/3], and if it has not received a view V’ , 
y > z, such that pi @ Vu, then it adds this commit 

message to commit#. 

Whenever a process adds a message (commit:pi, . . .) 

to commit?, it repeats the following step until it 
results in no more E-deliveries: if there is a message 

(commit:n, a, m, {(echo:n, x,& f(m))Kj}pjEP) (1) 

in commit8 such that cr + 1 = 1, then it executes 
E-deliver(pi, z, m) and sets CT + CT + 1. 

Two points are worth noting. First, by step 4, a process 
ignores any (commit: p, z, . . .) that it receives on the 
network if p has been removed from the group (i.e., if 
some VY, y > z, has been received such that p @ VY). 
This is needed for the correctness of our reliable mul- 
ticast protocol, discussed in Section 5. Second, for a 
process to execute this protocol for view z, it must have 
received V2. So, if a process receives a protocol mes- 
sage for a view that it has not yet received, it buffers 
the message until it receives that view. 

The protocol described above is similar to the echo 
broadcast protocol presented in [30], although our pro- 
tocol scales better as a function of IV=1 in the num- 
ber of messages and transmissions of m (at the cost 
of greater computation and stronger cryptographic as- 
sumptions). Specifically, an execution of E-mcast(z, m) 

results in 0( IV2 I) messages and transmissions of m, ver- 
sus O(lVzl’) with the protocol of [30]. 

Under the assumption that at most [(lV”I - 1)/3J 
members of V” are corrupt, the following hold. 

Lemma 1 If p is honest and some honest process eze- 
c&es E-deliver(p, x, m), then p executed Emcast(z, m). 

Lemma 2 If the I-th ezecutions of E-deliver(p, z, + ) 
at two honest processes are E-deliver(p, x, m) and E- 
deliver(p, z, m’), respectively, then m = m’. 

Therefore, this protocol protects the integrity of E- 
mcasts, and it ensures that honest processes do not dis- 
agree on the contents of an echo multicast. 

4.2 Stability 

We say that the I-th echo multicast from pi to view 

x is stable if c: 2 1 at every honest member of V2, 
or in other words, if the I-th E-delivery of the form 
E-deliver(p;, z, * ) has been executed at every honest 
member of V2. For our reliable multicast protocol, it 
is necessary (in the absence of membership changes) for 
processes to retain the commit message for each echo 
multicast until the multicast is stable. That is, a pro- 
cess removes message (1) from commit3 only after it 
determines that cf 2 1 at all honest members of V2. 

So that processes can tell when echo multicasts are 
stable, each Q E Vz periodically echo multicasts its set 
(c~}~~~v= of counter values to view x. p can piggyback 
this set on another E-mcast to view x, or if Q is not al- 
ready E-mcasting a message to view z, it can E-mcast 
its counter values to V2 in a separate message. A pro- 
cess q knows that the I-th echo multicast from pi to view 
x is stable if q has E-delivered a message for view x con- 
taining a counter value cf 1 I from each member of V2. 

An honest process does not permit a multicast to 
remain unstable for longer than a prespecified time- 
out duration. That is, if a process q retains (1) in 
commitJ beyond some timeout duration after execut- 
ing E-deliver(pi, x, m), it attempts to make this mul- 
ticast stable by sending (1) to each r E Vz from which 
q has not E-delivered a counter value cr > 1. If within 
some timeout duration after sending (1) to r, q does not 
receive Vz+’ or E-deliver a counter value cp 2 I from 
r, then q executes remove(x,r). The purpose of this 
request is to prevent a corrupt r from causing honest 
members of VE to retain (1) indefinitely, which could be 
costly in terms of storage if m or V” is large. If all hon- 
est members of V” (and thus at least [(2lV”I + I)/31 2 

1Wl - w31 + 1 h onest members of V”) execute 

remove(x, r), then Vztl must eventually be generated, 

due to the semantics of remove (see Section 2). As we 
discuss in Section 5, if q receives Vztl (whether or not 
r E Vzfl), th en 1 wl eventually be able to discard all ‘t ‘11 

messages in commitd after R-delivering Vztl. If Vz+’ 
is not generated, then some honest member of V’ must 
have E-delivered a message m’ containing the required 
counters from r. As described above, this member will 
forward (commit:r, x, m’, . . .) to q if necessary, thereby 
allowing q to discard (1). 

5 Reliable multicast 

In this section we describe the reliable multicast pro- 
tocol of Rampart. When there are no membership 
changes, a reliable multicast is implemented by a sin- 
gle echo multicast. That is, if a process executes B- 
mcast(m) in view c, then it implements this by exe- 
cuting E-mcast(x, (r-msg:m)). If a process executes 
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E-deliver(p, CC, (r-msg: m)) and view z was the last view 
R-delivered, then it executes R-deJiver(p, m). 

