Preventing Denial and Forgery of Causal Relationships in
Distributed Systems

Michael Reiter

Department of Computer Science
Upson Hall
Cornell University
Ithaca, New York 14853

Abstract

In a distributed system, it is often important to
detect the causal relationships between events, where
event ey is causally before event ey if e; happened be-
fore ez and could possibly have affected the occurrence
of ea. In this paper we argue that detecting causal rela-
tionships among events can be important for security,
in the sense that it may be essential to the correct im-
plementation of a security policy that a process be able
to determine if two events are causally related, and if
so, how. We formulate attacks on causality in terms
of causal denial and forgery, formalize possible secu-
rity goals with respect to causality, and present simple
algorithms to attain these goals in some situations.

1 Introduction

In a distributed system, it is often important to
detect the causal relationships between events, where
event e; is causally before event e, if e; happened
before e; and could possibly have affected the oc-
currence of ez [9]. Causality has been recognized
as fundamental to distributed computing and forms
the basis for event orderings in many distributed sys-
tems and distributed service implementations (e.g.,
[12, 7, 17, 4, 8]). For instance, several systems imple-
ment communication primitives that deliver messages
in an order consistent with the causal relationships
among the messages (i.e., among the events in which
the messages were sent). This causal order can be seen
as an extension of FIFO order to a setting with mul-
tiple senders and receivers, and is especially useful in
systems that exploit asynchronous communication for
performance [2].

Here we argue that detecting causal relationships

1063-7109/93 $03.00 © 1993 IEEE

30

Li Gong

SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, California 94025

among events can also be important for security, in
that it may be essential to the implementation of a se-
curity policy that a process be able to determine if two
events are causally related, and if so, how. The view of
causality that we take is very different from that taken
by previous treatments of causality in the security lit-
erature. Previous studies of causality and security
have occurred in the context of multi-level information
flow, where one goal is, informally, to prevent events
at higher-level objects from causally preceding events
at, and thus carrying information to, lower-level ob-
jects. That is, in previous works, causal relationships
have been viewed as something to be avoided in order
to achieve noninterference [6).

In contrast, we claim that because of the fundamen-
tal role of causality in distributed systems, the accu-
rate detection (but not elimination) of causal relation-
ships can be crucial to security in distributed systems.
This was first illustrated in {14] by the following exam-
ple of “insider trading”: suppose that a trader issues
a request to a trading service to purchase shares of
stock, and then as a result of an (indirect or direct)
interaction with another trader, the other trader infers
that this request has been made. If the latter trader is
able to submit a request to the trading service in such
a way that the two requests appear to be concurrent,
the service could be fooled into processing the latter
trader’s request first. The result could be, e.g., that
the request of the latter trader could increase the ap-
parent demand for the stock, and thus the price offered
to the former trader. To prevent this insider trading,
the trading service must recognize that the request of
the latter trader is causally after that of the former,
and should process that of the former first.

As another example of the importance of causal-

ity detection to security, consider a scenario in which
a company announces to the trading network that

it is merging with another company. Suppose that
a broker with inside information of this merger re-
quested to buy large quantities of the company’s stock
prior to the announcement but, to avoid suspicion, at-
tempted to make it appear that the request was initi-
ated causally after the announcement. If the trading
service accepts that the request was initiated causally
after the announcement, then the insider trading may
go undetected.

More generally, because of the fundamental impor-
tance of causality to so many distributed algorithms,
the conversion of these algorithms for use in a hos-
tile environment necessarily relies upon the accurate
detection of causal relationships despite malicious be-
havior. For instance, consider a service that allocates
a distributed resource to processes in an order con-
sistent with the causal relationships among their re-
quests [17]. If such a service is to be fair in a hostile
setting, it must be able to detect causal relationships
accurately, despite attempts of dishonest processes to
wrongfully make their requests appear causally prior
to other requests.

The above examples show that the type of causality
detection required to implement a security policy can
differ from one policy to the next. As illustrated in
the first trading example above, a security policy may
require that if a causal relationship exists, then it is
detected. On the other hand, in the second example,
security relies on an inverse requirement, namely that
if a causal relationship is detected, then it should ac-
tually exist. Thus, depending on the security policy,
it may be important that a principal not be able to
deny existing causal relationships or to claim nonexis-
tent ones without being detected.

In this paper we formalize possible security goals
with respect to causality and present simple algo-
rithms to attain these goals in some situations. This
work is a major generalization and improvement of the
discussion of causality in [14], in two ways. First, this
work presents a general framework in which attacks
on causality can be examined; in this framework, we
were able to identify attacks that are not considered
in [14]. Second, we present new algorithms to counter
these attacks.

The remainder of this paper is structured as fol-
lows. In section 2, we describe the assumptions that
we make about the system. In section 3, we formally
define the notion of causality. In section 4 we for-
malize our security goals with respect to causality. In
sections 5 and 6 we describe several algorithms for
reaching these goals. We summarize and describe fu-
ture work in section 7.