The protocol becomes somewhat more complex dur- 
ing membership changes. First suppose that only a sin- 
gle membership change occurs. When the new view 
Vz+’ is received at p E Vz n Vz+‘, p inhibits new re- 
liable multicasts and Emcasts an end message to V”. 
This end message marks the end of reliable multicasts 
from p in view z. Once p has E-delivered an end mes- 
sage for view z from every member of VE n V++l, it ex- 
ecutes E-mcast(x + 1, (flush: commit?)). The purpose 
of this flush message is to communicate to the members 
of V” n Vz+l the commit messages for view t that p re- 
ceived. When each process in V” n Vz+’ E-delivers this 
flush message from p, it also adds the (properly formed) 
commit messages in p’s flush to its own commitd set 

(and E-delivers messages as appropriate). Once p has 
E-delivered a flush from every member of Vztl, it R- 
delivers Vztl and resumes reliable multicasts. 

As described, this protocol suffices only for a sin- 
gle membership change. However, membership changes 
might occur during the execution of this protocol, and 
in fact it may sometimes be necessary to force member- 
ship changes to occur so that this protocol can make 
progress. In particular, if an end or flush message is 
never E-delivered from a process, it will be necessary 
to remove that process from the group in order to make 
progress. To make such removals possible, when an hon- 
est process receives V”+l, it does not enable additions in 
Vztl until it R-delivers Vzfl. While additions are dis- 
abled, honest members can remove unresponsive mem- 
bers as needed, thereby generating new views. When 
each new view is received, the same protocol is executed 
for the new view. This continues until some V2+’ is re- 
ceived such that flush messages for Vztl . . . Vztk are 
E-delivered from every member of no<k,..k Vztk’, i.e., 

from every member of Vztl that is still% the group. 
Only then can Vz+r be R-delivered. 

We now state the protocol more carefully. Each 
p E Vz maintains a FIFO queue defer=, initially empty, 
which is used to defer R-deliveries intended for view x 
until V2 is R-delivered. An honest process does not ex- 
ecute R-mcast in view x if it has received a view Vu 
where y > x. The reliable multicast protocol at each 
process in V” executes as follows. 

1. If R-mcast( m is executed in view x, then execute ) 
E-mcast(x, (r-msg: m)). 

2. If E-deJiver(p, x, (r-msg: m)) is executed and neither 
E-deJiver(p, x, (end)) nor E-deJiver(p, x, (r-msg: m))3 
was previously executed: 

‘In practice, duplicates CM be detected by a sequence number 
in m, rather than based on m’s entire contents. These acqucncc 
numbers need only be unique among mcssegcs Rmcsst by the 
same process in the same view. 

a. If Vz is the most recently R-delivered view, then 
execute R-deJiver(p, m). 

b. If V2 has not yet been R-delivered, then enqueue 
the pair (p, m) on defer”. 

3. If view Vz+’ is received: 

a. Execute E-mcast(x, (end)). 

b. For each p E Vz nVztl, if E-deJiver(p, x, (end)) is 
not executed within some predetermined timeout 
duration, then execute remove(x + 1, p). 

4. When for some k > 0, views Vztl . . . Vztk have been 

received and for all p E no<k#<k Vztk’, E-deliver(p, 
x, (end)) and E-deJiver(p, 2, -(flush: *)) have been 

executed: 

a. Execute E-mc&(x + 1, (flush: commit#)). 

b. For each p E Vztl, if E-deJiver(p, x + 1, (flush: * )) 

is not executed within some predetermined time- 
out duration, then execute remove(x + 1, p). 

5. If V2 is the most recently R-delivered view: 

a. If E-deJiver(p, x + k, (flush: S)) is (of was priorly) 
executed where p E r)o<k,<k Vztk , k > 0 and 
vzt1 . V2tk have been ;ec&ed, and if this is the 

first execution of E-deJiver(p, x+k, (flush: * )), then 
for y = z + k - 1, add to commit& each message 

(commit:pi, Y, m, ((echo: P;, Y, 1, f(m))Kj)pjEP) 

in S such that 1 > ci, P c Vv, and IP( = [(21VYI+ 
1)/3]. (Also apply rule 5 of the echo multicast 
protocol of Section 4.1.) 

b. When for some k > 0, views Vrtl.. . Vztk have 
been received and E-deJiver(p, x + k’, (flus!,: * )) 

has been executed for all p E n,,,,k,,Ck Vztk and 
all k’, 0 < k’ < k: 

i. Execute El-deJiver(V”+‘) and adds(z + 1). 

ii. Repeat the following until defer”+’ is empty: 
dequeue the head of deferEtl, say (q,m), and 
execute R-deliver(q) m). 

A process in VE+l - V2 (or Vztl if x = 0) also exe- 

cutes parts of this protocol, beginning at step 4a. More 
precisely, when the process receives Vztl, it executes 
E-mcast(x+ 1, (flush: 8)) and, if x = 0, step 4b. It then 
executes step 5b (ignoring the condition of step 5 that 
V2 be R-delivered), and the full protocol for Vztl. 

Two points about step 5 deserve clarification. First, 
due to step 5a, the Edelivery of a flush for view z + k 
could result in the E-delivery of a flush for view x+k - 1, 
which could result in the Edelivery of a flush for view 
x + k - 2, etc. Thus, the E-delivery of a flush for view 
x + k could “cascade” into an E-delivery for view x and 
thus an R-delivery in view x. If a flush for view x + k 
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is E-delivered prior to the R-delivery of VE+l, then it 
is essential that any E-deliveries that could result by 
step 5a be performed prior to R-delivering Vztl in step 
5b. Second, note that if Vz is the most recently R- 
delivered view, then step 5a consider: E-deJiver(p, z + k, 
(flush: *)) only if p E nc,<k,<t Vztk . Once Vz+l is R- 
delivered, prior E-deliveries :f flush messages from any 
p E v=+l - V” should be revisited to determine if they 
now satisfy the conditions of 5a in the protocol for Vz+l. 

Once a process p R-delivers Vztl, it participates in 
no new echo multicasts for view y and adds no more 
commit messages to commit& for any y 5 z. It then 
empties commit# for all y 5 z after sending each 
(commit: q, y, m. . .) E commit# to each r E Vy that did 
not execute E-deJjver(q, y, m), according to the counters 
that p E-delivered for view y from r (see Section 4.2). 

The proofs of Integrity and Validity-2 for this proto- 
col are straightforward and are omitted here for the sake 
of brevity. The proofs for Validity-l and Agreement, 
however, are less straightforward and are sketched in 
Appendix A. Finally, we state without proof a lemma 
that is necessary for the correctness of our atomic mul- 
ticast protocol of Section 6. 

Lemma 3 If p and q are honest members of Vztk 
for all k 2 0 and p ezecutes R-deJiver(r, m) before R- 
deliver(r, m’) in view z, then q ezecutes R-deJiver(r, m) 
before R-deJiver(r, m’) in view z. 

Intuitively, this lemma states that honest processes R- 
deliver messages from the same process in the same or- 
der. Note that this differs from the Order property of 
Section 3 in two ways: as stated, it applies only to R- 
deliveries (not A-deliveries), and then only to the R- 
delivery order of messages from the same process. This 
lemma follows easily from Lemma 2. 

6 Atomic multicast 

Our atomic multicast protocol is built over the reli- 
able multicast protocol of Section 5. The semantics of 
reliable multicast greatly simplify our atomic multicast 
protocol. In fact, they enable us to use a protocol that 
is similar to those used in the Amoeba [13] and Isis [3] 
systems, which are tolerant only to benign failures. In- 
tuitively, the protocol works by allowing a designated 
member of each group view, called the sequencer, to 
determine the order in which messages in that view are 
A-delivered. The sequencer in view x can be determined 
using any deterministic algorithm (e.g., the member of 
V” with the lexicographically smallest identifier), be- 
cause the a-th view at each honest p E Vz is the same. 

Informally, the protocol executes as follows. To A- 
mcast a message, a process simply R-mcasts it. As the 
sequencer R-delivers messages, it chooses an A-delivery 

order for the messages and periodically R-mcasts a spe- 
cial order message indicating this chosen A-delivery or- 
der. When a process R-delivers an order message from 
the sequencer, it A-delivers messages in the order in- 
dicated in the order message. If a new view Vztl is 
R-delivered, there may be some messages that were R- 
delivered in view x but for which no order message was 
R-delivered in view 2 that indicates the order in which 
these messages should be A-delivered. However, since 
this set of non-A-delivered messages is guaranteed to 
be the same at all honest members that are not re- 
moved from the group, the members can A-deliver these 
messages according to any deterministic ordering (e.g., 
ordered by the processes that R-mcast them, and by 
R-delivery order among messages R-mcast by the same 
process). Once all (non-order) messages R-delivered in 
view x are A-delivered, Vztl can be A-delivered. 

While Integrity, Agreement, and Validity-l (with 
R-mcast/R-deliver replaced by A-mcast/A-deliver), as 
well as Order, are achieved by this protocol, additional 
steps are needed to ensure that a corrupt sequencer can- 
not prevent the A-delivery of a message and thus cause 
a violation of Validity-2. A corrupt sequencer could try 
to prevent the A-delivery of a message either by refus- 
ing to report when to A-deliver it, or by including mes- 
sages before it in the chosen A-delivery order that will 
never be R-delivered. To counter such behaviors, if an 
honest process p does not A-deliver a message within 
some predetermined timeout period after R-delivering 
it, then p requests that the sequencer be removed from 
the group. This request is justified because any mes- 
sage R-delivered by the sequencer should soon be R- 
delivered by p as well, and vice versa, provided that 
the sequencer is honest and reachable (see Section 4.2). 
Once p R-delivers a new view, it can A-deliver any non- 
A-delivered messages as before, i.e., according to some 
deterministic ordering. If the membership protocol does 
not generate a new view, then by Agreement for R- 
deliveries, p must eventually R-deliver the messages on 
which it is waiting, i.e., the order message placing the 
delayed message in the A-delivery sequence or the mes- 
sages to be A-delivered prior to the delayed message. 