31

2 The system model

We assume a system consisting of a set P =
{P1,...,Pn} of processes that are spatially separated
and that communicate exclusively via a completely
connected, point-to-point network.! We often denote
processes with the letters P, @, R and S when sub-
scripts are unnecessary. Processes that behave accord-
ing to their design specification are said to be correct.
Processes may fail in an arbitrarily malicious (i.e.,
“Byzantine”) fashion, limited only by the assumptions
stated below; such processes are said to be corrupt.

The execution of each process is modeled as a se-
quence of indivisible events. There are two types of
events that can be executed by processes: sending a
message m to a process, denoted by send(m), and
receiving a message m from a process, denoted by
receive(m). (Internal computations are not explicitly
modeled.) Messages are identified by their send events
and not their contents; e.g., messages with the same
contents sent in different events are different messages
for our purposes.

We assume that each process receives only messages
that are sent to it (or by it; see below). In particular,
communication channels between correct processes are
authenticated and protect the integrity and the se-
crecy of communication, so that corrupt processes can-
not tamper with or receive this communication. In ad-
dition, all communication between corrupt processes
is modeled with explicit sends and receives, regardless
of its actual form (e.g., signals via a covert channel).
We also assume that channels between correct pro-
cesses provide FIFO delivery using, e.g., a standard
sequence number mechanism [19].

Many algorithms used to detect causality in be-
nign environments utilize assumptions of synchronized
clocks or bounded message transmission delays (e.g.,
[17]). However, we do not assume that correct pro-
cesses maintain synchronized clocks, or that message
transmission times between correct processes or exe-
cution speeds of correct processes are bounded. That
is, the system is totally asynchronous.

Finally, to simplify the following discussion, it is
convenient to stipulate that at each process, the event
send(m) is immediately followed by receive(mn), with
no other events occurring between these two. So, a
message is received by its sender and (possibly) by its
intended destination.

1The results of this paper can be extended for multicast com-
munication, although multicast complicates the algorithms and
discussion with little benefit. Thus, for simplicity we treat only
point-to-point communication here.

3 Definition of causality

We use the notion of causality formulated by Lam-
port in [9]. As described in section 1, one event is
causally before another if it could have affected that
other event. More precisely, suppose we define the
“one-step” causality relation ~» as the smallest rela-
tion satisfying the following conditions:

1. If events e; and e, are executed consecutively at
the same process, then e; ~+ e3.

2. For any m, send(m) ~ receive(m).

Then, the causality relation — is simply the transitive
closure of ~».

In this paper, we will be concerned with causal re-
lationships among messages, where two messages are
causally related precisely as the events in which they
were sent. So, if send(m1) — send(m.), then we say
that m; is causally before my and ms is causally after
myi. We will often use “m; — ms” as an abbreviation
for “send(m,) — send(m.)”.

It will be useful in the next section to have the
concept of a causal chain. A causal chain is a sequence
of events ey, ea,...,e; such that e; ~ ey ~» -+~).
Note that e; — ez if and only if there exists a causal
chain beginning with e; and ending with es.

4 Causal security goals

In section 1, we discussed several examples in which
the detection of causal relationships was important for
security. In this section we attempt to more carefully
formulate security goals with respect to causality. We
introduce two notions, denial and forgery, that capture
the ways in which efforts to detect causal relationships
between messages can fail due to malicious or acciden-
tal behavior, and discuss how these notions relate to
the examples of section 1. Sections 5 and 6 are devoted
to preventing denial and forgery, respectively.

Since thereis a version of denial and forgery for each
causality detection algorithm, when defining these no-
tions it is convenient to abstract all such algorithms
as a predicate C on pairs of messages. That is, we
assume that a process determines if message m; is
causally before message my by evaluating C(mq,m2).
If C(m1,ms) evaluates to true, then the process “be-
lieves” that my — my; otherwise, it “believes” that
my 4 ma, where 4 is the complement of —. Thus, C
has the following desired behavior:

32

true
false

if my — My,

Clma,ms) = { otherwise.
A correct process P generally need not be able
to evaluate C on all pairs of messages, but should
be able to compute C(my,m2) if both receive(m;)
and receive(my) are executed at P. (Recall that
if a process executes send(m), then it also executes
receive(m).) In the remainder of this paper, we will
concern ourselves with predicates of this form only.

Given C, we can now define the notions of denial
and forgery, which can occur due to malicious or ac-
cidental behavior, if C is not robust to such behavior.

Denial: A causal relationship is denied (with respect
to C) if there exist messages m; and m» such that
™M) — mg, but at some correct process C(m1,ms)
is false.

Forgery: A causal relationship is forged (with re-
spect to C) if there exist messages m; and my
such that m; 4 mg, but at some correct process
C(my,my) is true.

We have already seen examples of how denial and
forgery can result in security problems. For instance,
reconsider the trading examples in section 1, which are
represented pictorially in figure 1. In the first example,
the second trader QQ attempts to deny that its request
my is causally after P’s request m; as a result of its
interacting with P (possibly through other processes
S). If the attempt is successful, the trading service
R may fail to recognize that m; should be serviced
before ma. The second example illustrates the dangers
of forgery: the trading service R should not interpret
the request my from the broker @ to be causally after
the announcement m,; from the company P when in
reality it is not.