We now state the protocol more carefully. Each q E 
V” maintains a set of FIFO queues (pending~}piEv-, 
each of which is initially empty, and a FIFO queue 
order” of process identifiers, initially empty. The 
pending: queues are used to store R-delivered mes- 
sages that are awaiting A-delivery, and order’ is used 
to record the A-delivery order chosen by the sequencer. 
A dequeue operation on an empty queue blocks until 
an enqueue operation is executed on the queue. The 
sequencer for V”, denoted seq2 below, maintains a list 
senders= of process identifiers, initially empty. An hon- 
est process does not execute A-mcast in view x if it has 
received a view V* where y > z. The protocol for V2, 
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which is initiated at each q E Vz when q A-delivers V2, 
executes as follows. 

1. If A-mcast(m) is executed in view z, then execute 
R-mcast((a-msg:m)) (in view Z). 

2. If R-deJiver(pi, (a-msg:m)) is executed in view Z: 

a. Enqueue m on pending:. 

b. (seq’ only) Set senders” +- senders= Ilpi, where ] ] 
denotes concatenation. 

c. If A-deJiver(pi, m) is not executed within some pre- 
specified timeout period, execute remove(z, seq2). 

3. (seqz only) Periodically do the following until some 
Vv, y > Z, is received: 

a. Execute B-mcast((order: senders”)) (in view z). 

b. Set senders2 +- 0 (i.e., the empty list). 

4. If R-deliver(seq=, (order:p;, . . .pi,)) is executed in 
view Z, then for j = 1 . . .n (in increasing order): if 

p;; E V2 then enqueue pij on order=. 

5. Repeat the following until some Vv, y > z, is A- 
delivered: 

a. Dequeue the head of order=, say pi. 

b. Dequeue the head of pending:, say m. 

c. Execute A-deJiver(p;, m). 

6. If R-deJiver(V”+l) is executed: 

a. Let piI . . .p;, (n = IV” 1) be a deterministic enu- 
meration of Vz (e.g., ij < ij+l for all j). 

b. For j = 1.. .n (in increasing order), repeat the 
following while pendingrj is not empty: dequeue 
the head of pendingTj, say m, and execute A- 
deJiver(p;, , m). 

c. Execute A-deJiver( Vztl). 

It is important that as many messages az possible be 
A-delivered via step 5-i.e., according to the order de- 
scribed in the order2 queue-before A-delivering mes- 
sages according to step 6. Also, it is worth clarifying 
that while steps 1, 2, 4, and 6 are executed in response 
to certain events, steps 3 and 5 are continuously exe- 
cuted, beginning when the process A-delivers V’. A 
process in V’+l - V2 (or V++l if z = 0) A-delivers 
Vztl immediately upon R-delivering it. 

In Rampart, we apply several optimizations to this 
protocol. In particular, whenever possible the sequencer 
piggybacks ordering information on the a-msg messages 
that it R-mcasts, so that this information need not be 
R-mcast separately. The impact of this optimization is 
discussed in Section 8. 

7 Uniformity 

As discussed in Section 3, the Agreement and Or- 
der properties restrict behavior at honest processes that 
are not removed from the group. However, these prop- 
erties say nothing about honest members that are re- 
moved from the group. For example, with the proto- 
col of Section 5, it is possible for an honest member of 
V” - v=+l to R-deliver messages in view z that mem- 
bers of n6.e V =+ do not. Similarly, with the proto- 

col of Sect& 6, it is possible for an honest member of 
V” - V2+l to A-deliver messages in view z in a different 

order than members of &,o Vz+k. 
There exist applicationsfor which such possibilities 

may be problematic. For example, consider a dis- 

tributed database that implements a Chinese wall [4] 
access control policy on data sets. Briefly, a Chinese 
wall policy groups data sets into %onflict-of-interest 
classes”, and each subject is allowed to access at most 
one data set belonging to each class. To prevent a client 
from gaining access to different data sets in the same 
conflict-of-interest class from different data servers, one 
approach would be to issue all requests to the database 
servers with an atomic multicast protocol. Intuitively, 
since all honest servers would deliver access requests in 
the same order, for each request all honest servers would 
agree on the sequence of prior requests from the same 
client and thus would agree on whether to grant the re- 
quest. However, this would not necessarily be the case 
if our atomic multicast protocol of Section 6 were used: 
if an honest server were partitioned away from the rest 
of the group at an inopportune moment and then re- 
moved, two “conflicting” requests could be A-delivered 
at this honest server in the opposite order from other 
honest servers, possibly resulting in a policy violation. 

Such problems can be addressed by strengthening 
Agreement and Order to prevent removed but honest 
processes from taking actions that honest group mem- 
bers do not; such properties are said to be uniform [27]. 
In the case of reliable multicast, one such strengthening 
can be stated as follows. 

Uniform Agreement: If q is an honest member of Vz+’ 
for all Ic 2 0 and an honest p executes R-deJiver(r, m) 
in view Z, then q executes R-deJiver(r, m) in view Z. 

Note that this strengthens Agreement by relaxing the 
requirement that p E Vztk for all Ic 2 0. Stronger 
uniformity requirements are possible (cf. [27]). Uniform 
Agreement can be achieved with minor changes to our 
reliable multicast protocol, similar to the methods de- 
scribed in [l, 271 for benign failures. Very briefly, each 
process defers the R-delivery of a message m in view z 
until for some Ic 2 0, (r-msg:m) has been E-delivered at 
all honest members of &.k,<k Vr+“. In the absence 
of membership changes, this-means that m is not R- 
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delivered until the echo multicast of (r-msg: m) is stable. 
For brevity, we omit further discussion of this protocol. 

Uniform Agreement for atomic multicast can be for- 
mulated by replacing R-deliver with A-deliver in the 
above statement. To ensure consistent behavior of a re- 
moved process in the case of atomic multicast, however, 
Order also must be strengthened. 

Uniform Order: If q is an honest member of Vz+’ for all 
le 2 0 and an honest p executes A-deliver(r, m) before 
A-deJiver(r’, m’) in view Z, then q executes A-deliver(r, 
m) before A-deliver(r’, m’) in view c. 

The atomic multicast protocol of Section 6 satisfies both 
Uniform Agreement and Uniform Order if built over the 
reliable multicast protocol mentioned above that satis- 
fies Uniform Agreement. Intuitively, this is because an 

honest p E n,,, Vz+’ R-delivers all messages in view z 
that an honest-p E Vz does (by Uniform Agreement for 
reliable multicast), and if p R-delivers Vz+‘, then p R- 
delivers all messages in view z that q does (see Lemma 6 
of Appendix A). So, any A-deliveries at p-which must 
result from its R-delivery of order messages or Vz+l- 
will occur in the same order as A-deliveries at q. 

Despite the simplicity of the additional measures 
needed to satisfy Uniform Agreement and Uniform Or- 
der in our protocols, these measures can significantly 
impact the latency of multicasts, and thus they are not 
currently supported in the Rampart toolkit. Instead, 
we implement a functionally similar, but more efficient 
and flexible, mechanism that delays not the d&very of 
messages, but rather the “visibility” of any actions that 
result from those deliveries. That is, if the application 
so requests, Rampart delays sending messages that re- 
sulted from the A-delivery of a message in view z until 
that message is sure to be A-delivered in the same rela- 
tive order at all honest members that are not removed 
from the group. To accommodate applications that take 

external actions based on messages A-delivered to it, we 
are experimenting with mechanisms to inform the ap- 
plication when it is safe to take action. 

8 Performance 

Experience with current group-oriented systems sug- 
gests that group membership changes are infrequent for 
most applications (see [3]), and we expect this to be the 
case in the Rampart applications that we currently envi- 
sion. Thus, we expect that the most frequently observed 
costs associated with our multicast protocols will be 
those that occur in the absence of membership changes. 
In this section, we discuss these costs when there are no 
process corruptions, using data gathered from our pro- 
totype implementation of Rampart. This implementa- 
tion employs CryptoLib [14] for its cryptographic opera- 
tions and runs over the Multicast Transport Service [31], 

which supports point-to-point authenticated channels 
[23]. The public key cryptosystem we use is RSA [26]. 

As reliable and atomic multicasts are implemented 
essentially as one or two echo multicasts in the absence 

of membership changes, it is crucial that echo multicast 
perform well. The factor dominating the cost of an echo 
multicast in our present implementation is the cost of 
RSA operations: each group member must perform a 
digital signature and verify multiple signatures per echo 
multicast. In order to minimize the cost of signature 
verifications for a given RSA modulus size, we set all 
public exponents equal to three in our system. This is 
a common optimization in practice, and is reasonable 
for use in our system because these exponents are used 
only to verify signatures, and never to encrypt messages. 
(For weaknesses resulting from using small exponents 
for encryption, see [18].) However, this optimization 
has no effect on the cost of creating signatures. 

To optimize signature creation, each process uses a 
different short-term public key pair in the echo multicast 
protocol for each view. Briefly, in its first echo multicast 
to a view, each process piggybacks a new, short-term 
public key on the message being multicast. Until this 
multicast is stable, the process pi uses its long-term pri- 
vate key K; for signing echoes for that view. However, 
once the multicast is stable, it switches to using the 

short-term private key corresponding to the public key 
that it echo multicast. To limit the duration for which 
short-term keys are used, the membership protocol pe- 
riodically generates a null view change (i.e., a new view 
Vz+’ identical to V=), thereby causing new short-term 
keys to be deployed. Here we omit further details of how 
short-term keys are used, except to note that their use 
does require slight alterations to our reliable multicast 
protocol to ensure its correctness. Since short-term keys 
can be computed in the background, and since the same 
short-term key can be used in several views received in 
quick succession, the cost of generating short-term keys 
has no perceivable impact on our protocols. 