The next two sections of this paper are devoted to
finding algorithms to prevent denial or forgery in var-
ious situations. In general, to prevent denial it must
be the case that

D:If m; — ma, then C(my, my) is true at any correct
recipient of m; and m,.

On the other hand, the prevention of forgery requires
that precisely the converse hold:

F: If C(m1,m2) is true at any correct recipient of m,
and ms, then m; — ma.

Figure 1: Causality detection

In order to rule out trivial solutions that provide no
causal information, we also require that our algorithms
satisfy the following property in addition to preventing
denial and/or forgery:

E: If there exists a causal chain ey,...,e; such that
e; = send(m;), e = send(mz), and for each
j €{1,...,1}, e; was executed at a correct pro-
cess, then at any correct recipient of my and ma,
C(my,mq) is true and C(mga,my) is false.

Property E requires that a causal chain traversing only
correct processes be recognized. E serves to rule out
some trivial algorithms that provide no causal infor-
mation, such as “C(my, my) = false for all m; and my,”
(which satisfies F) and “C(mq,ma) = true for all m;
and my” (which satisfies D).

In sections 5 and 6, we concentrate on finding algo-
rithms to satisfy E always, and D or F if the sender
of m; (in the statement of D and F) is correct. In sec-
tion 5, we present two algorithms that satisfy E and
that satisfy D if the sender of m; is correct. Then,
in section 6, we present two algorithms that satisfy E
and that satisfy F if the sender of m; is correct. What
can be done to satisfy D and/or F when the sender
of m, is corrupt is an open problem. However, the
algorithm in section 6.2 also satisfies a property with
only a slightly weaker consequent than F, even if both
the senders of m; and mg are corrupt. We suspect
that this property may suffice in some situations.

5 Preventing denial

In this section we discuss two methods for prevent-
ing denial attacks. More precisely, the algorithms dis-

33

cussed in this section ensure that if a correct process R
receives messages m; and mg, where the sender of m;
is correct and m; — my, then C(ms, ms) is true when
evaluated at R. So, in the example of figure 1, these
protocols ensure that if m; is causally before m2, then
Q cannot “backdate” my to appear causally before or
concurrent with m;.

5.1 The causality server

Our first solution employs a trusted causality
server. Intuitively, the causality server acts as an in-
termediary between all pairs of processes in the sys-
tem. Each correct process directly communicates with
(i.e., sends messages to or receives messages from) only
the causality server, via an authenticated, FIFO chan-
nel that protects the integrity and secrecy of communi-
cation. For one process to send a message to another
process, the former sends it to the causality server.
For each process R, the causality server forwards mes-
sages destined for R to R, in the order in which the
server receives those messages. (See figure 2.)

Figure 2: The causality server C'S

This simple causality server ensures that if pro-
cesses detect causal relationships with the predicate

true
false

C(ma,ma) = if m, is received before ms,
L) = otherwise,

then it is not possible for a corrupt process to deny

the causal relationships that its messages have with

causally prior messages from correct processes.

Theorem 1 This algorithm satisfies E and satisfies
D if the sender of m, is correct.

Proof.

D: Suppose there are messages m; and ms such
that m; — my and the sender of m; is correct.
Also suppose that R is a (correct) recipient of m;
and my. If R is the sender of m; (i.e., R sent my
to another process), then because m; is received
at R immediately after it is sent, R receives m;
before my. Now suppose some other process sends
m1 to R. Because the channel from the sender of
m, to the causality server is FIFO, m; must arrive
at the causality server before any message m such
that m; — m. So, m; is forwarded to (and thus is
received by) R before any such message destined
for R, and in particular, before ms.

E: Suppose there exists a causal chain ey,...,e¢
such that e; = send(m1), e; = send(m;), and for
each j € {1,...,1}, ¢; is executed at a correct
process. By the argument for D, C(my,mz) is
true at any correct recipient of m; and my. Then,
because if m; is received before my then my is
received after m,, C(mga,my) is false.

A warranted concern with the use of a causality
server is performance: this scheme results in twice as
many messages being transmitted over the network
than without the causality server, and the server may
become a traffic bottleneck in the system. However,
the degree to which a causality server would become
a bottleneck might be less than at first expected, be-
cause the causality server has very little processing
to do on each message it receives and forwards. In
fact, in a likely implementation it would simply need
to decrypt the message, appropriately check and at-
tach channel sequence numbers (to implement FIFO
order), re-encrypt the message, and forward it. Sup-
posing that encryption and decryption can be done in
hardware, the performance impact seen by processes
could be tolerable.

A second concern with this scheme is that it intro-
duces a single point of failure, namely the causality
server, into the system. That is, all communication
would cease if the causality server failed, and the cor-
ruption of the causality server would compromise the
ability of any correct process to detect causal relation-
ships. These problems can be addressed using known
replication techniques (e.g., [17, 13]), albeit at an ad-
ditional cost to performance.

5.2 The conservative approach

An alternative approach to the use of a causality
server is for each process P to delay sending a mes-

34

sage to its destination until all messages that P pre-
viously sent to other destinations have been received
at those destinations.? In general, a sender can be in-
formed of the receipt of its messages by acknowledge-
ments. These acknowledgements would occur as part
of a lower layer protocol, and would not result in ad-
ditional process events or be delayed like messages.®
Processes again detect causal relationships with the
predicate

true
false

if m; is received before mg,
otherwise.

C(mi,mg) = {

Theorem 2 This algorithm satisfies E and satisfies
D if the sender of m, is correct.

Proof.

D: Suppose there are messages m; and mg such
that m; — mq and the sender of m; is correct.
Also suppose that R is a (correct) recipient of m;
and my. If R is the sender of m, (i.e., R sent m;
to another process), then because m; is received
at R immediately after it is sent, R receives m;
before ms. Now suppose some other process sends
my to R. If the same process also sends m3, then
R receives m; first because channels between cor-
rect processes are FIFO. Otherwise, ma can be
sent only after m; is received at R, because the
sender of m, does not communicate to destina-
tions other than R until R has received m,.

E: Suppose there exists a causal chain ey,...,e;
such that e; = send(m;), e; = send(msy), and for
each j € {1,...,1}, e; is executed at a correct
process. By the argument for D, C(mq,m2) is
true at any correct recipient of m; and ms. Then,
because if m; is received before my then my is
received after my, C(mq,m;) is false.

This approach, sometimes called the conservative
approach, has been used by several systems to de-
tect causal relationships in benign environments (e.g.,
(17, 4]). Tt is especially attractive in our setting be-
cause a correct process can singlehandedly prevent
corrupt processes from “backdating” their messages

2A further condition is required if multicast communication
is used (see [4]). However, as stated in section 2, we restrict
ourselves in this paper to point-to-point communication.

3These acknowledgements could be viewed as introducing
additional causal relationships. However, since acknowledge-
ments carry no application-specific information, these relation-
ships are unlikely to be of interest in most settings and thus are
omitted from the present discussion.

to wrongly appear causally prior to or concurrent with
its own. That is, it need not rely on a third party for
this guarantee. Moreover, this solution introduces no
bottleneck or single point of failure into the system.

Communication performance achieved with the
conservative approach can vary widely, depending on
the particular communication patterns exhibited by
processes. Because a process delays sending a mes-
sage to a destination only when it does not know of
the receipt of a message it previously sent to a differ-
ent destination, processes can achieve the full perfor-
mance benefits of asynchronous communication when
streaming messages to a single destination. However,
when processes send to many different destinations in
quick succession, the communications are essentially
reduced to synchronous remote procedure calls.

From a security point of view, the most significant
disadvantage of the conservative protocol is the po-
tential for denial-of-service attacks. A corrupt process
can prevent a sender of a message from being able to
send to any other destinations by refusing to acknowl-
edge any messages sent to it. (This form of “attack”
can occur even in benign environments if a process
simply crashes.) Different policies can be implemented
to deal with this problem, and which is best depends
on the particular system and application. One ap-
proach is implemented in the Isis system, which uses
a version of the conservative protocol adapted for mul-
ticast communication [4, 14]. In Isis, a trusted, fault-
tolerant service called the failure detector declares pro-
cesses faulty when they appear so, thus removing them
from the system view [15]. The result is that a process
that attempts denial-of-service attacks by refusing to
acknowledge messages will eventually be considered
faulty and ignored by all correct processes in the sys-
tem. In particular, any process waiting for acknowl-
edgements from such a process would be allowed to
proceed with sending to other processes without jeop-
ardizing causality detection.

6 Preventing forgery

In this section we present two algorithms that sat-
isfy F if the sender of m; is correct. That is, they
ensure that if a correct process R receives m; and
mg, the sender of m; is correct, and m; / ma, then
C(mi,m2) is false when evaluated at R. As discussed
in section 4, satisfying F under only the assumption
that the sender of m, is correct is an open problem.
However, the second algorithm presented here does
satisfy a property with only a slightly weaker conse-
quent than F, even if both the senders of m; and ms

35

are corrupt. We believe that especially in the case in
which the sender of mg is correct, this property may
suffice for some applications.

These algorithms use a digital signature scheme.
We assume that each process P; holds a private key K;
with which it can sign information so that any other
process can verify the information’s origin and authen-
ticity. Information m so signed is denoted {m} ..

6.1 Signed vector timestamps

Our first algorithm originates from a technique in-
troduced in Lamport’s paper on causality {9], where
he described an algorithm using logical clocks to detect
causal relationships among messages (in benign envi-
ronments). In his technique, each process P; maintains
a logical clock t; that assigns a value ¢;{e] to each event
e executed at P;, according to the following constraint
known as the clock condition:

T1: For any events e; and eg, if ey — ea, then
ti[61] < tj[CQ].

(The notation “t;[e]” implies that P; executed e.)