The benefit of using short-term keys is that the size 
of these keys can be minimized according to the maxi- 
mum time they will be in use. For instance, if the mem- 
bership protocol generates a new view at least once per 
hour, then the RSA modulus of a short-term key can be 
set to a length that is believed to be secure for (only) 
one hour. Minimizing the length of the RSA modulus 
can result in a substantial performance improvement 
for RSA operations. This is indicated in Table 1, which 
shows RSA timings in milliseconds (ms) for a range of 
different modulus sizes. The tests described in Table 1 
were performed on a SPARCstation 10 using a public 
exponent equal to three. 

By using small short-term keys and changing them 
frequently, we have achieved reasonable performance for 
our reliable and atomic group multicast. Some per- 
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Table 1: CryptoLib RSA timings (ms), SPARC 10 

formance measurements for reliable and atomic multi- 
cast are shown in Figures 2 and 3. The tests described 
in these figures were performed between user processes 
over SunOS 4.1.3 on moderately loaded SPARCstation 
10s spanning several networks. In these tests, the RSA 
modulus of a short-term key was 300 bits in length.4 

Figure 2 illustrates mean reliable multicast latency in 
milliseconds as a function of group size, for 0, 1, and 4 
kilobyte (kb) messages. Despite the use of 300 bit RSA 
moduli, public key operations still dominate the latency 
of reliable multicast, at least for small messages. For ex- 
ample, reliably multicasting a message to a group of size 
four incurs the following public key operations on the 
critical path of the protocol: one digital signature (each 
member signing an echo message); two signature verifi- 
cations by the multicast initiator (to verify two incom- 
ing echo messages); and three signature verifications at 
each other member (to verify the echo messages in the 
commit message). Reading from Table 1, these opera- 
tions account for roughly 25 ms, or 60% of the latency 
reported for a 0 kb message in Figure 2. The remain- 
ing 17 ms is primarily communication costs. Obviously, 
the latency of the protocol could be greatly reduced by 
using special-purpose hardware to perform RSA opera- 
tions. Such hardware could also make it feasible for the 
init message of the echo multicast protocol to be authen- 
ticated via digital signatures (versus over point-to-point 
authenticated channels), which opens the possibility of 
communicating this message by hardware multicast. 

Mean latency of atomic multicast is not included in 
Figure 2 because this quantity typically would bear lit- 
tle relation to the actual latency experienced per A- 
multicast. In general, the latency for an atomic multi- 
cast can vary widely depending on the policy by which 
the sequencer reliably multicasts order messages. Due 
to the overhead imposed by a reliable multicast, this 
policy should minimize the number of order messages 
R-mcast, while still ensuring a reasonable latency for 
each atomic multicast. For instance, in our present 
implementation, once the sequencer R-mcasts an order 

message, it waits to R-mcast another order message un- 
til either it has R-delivered five new a-msg messages or 
a timeout has passed since it R-delivered a new a-msg 

‘A 300 bit RSA modulus should be secure for roughly an hour 
againat an sdveraary with the computational re~ourcm used in 
the recent factorization of RSA-129 (A. Odlyeko, private cornmu- 
nication, May 1994). 
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Figure 2: Reliable multicast latency (ms) 

message, whichever comes first. Given this policy, the 
latency of A-mcast(m) can be as little as twice the la- 
tency of reliable multicast, if (a-msg:m) were the fifth 
such message R-delivered at the sequencer since the se- 
quencer last R-mcast an order message. However, the 
latency could also be greater, e.g., if (a-msg:m) were 
the first message R-delivered at the sequencer after the 
sequencer R-mcast an order message. We are presently 
experimenting with a variety of policies for reliably mul- 
ticasting order messages, to determine the best policies 
for various workloads. 

Figure 3 shows the mean sustainable throughput for 
reliable and atomic multicast as a function of group 
size. Those curves marked “one multicasting” describe 
tests in which one group member repeatedly multicast 
(0 kb) messages, reliably or atomically depending on 
the curve. In the atomic multicast tests, the multicas- 
ting member was different from the sequencer. (The 
case in which the multicasting member is the sequencer 
performs roughly the same as one member R-mcasting, 

because the sequencer can piggyback all ordering infor- 
mation on its own a-msg messages; see Section 6.) The 
curves marked “all multicasting” describe tests in which 
all group members repeatedly multicast to the group. 
It is interesting to note that atomic multicast achieves 
almost the throughput of reliable multicast when all 
members are multicasting. This results from the se- 
quencer piggybacking much of the ordering information 
on its own a-msg messages, thereby limiting the number 
of separate order messages that it R-mcasts. 

9 Conclusion 

We have presented new reliable and atomic group 
multicast protocols for asynchronous distributed sys- 
tems that can suffer malicious process corruptions. 
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These protocols are central to Rampart, a toolkit of pro- 
tocols for the construction of distributed services that 
retain their integrity and availability despite the pene- 
tration of some component servers by an attacker. To 
our knowledge, Rampart is the first toolkit of its kind, 
and the first system to demonstrate the feasibility of 
reliable and atomic multicast in asynchronous systems 
subject to process corruptions. We continue to optimize 
our protocol implementations, although current perfor- 
mance numbers indicate that these protocols can pro- 
vide performance that suffices for many types of applica- 
tions. This is especially true if special-purpose hardware 
is available for performing cryptographic operations. 