In Lamport’s algorithm, each logical clock t; was
implemented by an integer counter and “<” was nor-
mal integer less-than (<); thus, it was not possi-
ble to attain the converse of the clock condition, as
well. Later, however, several researchers (e.g., [10])
extended the notion of logical clocks to that of vector
clocks and defined a new relation “<” on them so that
the converse condition could also be satisfied:

T2: For any events e; and ez, if ¢;[e1] < ¢;[ez], then
e; — és.

In the algorithm in [10], each process P; maintains
a vector clock t; = (t},12,...,¢7), where n is the total
number of processes in the system and for each k €
{1,...,n}, t§ is a nonnegative integer. Vector clock
values t = (t1,...,t") and £ = (f!,...,£") are ordered
according to the following relation: ¢ < £ iff for all k €
{1,...,n}, t* < #*, and there exists a k € {1,...,n}
such that t* < £*. The algorithm to satisfy T1 and
T2 is as follows:

1. When process P; begins execution, ¢; is initialized
to all zeroes.

2. Process P; increments ti before executing each
event.

3. If send(m) is executed by process P;, then the
timestamp T, = ¢; is sent with m. ¢;[send(m)] is
defined to be t;.

4. If receive(m) is executed by process P;, then for
all k € {1,...,n}, P; sets t§ to max{t, Tk},
where TX is the k-th component of T,.
tj[receive(m)] is then defined to be t;.

Because the timestamp on a message m sent by P;
is Ty = t;[send(m)] (by step 3), this algorithm can be
seen as using the following predicate to determine the
causal relationship between two messages m; and my:

true
false

if Trny < Ty,
otherwise.

C(my,my) = {

In our system model, this algorithm does not suffice
to prevent processes from forging causal relationships,
because a corrupt process can easily manipulate com-
ponents of vector timestamps. For instance, in figure
1, Q could easily fabricate a timestamp T,,, to make
my wrongly appear causally after m;.

We thus propose a technique to prevent this. In our
approach, processes maintain vector clocks as before.
However, each process P; digitally signs the i-th com-
ponent of each timestamp it includes with a message,
and this signed value is then propagated by other pro-
cesses in the i-th components of the timestamps they
include with their messages. So, when a process P; ex-
ecutes send(m), it includes with m a vector timestamp
of the form

Tn= ({t}}Kw {t?}sz LR {t?}Kn>’

where for each k # 4, {t¥}k, was received by P; in
a previous receive event. The requirement that each
(nonzero) component of a vector timestamp be signed
by the corresponding process prevents corrupt pro-
cesses from inflating components of correct processes.
More precisely, the algorithm executes as follows:

1. When process P; begins execution, ¢; is initialized
to all zeroes.

2. Process P; increments ¢! before executing each
event.

3. If send(m) is executed by process P;, then the
timestamp T, = (T2,...,T2) is sent with m,
where for each k € {1,...,n},

[0 if t* = 0,
m {t¥}k, otherwise.

4. If receive(m) is executed by process P;, and for
all k € {1,...,n}, T is properly signed by P,
or is zero, then for all ¥ € {1,...,n}, P; sets

36

t% to max{tf,ﬁ}, where T® = 0 if TX = 0,
and Tk = {Tk}x, otherwise. Then, for each
k € {1,...,n} such that t¥ > 0, P; saves {t}}x,,
which it either received as T% or already had prior
to this event.

If some nonzero T% is not properly signed by Px,
then because communication channels between
correct processes protect the integrity of commu-
nication, this message must be from a corrupt
process and is therefore ignored.

Note that each T¥ can always be computed by a
correct process P; in step 3 of this algorithm, because
if Kk # i and tf # 0, then by step 4, T% = {tF}k,
was received and saved by P; in a previous receive
event. Processes detect causal relationships between
messages with the same predicate as before, adjusted
for the signatures:

true if T, < Tm, and Vk €
_ {1,...,n}, each of T% and
Cm1,ms) = T%_ is signed by Py or is 0,
false otherwise,

where T,, = (T%,...,T2).

Theorem 3 This algorithm satisfies E and satisfies
F if the sender of my is correct.

Proof.

E: Suppose there is a causal chain ey,...,e; such
that e; = send(m.), e; = send(m,), and for each
j€{1,...,1}, e; is executed at a correct process.
By construction, each component of Ty, and Ty,
is properly signed or zero, and Vk € {1,...,n},
T_,’ﬁ,1 < T_,’;, by step 4. Moreover, if the sender of
mg is P;, then T—,’n_l < TT,,2 by step 2. So, by the
definition of “<” for vector timestamps, Ty, <
T, and T, £ Tom, -

F: Suppose that a correct process R receives m;
and my, where the sender P; of m; is correct, and
that C(m1,mz) is true at R. Then, T; < T:,.
Moreover, by step 2 of the algorithm, T > 0,
and so Ty, must be signed by P;. Because there
must be a causal chain of events by which T},
traveled from P; to the sender of ms, and be-
cause P; released T,‘;12 only with m; or a causally
subsequent message, it follows that m; — ms.

In this algorithm, if P; is correct, then corrupt
processes cannot inflate timestamps’ i-th components
above their proper values, because the signatures for
the inflated values are not predictable before P; re-
leases them. Thus, this technique is similar to the
use of nonce identifiers [11], in that causal relation-
ships are established by the presence of “new,” unpre-
dictable, and verifiable values (i.e., the signed compo-
nents) in messages. However, our algorithm is more
general because any process can verify each value, and
not just the process that issued it. This technique also
has other beneficial features; in particular, it requires
no centralized servers, and communication can pro-
ceed completely asynchronously.

The primary weakness of this algorithm is its abil-
ity to scale. As n becomes large, signed vector times-
tamps could consume significant network bandwidth.
Techniques similar to some of those described in [4]
for compressing timestamps in benign systems are ap-
propriate for use in our system model but will not be
discussed here. A second threat to scale is that the
cost of computing and verifying signatures could be
significant if n is large. However, a signature scheme
with a fast verification algorithm could lessen this bur-
den, because in this use, signatures will typically be
verified more frequently than they are created.

6.2 The piggybacking algorithm

Our second algorithm for satisfying F if the sender
of m, is correct is based on a piggybacking technique
that, to our knowledge, was first used in an early ver-
sion of the Isis system to detect causal relationships
in benign settings [3]. This algorithm is more costly
than that in section 6.1. However, it is interesting be-
cause it also satisfies the following property (which is
slightly weaker than F), even if both the senders of m;
and my are corrupt:

F': If C(m1,m2) is true at any correct recipient of
m; and mg, then there exists a message ms with
the same contents as m; such that mz — ma.

Note that this property does not ensure that m; —
m2, but only that some message identical to m;
causally precedes ma. While F/ holds with no assump-
tions on the senders of m; and ms, it is primarily of
interest in the case in which the sender of m is correct.
In this case, F’ can substantially limit what a corrupt
process can choose for the contents of m; once ms is
sent (if C(m1,m2) is to be true). Moreover, we will
describe additions to our algorithm that place even
greater restrictions on the contents of m;.

37

Intuitively, the algorithm is very simple. When a
process P sends a message m, it “piggybacks” on (i.e.,
includes with) m a set H,, of all messages that P
received in the past and the messages piggybacked on
them. This is illustrated in figure 3, where P sends
my and then m, and then Q sends my. A process that
receives two messages ™y and mgq considers m; to be
causally before mo only if (a message with the same
contents as) m appears in Hy,,.

Figure 3: The piggybacking algorithm

More precisely, the algorithm executes as follows:

1. Each process P; maintains a set h; that is initially
empty.

2. If P; executes send(m), H,, = h; is sent with m.
3. If P; executes receive(m), it sets h; to

h,j UH, U {m}

Processes detect causal relationships as follows:

true
false

if my € H,, y
C(ma,ms) = { otherwise.
Here, “m; € H,,,” means that a message with con-
tents identical to m; appears in Hpy,,.

While the algorithm already satisfies F’, additional
measures must be taken to satisfy E and to satisfy F if
the sender of m is correct. To satisfy F under only the
assumption that the sender of m; is correct, it must
not be possible for the sender of mz to include (the
contents of) m; in H,,, unless m; — mz. That is, m;
must be unpredictable. In addition, to satisfy E, the
contents of messages sent by correct processes must
be unique. To see why, suppose there exist messages
my and ma such that m; causally precedes mjy by

means of a causal chain traversing correct processes
only. If the sender of m; had previously sent a message
whose contents were identical to those of ms, then this
message could appear in Hy,,, thus causing C(m2, m)
to be true at a correct recipient of m; and ms.

One way to make correct processes’ messages
unique and unpredictable is for the k-th message m
from P; to P; to be constructed in the form “{3,j, k :
data}k,” where data denotes the data to be sent in the
message (not including H,,). Specifying 4, j and k in
the message makes the message contents unique, and
including the signature makes the message contents
unpredictable. Then, we can prove

Theorem 4 This algorithm satisfies E and F', and
satisfies F if the sender of m, is correct.

Proof.

E: Suppose there exists a causal chain es,...,¢
such that e; = send(m.), e; = send(m,), and
for each j € {1,...,1}, e; is executed at a cor-
rect process. By construction, my € H,,; so,
C(m1,ms) is true. In addition, since the signa-
ture in mg first appeared when my was sent and
because my 4 m1, ms could not be in Hp,.

F’: Suppose that a correct process R receives my
and my, and that C(m1,my) is true at R. Then,
my € Hy,,. Consider any causal chain eg,...,¢e
of maximum length such that e; = send(m)
for some m, e; = receive(mz) at R, and m; €
Hp,. Such a chain exists because, e.g., the chain
send(my) ~ receive(ms) satisfies these require-
ments. Then, there is some message m’ identical
to my such that receive(m') was executed at the
sender of m before send(m).* So, m’' — m,.

F: Suppose that a correct process R receives
m1 and mg, the sender of m; is correct, and
C(m1,m2) is true at R. Then, m; € Hy,,. Since
the contents of m; cannot be predicted by the
sender of mg, it must be the case that m; — ma.