As discussed in Section 1, Rampart was motivated 
by a larger effort to provide support for comprehen- 
sive security mechanisms in loosely coupled, large-scale 
distributed systems. We are presently constructing se- 
curity services with Rampart as part of this effort. We 
also anticipate that our reliable and atomic group mul- 
ticast protocols may be of use in other types of secure 
distributed computing. We hope to report on our expe- 
riences with these efforts in future papers. 
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Proofs 

In this appendix, we sketch the proofs of Agreement 
and Validity-l for the reliable multicast protocol of Sec- 
tion 5. As described in Section 2, these proofs rely on 
the assumption that at least r(21V2 1 + 1)/31 members 
of each Vz are honest. 

Lemma 4 If Vz+l is generated and an honest p E 

nk>CiVx+k never executes E-deliver(q, x, (end)) for 

sonic q E Vz, then there exists a k > 0 such that 
q $! v=+k. 

Proof. (Sketch.) First suppose that q is honest and, 
for the contrapositive, that q E V++’ for all k 2 0. 

Then, q eventually receives VO+l and E-mcasts its end 

for view x. Since no honest process could have already 
R-delivered V2+’ for any Ic > 0 (having not received 
a flush for view x + k from p or q), at least [(21Vzl + 
I)/31 honest members of V” send echo messages for 
this multicast and the echo multicast completes. So, p 

E-delivers an end for view x from q. 

Now suppose that q is corrupt, and that p never ex- 
ecutes E!-deliver(q, x, (end)). If some honest r E V2 
E-delivers an end for view z from q, then r eventu- 
ally forwards (commit:q, x, (end). . .) to p (see Section 
4.2). Since p never E-delivers an end from q, p must 
reject this commit because it received a view V2+’ such 
that q @ Vztk, and we have the result. Now suppose 

that no honest member of Vz E-delivers an end from q. 

Since p does not execute E-mcast(x + 1, (flush: *)) un- 
til it receives some Vztk such that q e Vztk, and since 

PEV =tk for all k > 0, no honest process can R-deliver 
Vztk or execute adds(x + k) for any k > 0 until some 
Vztk such that q 6j’ Vz+’ is generated. So, for all k > 0, 

if q E nOsk’sk Vztk’ then Vztktl C Vztk. Moreover, 

for all k > 0 such that q E r)0<k,<6 - vz+k’ , all honest 

members of V” n Vztk. execute seiove(z + k, q). Since 
these honest members of Vz n Vz+k account for at least 
[(21VztkI + 1)/31 - 1 2 [(IVztkI - 1)/3] + 1 honest 
members of Vztk, the result follows. 0 

Lemma 5 If an honest p E n,,, VI+’ never executes 
Edeliver(q, x, (flush: *)) for some q E V”, then there 
exists a k > 0 such that q @ Vztk. 

Proof. (Sketch.) We prove the result by induction on x: 
suppose the result holds for all Vv, y 5 x, and consider 
view x + 1. First suppose that q E Vztl is honest and, 
for the contrapositive, that q E Vz+k for all k > 0. If 
q @ Vz (or if x = 0), then q E-mcasts its flush for view 
x + 1 when it receives Vztl. If q E V”, then since q re- 
ceives Vztk for all k > 0, the induction hypothesis and 

Lemma 4 imply that q E-mcasts its flush for view x + 1. 
Since no honest process could have already R-delivered 
Vztk for any k > 0, the echo multicast completes, and 
p E-delivers a flush from q for view x + 1. 

Now suppose that q is corrupt, and that p never E- 
delivers a flush for view x + 1 from q. If an honest 
r E Vztl E-delivers a flush for view x + 1 from q, then 
r eventually forwards (commit:q, x + 1, (flush: . . .) . . .) 

to p (see Section 4.2). Since p never E-delivers a flush 

from q, p must reject this commit message because it 
received a view Vztk such that q @ Vztk, and we 
have the result. So, now suppose that no honest mem- 
ber of Votl E-delivers a flush for view z + 1 from q. 
Since no honest member of Vztl can R-deliver Vz+’ 
or thus execute adds(x + k) for any k > 0 without 
first receiving some Vztk such that q e Vztk, it fol- 
lows that for all k > 0, if q E nO<k,..k Vztk’ then - 

. 
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V=+‘+l c Vz+‘. If z = 0, then each honest mem- 
ber of Vztl E-mcasts its flush for view z + 1 and ex- 
ecutes remove(z + 1, q). Since for all k > 0 such that 

qcfl O<k’<k Voth’, these honest members account for 

r(2(Vztk( + 1)/31 2 l(lVztk( - 1)/3J + 1 members of 
Vztk the result follows. If z > 0, then by the induc- 
tion hypothesis and Lemma 4, there exists a k > 0 such 
that each honest member of noCk,<k V++k’ E-mcasts 

its flush for view z + 1 and thus executes remove(z+ 1, 

q). Since Vztk = no<k,..k Vzt” for each k 2 c such 

that 4 c no<k#<k vztk’, these honest members account 

for at least r(2w2+” 1+1)/31-l > [(Iv=+k1-1)/3J+l 
members of Vztk, and we have the result. 0 

Theorem 1 (Validity-l) If p is an honest member of 
Vztk for all k 1 0, then p ezecutes R-deliver(V”). 