As mentioned earlier, F' is of interest primarily in
the case in which the sender of m; is correct (and
thus does not cooperate with the sender of m; to
forge causal relationships). To see why, suppose that
a corrupt process P intends to send a message m,

4Strictly speaking, the sender of m, if corrupt, could have
created m' and included m' in Hp, without receiving m’. For
all practical purposes, however, this can be modeled as it send-
ing m' to itself (and thus receiving m') before sending m.

38

my /4 ma, so that C(mi, my) is true at a correct com-
mon destination R. F’' dictates that P must choose
the contents of m; from those messages m3 such that
ma — mqa. If my has not yet been sent, P could try
to predict its possible choices for m; and send these
messages to the sender @ of me. Once Q sends m.,
however, P’s choices are limited.

Moreover, by adding some additional checking to
our algorithm, we can further narrow the choices avail-
able for the contents of m;. Note that after receiving
my (on the channel from P) and mgy, R can detect if

¢ the sender and receiver listed in m; are not P and
R, respectively,

e m; is the k-th message that R received from P
but the sequence number listed in m; is not k,

e m, is not properly signed by P, or

o there are multiple (non-identical) messages in
H,,, listing the same sender, receiver, and se-
quence number as m; and bearing P’s signature.

Suppose that R defines C(m1,ms) to be false if any of
these hold (and thus P is corrupt), even if m; € H,y,.
Then, once my is sent, P has at most one choice for
the contents of each message m; it sends on its channel
to R that will make C(m,,ms) true at R.

Several improvements to this algorithm can be
made in practice. First, instead of piggybacking H,,
on each message m, a process need only piggyback
those messages in H,, not piggybacked on a prior mes-
sage to the same destination. If the destination main-
tains messages piggybacked from each sender, then
H,, can be reconstructed when m is received. Sec-
ond, a message need not be transmitted separately
if it will eventually reach its destination piggybacked
on another message, although this delays the former
message to be received no earlier than the latter.

A third improvement (that is incompatible with the
second) uses message digests to limit the size of pig-
gybacked messages. A message digest algorithm (e.g.,
[16]) produces a fixed length message digest from an
input of arbitrary length, in such a way that it is com-
putationally infeasible to produce any input having a
prespecified target message digest, or to produce two
inputs having the same message digest. So, for all
practical purposes, a message digest uniquely identi-
fies an input. Using a message digest algorithm f, the
algorithm can be improved as follows:

1. Each process P; starts with k; initially empty.

2. If P; executes send(m) and m is P;’s k-th message
to P;, then Hpm = hi and D = {3, 4,k : f(m)}k,
are sent with m.

3. If P; executes receive(m), it sets h; to

h;UH, U {Dm}

The predicate to detect causal relationships becomes

true if {i,5,k : f(m1)}x, € Hm,,
C(m1,ma) = where m; is of the form
’ {i,3,k : data}k,,
false otherwise.

The four previously mentioned checks on my and Hp,,
can also be employed in this new algorithm.

Other possible improvements include garbage col-
lecting messages from the h;’s (at the cost of sacrificing
E in some cases), when causal relationships involving
those messages are no longer of interest.

7 Summary and future work

In this paper we have attempted to formalize the
problems with detecting causality in hostile environ-
ments and to provide algorithms to overcome these
problems in some situations. In particular, we have in-
troduced two new notions—denial and forgery—that
capture the ways in which causality can be mistakenly
detected or not detected. We have presented two al-
gorithms for preventing denial and two algorithms for
preventing or limiting forgery in some situations.

We initially became aware of the importance of de-
tecting causality in hostile environments during an-
other research effort directed at building secure dis-
tributed systems [14]. As part of that effort, a variant
of the conservative protocol of section 5.2 has been
implemented. One area for future work is the im-
plementation of other algorithms so that comparisons
between them can be made in real systems.

A second direction for future work is to find new al-
gorithms to detect causality. In particular, what can
be done toward satisfying D or F if the sender of m,
can be corrupt should be examined more closely. Less
general algorithms that exploit knowledge of commu-
nication patterns are also of interest, especially if ap-
plicable to large classes of distributed algorithms.

Third, we hope to examine further uses of causality
for security. For example, consider the following use of
causality to detect freshness, a property studied exten-
sively by the security community. A message is fresh
in a run of a protocol if its contents have not appeared

39

in another message sent before this run of the proto-
col began [5, 1]. One way to detect freshness is to use
causality: if a message can be verified to be causally
after a fresh message, then it too should be considered
fresh. One common technique for detecting freshness,
namely challenge-response interactions [11], is an in-
stance of this method. In this technique, P challenges
Q with a new, unpredictable nonce identifier, which @
must include in its response to P. The appearance of
the nonce identifier in the response convinces P that
the response was computed causally after P’s message
and thus that the response is fresh. This technique
could be generalized using the techniques of section 6
to enable a process other than the challenger to verify
the freshness of the response. In the future we hope
to examine other uses of causality detection.

Another direction for future research is to explore
the degree to which patterns of communication must
be restricted to prevent denial and forgery in certain
situations. It is interesting to note that both of our
algorithms for preventing denial synchronize commu-
nication: they eliminate all executions in which there
are messages m1 and mo such that the sender of m is
correct, m; — mg, and yet my is received before m; at
a correct common destination. On the contrary, nei-
ther of our algorithms for preventing forgery restrict
patterns of communication at all. We suspect that
these are not properties of our algorithms alone, but
suggest requirements inherent in the problems.

Finally, another difficult problem is how a process
P can determine whether it has received all messages
sent to it that are causally prior to a certain received
message. Such determinations are necessary if, e.g., P
must deliver received messages to an application in an
order consistent with the causal relationships among
them (e.g., [17, 4]). The algorithms of section 5 ensure
that all causally prior messages have been received if
all such messages are sent by correct processes, al-
though this does not necessarily hold if a causally prior
message is sent by a corrupt process.

Acknowledgements

We are very grateful to Tushar Chandra for suggest-
ing the idea of piggybacking, which lead us to the algo-
rithm of section 6.2. Comments made by Ken Birman,
Brad Glade, Andre Schiper, Robbert van Renesse and
anonymous referees improved our presentation.

In a private communication in February 1993, Doug
Tygar informed us that Sean Smith independently de-
veloped a protocol similar to that of section 6.1 of this
paper, in his work on secure clocks for partial order
time [18].

References

(1]

2l

(3]

[4]

(5]

[6]

(7

(8]

[9]

[10]

[11)

M. Abadi and M. R. Tuttle. A semantics for
a logic of authentication. In Proceedings of the
ACM Symposium on Principles of Distributed
Computing, pages 201-216, August 1991.

K. P. Birman, R. Cooper, and B. Gleeson. Design
alternatives for process group membership and
multicast. Technical Report 91-1257, Department
of Computer Science, Cornell University, Decem-
ber 1991.

K. P. Birman and T. A. Joseph. Reliable com-
munication in the presence of failures. ACM
Transactions on Computing Systems, 5(1):47-76,
February 1987.

K. P. Birman, A. Schiper, and P. Stephen-
son. Lightweight causal and atomic group multi-
cast. ACM Transactions on Computing Systems,
9(3):272-314, August 1991.

M. Burrows, M. Abadi, and R. Needham. A logic
of authentication. ACM Transactions on Com-
puting Systems, 8(1):18-36, February 1990.

J. A. Goguen and J. Meseguer. Security policies
and security models. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 11—
20, April 1982.

M. P. Herlihy and J. M. Wing. Linearizability:
A correctness condition for concurrent objects.

ACM Transactions on Programming Languages
and Systems, 12(3):463-492, July 1990.

R. Ladin, B. Liskov, L. Shrira, and S. Ghe-
mawat. Providing high availability using lazy
replication. ACM Transactions on Computing
Systems, 10(4):360-391, November 1992.

L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications
of the ACM, 21(7):558-565, July 1978.

F. Mattern. Virtual time and global states in
distributed systems. In Proceedings of the In-
ternational Workshop on Parallel and Distributed
Algorithms, pages 215-226. Elsevier Science Pub-
lishers B. V. (North-Holland), 1989.

R. M. Needham and M. D. Schroeder. Using
encryption for authentication in large networks
of computers. Communications of the ACM,
21(12):993-999, December 1978.

40

(12]

[13]

[14]

[15]

[16]

[17)

[18]

[19]

L. L. Peterson, N. C. Buchholz, and R. D.
Schlichting. Preserving and using context in-
formation in interprocess communication. ACM
Transactions on Computing Systems, 7(3):217-
246, August 1989.

M. K. Reiter and K. P. Birman. How to securely
replicate services. Technical Report 92-1287, De-
partment of Computer Science, Cornell Univer-
sity, June 1992.

M. K. Reiter, K. P. Birman, and L. Gong. In-
tegrating security in a group oriented distributed
system. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, pages 18—
32, May 1992.

A. M. Ricciardi and K. P. Birman. Using pro-
cess groups to implement failure detection in
asynchronous environments. In Proceedings of
the ACM Symposium on Principles of Distribuled
Computing, pages 341-351, August 1991.

R. L. Rivest. The MD4 message digest algorithm.
In A. J. Menezes and S. A. Vanstone, editors, Ad-
vances in Cryptology—CRYPTO ’90 Proceedings,
Lecture Notes in Computer Science 537, pages
303-311. Springer-Verlag, 1991.

F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: A tu-
torial. ACM Computing Surveys, 22(4):299-319,
December 1990.

S. Smith. Secure clocks for partial order time.
Ph.D. thesis proposal, School of Computer Sci-
ence, Carnegie Mellon University, October 1991.
An excerpt from this proposal was published as:
S. Smith and J. D. Tygar. Signed vector times-
tamps: A secure protocol for partial order time.
Techical Report CMU-CS-93-116, School of Com-
puter Science, Carnegie Mellon University, Febru-
ary 1993.

V. L. Voydock and S. T. Kent. Security mech-
anisms in high-level network protocols. ACM
Computing Surveys, 15(2):135-171, June 1983.