Proof. (Sketch.) Th e proof is by induction on views. 
For the induction step, suppose that the result holds 
for V”, and consider Vztl. Lemmas 4 and 5 imply 
that p E-mcasts a flush for view 2: + k for all k > 0. 
Moreover, any q E V ++l from which p does not E-deliver 

a flush message for any view z + k is eventually removed 
(Lemma 5). Since V2+l is finite, p must eventually R- 
deliver Vztl. 0 

Lemma 6 If an honest p E nk,o Vz+k. ezecutes R- 
deliver(r,m) in view x, then all honest q E V” that 
ezecute R-deliver(Vzt’ ) also ezecute R-deliver(r,m) in 

view 2. 

Proof. (Sketch.) Suppose that p E nk,,VVEtk and 

q E Vz are honest. For q to R-deliver Vzti, there must 
be a k, > 0 such that for every r E nO<k,5kq Vztk’, q 

E-delivers a flush from r for each view Vztl . . . Vztkq. 
In particular, q must E-deliver a flush from p for each 
view Vztl.. . Vztk~ before R-delivering Vztl. 

We first show that if before R-delivering Vztl, 
p executes E-deliver(r, a + k, (flush: S)) where r E 

n O<k,<k Vz+k’ and 0 < k 5 k,, and if this is p’s 
firsf execution of E-deliver(r, x + k, (flush: *)), then 
q also executes Edeliver(r, x + k, (flush: S)) before R- 
delivering Vz + ‘. We prove this by induction on k, - k. 
If k = k,, then the result follows immediately because 

’ E nO<k’skp 
vztk’ c n v+‘. Now suppose 

that k ? k,, and that E-zLz(r, x + k, (flush: S)) is 
the I-th E-delivery from r for view z + k at p. It suffices 
to show that q executes at least 1 E-deliveries from r 
for view x + k before R-delivering V2+l. So, consider 
any 1’ 5 1, and suppose that E-deliver(r, z + k, m) for 
some m is the I’-th E-delivery from r for view z + k at 

p. If p added (commit:r, x + k, m.. .) to commi&” 
in step 4 of the the echo multicast protocol of Section 
4.1, then p forwards this commit to q in its flush for 
view x + k + 1 (unless the I’-th echo multicast from 

r for view z + k is stable). So q adds this commit to 

commit# +’ before R-delivering Vztl. Now suppose 
that p added (commit:r, z + k, m.. .) to commitJtk in 
step 5a of the reliable multicast protocol of Section 5, 
i.e., due to executing Edeliver(r’, x + k + 1, (flush: S’)) 

for some r’ E r)O..k,<k+l V2+’ and some S’ such that 
(commit: r, x + k, ?a .Y .) E S’. By the induction hypoth- 
esis, q executes E-deliver(r’, x + k + 1, (flush: S’)) be- 
fore R-delivering V=+l, and thus adds (commit:r,x + 

k, m.. .) to commitsZ tk before R-delivering Vztl. 
To prove the lemma, now suppose that p executes 

R-deliver(r, m) in view a, and that Edeliver(r, x, 
(r-msg:m)) is the I-th E-delivery from r for view x at p. 
To show that q executes R-deliver(r, m) in view x, it suf- 
fices to show that q executes at least 1 E-deliveries from 
r for view x. So, consider any 1’ 5 1, and suppose that 
Edeliver(r, x, m’) for some m’ is the I’-th E-delivery 
from r for view x at p. If p added (commit:r, x, m’. . .) 
to commits? in step 4 of the the echo multicast proto- 
col of Section 4.1, then p forwards this commit to q in 
its flush for view z + 1 (unless the I’-th echo multicast 
from r for view x is stable). Now suppose that p added 
(commit: r, 2, m’ . . .) to commit8 in step 5a of the reli- 
able multicast protocol of Section 5, i.e., due to execut- 
ing Edeliver(r’, x+1, (flush: S)) for some r’ E VEnVZtl 
and some S such that (commit:r, x, m’. . .) E S. In this 
case, the previous paragraph shows that q also executes 
E-deliver(r’, x + 1, (flush: S)) before R-delivering Vztl, 
and thus adds (commit:r, x, m’. . .) to commiti@. 0 

Theorem 2 (Agreement) If p and q are honest mem- 
bers of Vztk for all k 2 0 and p ezecutes R-deliver(r, m) 
in view z, then q ezecutes R-deliver(r, m) in view x. 

Proof. (Sketch.) By Theorem 1, q R-delivers Vz. If 
Vz+l is never generated, then the result follows because 
pforwards (commit:r, x, (r-msg:m), . . .) to q if necessary 
(see Section 4.2). If Vztl is generated, then q R-delivers 

Vz+l by Theorem 1 and thus R-delivers m in view x by 

Lemma 6. 0 
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